
Mimer JDBC
Driver Guide

December 2023

Mimer JDBC, Driver Guide
© Copyright Mimer Information Technology AB.

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden
Phone +46(0)18 780 92 00

Mimer SQL Web Sites:
https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Mimer JDBC i
Driver Guide

Contents
Chapter 1 Introduction ... 1

About this Guide ..1
Definitions, Terms and Trademarks ... 1

Requirements ...2
Environment ...3
Logging...3

Chapter 2 Using the Mimer JDBC Driver .. 5
Loading a Driver...5
Connecting the Traditional Way ...6

Connecting With URL... 7
URL Syntax... 7

Connecting the J2EE Way...9
Deploying Mimer JDBC in JNDI.. 9
Deploying Mimer JDBC in a Connection Pool .. 10
Deploying Mimer JDBC in Distributed Transaction Environments 10

Error Handling..10
The Class SQLException... 11
The Class SQLWarning ... 11

Viewing Driver Characteristics ...12
The mimcomm JNI library ...12
Java Program Examples ...13

JDBC Application Example.. 13
JDBC Application Example for J2EE.. 14
Using the Driver from Applets ... 15

Executing the Java Applet Example.. 16

Chapter 3 Programming With JDBC ... 17
Examples in this Chapter ..17
Transaction Processing ..17

JDBC Transactions... 17
Auto-commit Mode.. 17
Manual-commit Mode.. 18

ii Contents

Setting the Transaction Isolation Level .. 19
Executing an SQL Statement ..19

Using a Statement Object ... 19
Using a PreparedStatement Object ... 19
Using a CallableStatement Object ... 20

Batch Update Operations ..20
Enhancing Performance.. 21

Result Set Processing ...22
Scrolling in Result Sets.. 23

Positioning the Cursor .. 23
Result Set Capabilities .. 24
Holdable cursors .. 24

Updating Data ...24
User-Defined Types..25

Default Type Mapping.. 25
Custom Java Classes With Type Mapping ... 26

Programming Considerations...27
Interval Data.. 27
Closing Objects .. 27
Increasing Performance .. 27

Appendix A Change History .. 29
New Functions..29

New Functions in 3.42.2.. 29
New Functions in 3.42 ... 29
New Functions in 3.41 ... 29
New Functions in 3.39 ... 30
New Functions in 3.38 ... 30
New Functions in 3.35 ... 30
New Functions in 3.31 ... 30
New Functions in 3.30 ... 30
New Functions in 3.28 ... 31
New Functions in 3.26 ... 31
New Functions in 3.25 ... 32
New Functions in 3.24 and 2.24... 32
New Functions in 3.18, 2.18 and 1.18... 32
New Functions in 3.17, 2.17 and 1.17... 32
New Functions in 3.16, 2.16 and 1.16... 32
New Functions in 3.15 ... 32
New Functions in 2.9 ... 33
New Functions in 2.8 ... 33
New Functions in 2.7 ... 33
New Functions in 2.5 ... 33
New Functions in 2.4 ... 33
New Functions in 2.3 ... 33
New Functions in 2.0 ... 33
New Functions in 1.9 ... 34
New Functions in 1.7 ... 34

Mimer JDBC iii
Driver Guide

New Functions in 1.2 .. 34
Changed Functions..34

Changes in 11.0.1... 34
Changes in 3.41 .. 34
Changes in 3.40 .. 34
Changes in 3.39 .. 35
Changes in 3.29 .. 35
Changes in 3.28 .. 35
Changes in 3.25 .. 36
Changes in 3.24, 2.24 and 1.24.. 36
Changes in 3.20, 2.20 and 1.20.. 36
Changes in 3.16, 2.16 and 1.16.. 36
Changes in 2.15 and 1.15.. 37
Changes in 2.14 and 1.14.. 37
Changes in 2.9 .. 38
Changes in 2.7 .. 38
Changes in 2.2 .. 38
Changes in 2.1 .. 38
Changes in 1.3 .. 38
Changes in 1.2 .. 38

Corrected Problems...39
Corrections in 11.0.1 .. 39
Corrections in 3.42.. 39
Corrections in 3.41a ... 40
Corrections in 3.40.. 40
Corrections in 3.39.. 40
Corrections in 3.38.. 41
Corrections in 3.37.. 42
Corrections in 3.35.. 42
Corrections in 3.31.. 43
Corrections in 3.30.. 44
Corrections in 3.29.. 44
Corrections in 3.28.. 45
Corrections in 3.27.. 45
Corrections in 3.26.. 46
Corrections in 3.25.. 46
Corrections in 3.24, 2.24 and 1.24 ... 46
Corrections in 3.23 and 2.23 ... 47
Corrections in 3.23, 2.23 and 1.23 ... 47
Corrections in 3.22, 2.22 and 1.22 ... 47
Corrections in 3.21, 2.21 and 1.21 ... 47
Corrections in 3.20, 2.20 and 1.20 ... 47
Correction in 3.19, 2.19 and 1.19 ... 48
Corrections in 3.18, 2.18 and 1.18 ... 48
Corrections in 3.16, 2.16 and 1.16 ... 49
Corrections in 2.14.. 49
Corrections in 2.14 and 1.14 ... 49
Corrections in 2.13 and 1.13 ... 50
Corrections in 2.12 and 1.12 ... 50
Corrections in 2.11 and 1.11 ... 51
Corrections in 2.10 and 1.10 ... 51

iv Contents

Corrections in 2.9 ... 51
Corrections in 2.7 ... 52
Corrections in 2.6 ... 52
Corrections in 2.2 ... 52
Corrections in 1.9 ... 52
Corrections in 1.7 ... 53

Known Restrictions..53
Known Problems ..55

 Index ... 57

Mimer JDBC 1
Driver Guide

Chapter 1

Introduction
Mimer JDBC Drivers provide access to Mimer SQL databases from Java applications and
applets. The drivers are type 4 drivers, which means that they are written entirely in Java.
As they are written in Java, they can be downloaded in applets.
Mimer JDBC Drivers can also be used on all platforms that support Java Virtual Machine
(JVM) and so provide a very high degree of portability.

About this Guide
The guide is intended for Java application developers working with Mimer SQL. It covers
all available Mimer JDBC drivers.
The guide describes the usage of SQL in Java applications, and provides, together with
the Mimer SQL Reference Manual, the complete reference material for Mimer SQL.
To read more about JDBC and JVM, visit
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html.
The JDBC API specification implemented by this driver (packages java.sql and
javax.sql) is found at https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
and https://docs.oracle.com/javase/8/docs/api/javax/sql/package-summary.html.

Definitions, Terms and Trademarks
API Application Programming Interface

EJB Enterprise Java Beans

JCP Java Community Process

JDBC The Java database API

JDK Java Development Kit

JNDI Java Naming and Directory Interface

JNI Java Native Interface

JRE Java Runtime Environment

JVM Java Virtual Machine

OCC Optimistic Concurrency Control

https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
https://docs.oracle.com/javase/8/docs/api/java/sql/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/package-summary.html

2 Chapter 1 Introduction
Requirements

All other trademarks are the property of their respective holders.

Requirements
• Mimer SQL server version 9.2 or later
• JRE 1.4 or later

PSM Persistent Stored Modules, the term used by ISO/ANSI for stored
procedures

SQL Structured Query Language

URL Uniform Resource Locator

Mimer JDBC 3
Driver Guide

Environment
Mimer JDBC has a complete range of functionality and support for the smallest devices
to the high-end systems and application servers. In the picture below the various Java
environments are described and coupled with computer environments and Mimer JDBC
drivers:

Logging
To keep the driver size small and to optimize performance the Mimer JDBC drivers do
not perform any logging. For logging, we provide a separate driver, Mimer JDBC Trace
driver.
Mimer JDBC Trace driver is a full JDBC Driver that covers all of JDBC by calling the
matching routines of the logged JDBC Driver.
It produces a log of every JDBC call an application makes, and also measures the elapsed
time for each call. The log can be written to a file, or can be displayed directly in a
window.
For more information, see https://developer.mimer.com/features/database-apis/jdbc/.

https://developer.mimer.com/features/database-apis/jdbc/

4 Chapter 1 Introduction
Logging

Mimer JDBC 5
Driver Guide

Chapter 2

Using the Mimer
JDBC Driver

This chapter explains how to load the Mimer JDBC driver and how to connect to a Mimer
SQL database. It also contains JDBC application examples and discusses driver
characteristics.

Loading a Driver
To use the Mimer JDBC driver, it must be loaded into the Java environment. The Java
environment locates a driver by a search along the class path, defined in the CLASSPATH
environment variable.
The CLASSPATH environment variable informs the Java environment where to find Java
class files, such as the Mimer JDBC drivers.
The Mimer JDBC driver jar file, including the directory specification, should be added to
the Java class path, as can be seen in the following examples:

Besides defining the CLASSPATH environment variable explicitly, it can also be defined
for a specific session when executing the application. For example:

java -classpath /usr/lib/mimjdbc3.jar JdbcApplication

UNIX: # echo $CLASSPATH
CLASSPATH=.:/usr/lib/mimjdbc3.jar

Win: % set CLASSPATH=.;D:\MIMJDBC3.JAR

6 Chapter 2 Using the Mimer JDBC Driver
Connecting the Traditional Way

Connecting the Traditional Way
The connection provides the link between the application and the Mimer SQL database
server. To make a connection using the DriverManager class requires two operations,
i.e. loading the driver and making the connection.
The class name of the Mimer JDBC Driver is:

com.mimer.jdbc.Driver

The class name of the Mimer JDBC Trace Driver is:
com.mimer.jtrace.Driver

The jar file referenced in the CLASSPATH determines which driver is loaded.
A driver can be explicitly loaded using the standard Class.forName method:

import java.io.*;
import java.sql.*;

…

try {
 Class.forName("com.mimer.jdbc.Driver");

 } catch (java.lang.ClassNotFoundException cnf) {
 System.err.println("JDBC driver not found");
 return;
 }

Alternatively, DriverManager, when it initializes, looks for a jdbc.drivers property
in the system properties. The jdbc.drivers property is a colon-separated list of drivers.
The DriverManager attempts to load each of the named drivers in this list of drivers.
The jdbc.drivers property can be set like any other Java property, by using the -D
option:

java -Djdbc.drivers=com.mimer.jdbc.Driver class

The property can also be set from within the Java application or applet:
Properties prp = System.getProperties();
prp.put("jdbc.drivers",
 "com.mimer.jdbc.Driver:com.mimer.jtrace.Driver");
System.setProperties(prp);

Note: Neither of the mechanisms used to load the driver specify that the application
will actually use the driver. The driver is merely loaded and registered with the
DriverManager.

Mimer JDBC 7
Driver Guide

Connecting With URL
To make the actual database connection, a URL string is passed to the
DriverManager.getConnection method in the JDBC management layer.
The URL defines the data source to connect to. The JDBC management layer locates a
registered driver that can connect to the database represented by the URL.

URL Syntax
The Mimer JDBC drivers support the following URL syntax:

jdbc:mimer:[protocol:][URL-field-list][property-list]

URL-field-list options can be combined with property-list options.

Protocol
If a protocol is specified, the driver will load the mimcomm JNI library and use native
routines to connect to the database. If the protocol is not specified (or is an empty string),
no JNI library will be loaded and a TCP/IP connection will be made using standard Java
network packages in you Java runtime.
Supported protocols include:

URL-field-list
All fields in the URL-field-list are optional.
The database server host computer, with or without a user specification, is introduced by
// and the database name is introduced by /, like:

[//[user[:password]@]serverName[:portNumber]] [/databaseName]

A Connection object is returned from the getConnection method, for example:
String url1 = "jdbc:mimer://MIMER_ADM:admin@localhost/ExampleDB”;
String url2 = ”jdbc:mimer:local://MIMER_ADM:admin@/ExampleDB”;
Connection con1 = DriverManager.getConnection(url1);
Connection con2 = DriverManager.getConnection(url2);

Alternatively, the getConnection method allows the user name and password to be
passed as parameters:

url = "jdbc:mimer://localhost/ExampleDB";
con = DriverManager.getConnection(url, "MIMER_ADM", "admin");

protocol Explanation

decnet Use Decnet to connect to a remote server (VMS only).

local Use shared memory communication to a server that runs on your
local machine. This protocol is often much faster than TCP/IP-based
communication.

rapi Use the RAPI protocol to connect to mobile devices (Windows only).

native tcp Connect to the server using TCP/IP, but through the mimcomm JNI
library.

tcp Connect to the server using the Java TCP/IP stack.

single Open a database in SINGLE mode.

8 Chapter 2 Using the Mimer JDBC Driver
Connecting the Traditional Way

Property-list
The property-list for the Mimer JDBC Driver is optional. The list is introduced by a
leading question mark ? and where there are several properties defined they are separated
by ampersands &, like:

?property=value[&property=value[&property=value]]

The following properties are supported:

The following example demonstrates a connection using the driver properties:
url = "jdbc:mimer:?databaseName=ExampleDB"
 + "&user=MIMER_ADM"
 + "&password=admin"
 + "&serverName=srv2.mimer.com";
con = DriverManager.getConnection(url);

Alternatively a java.util.Properties object can be used:
Properties dbProp = new Properties();

dbProp.put("databaseName", "ExampleDB");
dbProp.put("user", "MIMER_ADM");
dbProp.put("password", "admin");
con = DriverManager.getConnection("jdbc:mimer:", dbProp);

Elements from the URL-field-list and the property-list can be combined:
url = "jdbc:mimer:/ExampleDB"
 + "?user=MIMER_ADM"
 + "&password=admin";

The DriverPropertyInfo class is available for programmers who need to interact with
a driver to discover the properties that are required to make a connection. This enables a
generic GUI tool to prompt the user for the Mimer SQL connection properties:

Driver drv;
DriverPropertyInfo [] drvInfo;

drv = DriverManager.getDriver("jdbc:mimer:");
drvInfo = drv.getPropertyInfo("jdbc:mimer:", null);
for (int i = 0; i < drvInfo.length; i++) {
 System.out.println(drvInfo[i].name + ": " + drvInfo[i].value);
}

Property Explanation

databaseName Name of database server to access

user User name used to log in to the database

password Password used for the login

serverName Computer on which the database server is running, the default is
localhost

protocol The protocol to use when connecting. If set, load the mimcomm
JNI library. If empty, use standard Java TCP/IP support.

portNumber Port number to use on the database server host, the default is 1360

program Program name used to log in to the database

programPwd Password used for the program

Mimer JDBC 9
Driver Guide

After connecting to the database, all sorts of information about the driver and database is
available through the use of the getMetadata method:

DatabaseMetaData dbmd;

dbmd = con.getMetaData();

System.out.println("Driver " + dbmd.getDriverName());
System.out.println(" Version " + dbmd.getDriverVersion());
System.out.println("Database " + dbmd.getDatabaseProductName());
System.out.println(" Version " + dbmd.getDatabaseProductVersion ());
con.close();

The close method tells JDBC to disconnect from the Mimer SQL database server. JDBC
resources are also released.
It is usual for connections to be explicitly closed when no longer required. The normal
Java garbage collection has no way of freeing external resources, such as the Mimer SQL
database server.

Connecting the J2EE Way
Along with J2EE came a new way for JDBC drivers to connect to database servers.
Instead of requesting connections through the java.sql.DriverManager class,
applications should connect using the javax.sql.DataSource,
com.mimer.jdbc.MimerConnectionPoolDataSource or
com.mimer.jdbc.MimerXADataSource interfaces.

Deploying Mimer JDBC in JNDI
The Mimer DataSource class is com.mimer.jdbc.MimerDataSource. When
applications are deployed within the J2EE environment, a properly initiated
MimerDataSource object should be stored in JNDI for the application server to retrieve
at runtime. Application servers may use the JavaBean interface to obtain configuration
parameters for MimerDataSource objects.
These are the DataSource attributes recognized by the Mimer JDBC drivers:

DataSource
Attributes

Description

serverName The computer on which the database server is running, the
default is localhost

portNumber The port number to use on the server host, the default is 1360

description A textual description

databaseName The name of the database on the server (required)

user User name

password Password

protocol The protocol to use when connecting via the mimcomm JNI
library

10 Chapter 2 Using the Mimer JDBC Driver
Error Handling

See sample programs further down for programming examples.

Deploying Mimer JDBC in a Connection Pool
Mimer JDBC may be deployed in J2EE compliant connection pools.
When deploying Mimer JDBC in a connection pool, the class
com.mimer.jdbc.MimerConnectionPoolDataSource should be used. This class
features the same attributes as described above for
com.mimer.jdbc.MimerDataSource.

Deploying Mimer JDBC in Distributed Transaction
Environments

Mimer JDBC may be used in J2EE compliant distributed transaction environments.
When deploying Mimer JDBC to be used in distributed transactions, the class
com.mimer.jdbc.MimerXADataSource should be used. Whenever connections are
created using this factory class, Mimer SQL may cooperate in transactions with any other
XA compliant database server.
Read more about Mimer SQL and distributed transactions in Mimer SQL Programmer’s
Manual.

Error Handling
Error handling is taken care of by using the classes SQLException and SQLWarning.
The Mimer JDBC specific error codes are in the range -22000 to -22999. When using
Java, the error message is always included in the exception that is thrown.
To get the complete and accurate list of error codes, execute the following command:

$ java com.mimer.jdbc.Driver -errors

service The service to connect to. This field plays the same role as the
portNumber field, but any string can be used for protocols that
don't use integer-valued port numbers (such as Decnet or named
pipes). If a service value is specified, any portNumber value is
ignored.

DataSource
Attributes

Description

serverName The computer on which the database server is running, the
default is localhost

Mimer JDBC 11
Driver Guide

The Class SQLException
The SQLException class provides information relating to database errors. Details
include a textual description of the error, an SQLState string, and an error code. There
may be a number of SQLException objects for a failure.

try {

…

} catch(SQLException sqe) {
 SQLException stk;

 stk = sqe; // Save initial exception for stack trace

 System.err.println("\n*** SQLException:\n");
 while (sqe != null) {
 System.err.println("Message: " + sqe.getMessage());
 System.err.println("SQLState: " + sqe.getSQLState());
 System.err.println("NativeError: " + sqe.getErrorCode());
 System.err.println();

 sqe = sqe.getNextException();
 }

 stk.printStackTrace(System.err);
}

The Class SQLWarning
The SQLWarning class provides information relating to database warnings. The
difference between warnings and exceptions is that warnings, unlike exceptions, are not
thrown.
The getWarnings method of the appropriate object (Connection, Statement or
ResultSet) is used to determine whether warnings exist.
Warning information can be retrieved using the same mechanisms as in the
SQLException example above but with the method getNextWarning retrieving the
next warning in the chain:

con = DriverManager.getConnection(url);
checkSQLWarning(con.getWarnings());

…

private static boolean checkSQLWarning(SQLWarning sqw)
throws SQLException {
 boolean rc = false;

 if (sqw != null) {
 rc = true;

 System.err.println("\n*** SQLWarning:\n");
 while (sqw != null) {
 System.err.println("Message: " + sqw.getMessage());
 System.err.println("SQLState: " + sqw.getSQLState());
 System.err.println("NativeError: " + sqw.getErrorCode());
 System.err.println();

 sqw = sqw.getNextWarning();
 }
 }

 return rc;
}

12 Chapter 2 Using the Mimer JDBC Driver
Viewing Driver Characteristics

Viewing Driver Characteristics
By using the java com.mimer.jdbc.Driver command, you can view characteristics
of a specific driver and the current environment:

java com.mimer.jdbc.Driver options

The options available are:
:

The following is an example that uses the -version option:
java com.mimer.jdbc.Driver -version
Mimer JDBC driver version 3.31

Used without any arguments, the command will display usage information.

The mimcomm JNI library
The Mimer JDBC driver can be used in a 100% native Java environment. In this case, the
connection to a Mimer database server is done by the TCP/IP support included in the Java
platform.
However, it is also possible to load an external library called mimcomm that includes
support for all the communication protocols available on the particular platform. Please
note that the mimcomm library may not be available on platforms that don't have a recent
version of Mimer SQL installed.
The name of the mimcomm library varies between platforms. It is called mimcomm.dll
on Windows, libmimcomm.so on Unix and MIMCOMM.EXE on VMS.
When you install a Mimer SQL distribution, the mimcomm library will normally be
installed in a place where the Java environment can find it. You can test this by using the
-mimcomm switch as a command line argument to the JDBC driver:

unix$ java -cp mimjdbc3.jar com.mimer.jdbc.Driver -mimcomm
System.getProperty("java.library.path"):
/opt/java/64/jdk1.6.0_31/jre/lib/amd64/server:/opt/java/64/jdk1.6.0_31/jre/
lib/amd64:/opt/java/64/jdk1.6.0_31/jre/../lib/amd64:/usr/java/packages/lib/
amd64:/usr/lib64:/lib64:/lib:/usr/lib

System.loadLibrary("mimcomm"):

mimcomm library Version: V1011A
JNI parameter method: JNI_COPY

Option Description

-version Display driver version

-sysprop Display all system properties

-errors List all JDBC error codes

-ping url Test the database at the specified url

-mimcomm Load the mimcomm JNI library and show its version number.
Displays informational messages to help fix any problems.

Mimer JDBC 13
Driver Guide

When the JDBC driver loads the mimcomm library, it looks for the library in the path
specified by the java.library.path system property. If the JDBC driver cannot find the
library in the path listed, you should either move the mimcomm library to a directory
listed in the path or consult your Java manual for instructions on how to change the
java.library.path system property.

Java Program Examples
Below are a collection of small basic Java programs for different environments, showing
a database connection and a simple database operation with some error handling.

JDBC Application Example
The example Java program below creates a result set containing all rows of the data
dictionary view INFORMATION_SCHEMA.TABLES, then each row is fetched and
displayed on standard output.
In this example, the user name and password are given separately using the
DriverManager.getConnection method, i.e. not given in the URL specification.
The below example will work with the mimjdbc drivers.

import java.sql.*;

class Example
{
 public static void main(String[] args)
 {
 try {
 Class.forName("com.mimer.jdbc.Driver");
 String url = "jdbc:mimer://my_node.mimer.se/customers";
 Connection con = DriverManager.getConnection(url,
 "SYSADM","SYSPW");
 Statement stmt = con.createStatement();
 String sql = "select TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE
 from INFORMATION_SCHEMA.TABLES";
 ResultSet rs = stmt.executeQuery(sql);
 while (rs.next()) {
 String schema = rs.getString(1);
 String name = rs.getString(2);
 String type = rs.getString(3);
 System.out.println(schema + " " + name + " " + type);
 }
 rs.close();
 stmt.close();
 con.close();
 } catch (SQLException e) {
 System.out.println("SQLException!");
 while (e != null) {
 System.out.println("SQLState : " + e.getSQLState());
 System.out.println("Message : " + e.getMessage());
 System.out.println("ErrorCode : " + e.getErrorCode());
 e = e.getNextException();
 System.out.println("");
 }
 } catch (Exception e) {
 System.out.println("Other Exception");
 e.printStackTrace();
 }
 }
}

14 Chapter 2 Using the Mimer JDBC Driver
Java Program Examples

Another way to provide connection properties is to supply a java.util.Properties
object to the DriverManager.getConnection method.

JDBC Application Example for J2EE
This example Java program deploys a com.mimer.jdbc.MimerDataSource in a file
system JNDI repository. Note that the file system JNDI repository has to be downloaded.
It is available for download at https://www.oracle.com/technetwork/java/index.html. At this site,
several other service providers may be downloaded as well.

import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.Hashtable;

public class RegisterJNDI
{
 public static void main(String argv[])
 {
 try {
 com.mimer.jdbc.MimerDataSource ds =
 new com.mimer.jdbc.MimerDataSource();

 ds.setDescription("Our Mimer data source");
 ds.setServerName("my_node.mimer.se");
 ds.setDatabaseName("customers");
 ds.setPortNumber("1360");
 ds.setUser("SYSADM");
 ds.setPassword("SYSPW");

 // Set up environment for creating initial context
 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 env.put(Context.PROVIDER_URL, "file:.");
 Context ctx = new InitialContext(env);

 // Register the data source to JNDI naming service
 ctx.bind("jdbc/customers", ds);

 } catch (Exception e) {
 System.out.println(e);
 return;
 }
 }
}

Once the data source is deployed, applications may connect using the deployed
DataSource object. For instance like the below code snippet:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:.");
Context ctx = new InitialContext(env);
DataSource ds = (DataSource)ctx.lookup("jdbc/customers");
return ds.getConnection();

https://www.oracle.com/technetwork/java/index.html

Mimer JDBC 15
Driver Guide

Using the Driver from Applets
The example Java applet below creates a result set containing all rows of the data
dictionary view INFORMATION_SCHEMA.TABLES, then each row is fetched and
displayed on standard output.
In this example, the user name and password are given separately using the
DriverManager.getConnection method, i.e. not given in the URL specification.
The example will work with the mimjdbc drivers.

import java.sql.*;
import java.applet.*;
import java.awt.*;

public class ExampleApplet extends java.applet.Applet {
 public void init() {
 resize(1200, 600);
 }

 public void paint(Graphics g) {
 int row = 1;
 g.drawString("Listing tables:", 20, 10 * row++);
 try {
 Class.forName("com.mimer.jdbc.Driver");
 String url = "jdbc:mimer://my_node.mimer.se/customers";
 Connection con = DriverManager.getConnection(url, "SYSADM",
 "SYSPW");
 Statement stmt = con.createStatement();
 String sql = "select TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE
 from INFORMATION_SCHEMA.TABLES";
 ResultSet rs = stmt.executeQuery(sql);
 while (rs.next()) {
 String schema = rs.getString(1);
 String name = rs.getString(2);
 String type = rs.getString(3);
 g.drawString(schema + " " + name + " " + type, 50,
 10 * row++);
 }
 rs.close();
 stmt.close();
 con.close();
 } catch (SQLException e) {
 g.drawString("SQLException!", 20, 10 * row++);
 while (e != null) {
 g.drawString("SQLState : " + e.getSQLState(), 20,
 10 * row++);
 g.drawString("Message : " + e.getMessage(), 20,
 10 * row++);
 g.drawString("ErrorCode : " + e.getErrorCode(), 20,
 10 * row++);
 e = e.getNextException();
 g.drawString("", 20, 10*row++);
 }
 } catch (Exception e) {
 g.drawString("Other Exception!", 20, 10 * row++);
 g.drawString(e.toString(), 20, 10 * row++);
 }
 }
}

16 Chapter 2 Using the Mimer JDBC Driver
Java Program Examples

Executing the Java Applet Example
To use a Mimer JDBC Driver in a Java applet, copy the driver jar file to the directory
containing the applet’s Java classes.
This directory must be accessible to the Web server. The driver jar file name should be
given as the applet tag’s ARCHIVE parameter in the HTML file. For example:

<html>
 <head>
 <title> The Example Applet
 </head>
 <body>
 Example Applet:
 <applet archive="mimjdbc3.jar"
 code="ExampleApplet.class"
 width=800
 height=600>
 </applet>
 </body>
</html>

You execute the applet by accessing the HTML file from a browser, for example:
http://my_node/ExampleApplet.html

Note: There is a security restriction for Java applets, which states that a network
connection can only be opened to the host from which the applet itself was
downloaded. This means that both the Web server distributing the applet code
and the database server must reside on the same host computer.

Mimer JDBC 17
Driver Guide

Chapter 3

Programming With
JDBC

This chapter describes some programming aspects when using the Mimer JDBC Driver.
We recommend you to read JDBCBench, a Java Database Case Study available on our
developer web site https://developer.mimer.com/article/jdbcbench-a-java-database-case-study/.

Examples in this Chapter
The examples are based on the sample schema that is provided as part of the Mimer SQL
distribution. They assume that the example database environment has been created.

Transaction Processing
Mimer SQL uses a method for transaction management called Optimistic Concurrency
Control. OCC does not involve any locking of rows as such, and therefore cannot cause
a deadlock.

JDBC Transactions
JDBC transactions are controlled through the Connection object. There are two modes
for managing transactions within JDBC:
• auto-commit
• manual-commit.
The setAutoCommit method is used to switch between the two modes.

Auto-commit Mode
Auto-commit mode is the default transaction mode for JDBC. When a connection is
made, it is in auto-commit mode until setAutoCommit is used to disable auto-commit.
In auto-commit mode each individual statement is automatically committed when it
completes successfully, no explicit transaction management is necessary. However, the
return code must still be checked, as it is possible for the implicit transaction to fail.

https://developer.mimer.com/article/jdbcbench-a-java-database-case-study/

18 Chapter 3 Programming With JDBC
Transaction Processing

Manual-commit Mode
When auto-commit is disabled, i.e. manual-commit is set, all executed statements are
included in the same transaction until it is explicitly completed.
When an application turns auto-commit off, the next statement against the database starts
a transaction. The transaction continues either the commit or the rollback method is
called. The next command sent to the database after that starts a new transaction.
Calling the commit method ends the transaction. At that stage, Mimer SQL checks
whether the transaction is valid and raises an exception if a conflict is identified.
If a conflict is encountered, the application determines how to continue, for example
whether to automatically retry the transaction or inform the user of the failure. The
application is notified about the conflict by an exception that must be caught and
evaluated.
A request to rollback a transaction causes Mimer SQL to discard any changes made since
the start of the transaction and to end the transaction.
Use the commit or rollback methods, rather than using the SQL COMMIT or ROLLBACK
statements to complete transactions, for example:

Statement stmt;
int transactionAttempts;

final int MAX_ATTEMPTS = 5; // Maximum transaction attempts

// Open a connection
url = "jdbc:mimer:/ExampleDB";
con = DriverManager.getConnection(url, "MIMER_ADM", "admin");

con.setAutoCommit(false); // Explicit transaction handling

stmt = con.createStatement();

// Loop until transaction successful (or max attempts exceeded)
for (transactionAttempts = 1; ; transactionAttempts++) {
 // Perform an operation under transaction control
 stmt.executeUpdate("UPDATE mimer_store.currencies"
 + " SET exchange_rate = exchange_rate * 1.05"
 + " WHERE code = 'USD'");

 try {
 con.commit(); // Commit transaction

 System.out.println("Transaction successful");
 break;

 } catch(SQLException sqe) {
 // Check commit error - allow serialization failure
 if (sqe.getSQLState().equals("40001")) {
 // Check number of times the transaction has been attempted
 if (transactionAttempts >= MAX_ATTEMPTS) {
 // Raise exception with application defined SQL state
 throw new SQLException("Transaction failure", "UET01");
 }
 }
 else {
 // Raise all other exceptions to outer handler
 throw sqe;
 }
 } finally {
 con.close();
 }
}

Mimer JDBC 19
Driver Guide

Setting the Transaction Isolation Level
The setTransactionIsolation method sets the transaction isolation level. The
default isolation level for Mimer SQL is TRANSACTION_REPEATABLE_READ.
Note: With Enterprise Java Beans, the EJB environment provides the transaction

management and therefore explicit transaction management is not required.

Executing an SQL Statement
The Connection object supports three types of Statement objects that can be used to
execute an SQL statement or stored procedure:
• a Statement object is used to send SQL statements to the database
• the PreparedStatement interface inherits from Statement
• the CallableStatement object inherits both Statement and PreparedStatement

methods.

Using a Statement Object
The Connection method createStatement is used to create a Statement object that can
be used to execute SQL statements without parameters.
The executeUpdate method of the Statement object is used to execute an SQL
DELETE, INSERT, or UPDATE statement, i.e. a statement that does not return a result
set, it returns an int indicating the number of rows affected by the statement, for
example:

int rowCount;

stmt = con.createStatement();

rowCount = stmt.executeUpdate(
 "UPDATE mimer_store.currencies"
 + " SET exchange_rate = exchange_rate * 1.05"
 + " WHERE code = 'USD'");

System.out.println(rowCount + " rows have been updated");

Using a PreparedStatement Object
Where an SQL statement is being repeatedly executed, a PreparedStatement object is
more efficient than repeated use of the executeUpdate method against a Statement
object.
In this case the values for the parameters in the SQL statement (indicated by ?) are
supplied with the setXXX method, where XXX is the appropriate type for the parameter.

20 Chapter 3 Programming With JDBC
Batch Update Operations

For example:
PreparedStatement pstmt;
int rowCount;

pstmt = con.prepareStatement(
 "UPDATE mimer_store.currencies"
 + " SET exchange_rate = exchange_rate * ?"
 + " WHERE code = ?");

pstmt.setFloat(1, 1.05f);
pstmt.setString(2, "USD");
rowCount = pstmt.executeUpdate();

pstmt.setFloat(1, 1.08f);
pstmt.setString(2, "GBP");
rowCount = pstmt.executeUpdate();

Using a CallableStatement Object
Similarly, when using stored procedures, a CallableStatement object allows
parameter values to be supplied, for example:

CallableStatement cstmt;

cstmt = con.prepareCall("CALL mimer_store.order_item(?, ?, ?)");

cstmt.setInt(1, 700001);
cstmt.setInt(2, 60158);
cstmt.setInt(3, 2);
cstmt.executeUpdate();

The setNull method allows a JDBC null value to be specified as an IN parameter.
Alternatively, use a Java null value with a setXXX method.
For example:

pstmt.setString(4, null);

A more complicated example illustrates how to handle an output parameter:
CallableStatement cstmt;

cstmt = con.prepareCall("CALL mimer_store.age_of_adult(?, ?)");

cstmt.setString(1, "US");
cstmt.registerOutParameter(2, Types.CHAR);

cstmt.executeUpdate();
System.out.println(cstmt.getString(2) + " years");

Batch Update Operations
JDBC provides support for batch update operations. The BatchUpdateException
class provides information about errors that occur during a batch update using the
Statement method executeBatch.
The class inherits all the method from the class SQLException and also the method
getUpdateCounts which returns an array of update counts for those commands in the
batch that were executed successfully before the error was encountered.

Mimer JDBC 21
Driver Guide

For example:
try {

…

} catch(BatchUpdateException bue) {
 System.err.println("\n*** BatchUpdateException:\n");

 int [] affectedCount = bue.getUpdateCounts();
 for (int i = 0; i < affectedCount.length; i++) {
 System.err.print(affectedCount[i] + " ");
 }
 System.err.println();

 System.err.println("Message: " + bue.getMessage());
 System.err.println("SQLState: " + bue.getSQLState());
 System.err.println("NativeError: " + bue.getErrorCode());
 System.err.println();

 SQLException sqe = bue.getNextException();
 while (sqe != null) {
 System.err.println("Message: " + sqe.getMessage());
 System.err.println("SQLState: " + sqe.getSQLState());
 System.err.println("NativeError: " + sqe.getErrorCode());
 System.err.println();

 sqe = sqe.getNextException();
 }
}

Note: The BatchUpdateException object points to a chain of SQLException
objects.

Enhancing Performance
The batch update functionality allows the statement objects to support the submission of
a number of update commands as a single batch.
The ability to batch a number of commands together can have significant performance
benefits. The methods addBatch, clearBatch and executeBatch are used in
processing batch updates.
The PreparedStatement example above could be simply rewritten to batch the
commands.
For example:

PreparedStatement pstmt;
int [] affectedCount;

pstmt = con.prepareStatement(
 "UPDATE mimer_store.currencies"
 + " SET exchange_rate = exchange_rate * ?"
 + " WHERE code = ?");

pstmt.setFloat(1, 1.05f);
pstmt.setString(2, "USD");
pstmt.addBatch();

pstmt.setFloat(1, 1.08f);
pstmt.setString(2, "GBP");
pstmt.addBatch();

affectedCount = pstmt.executeBatch();

22 Chapter 3 Programming With JDBC
Result Set Processing

The Mimer SQL database server executes each command in the order it was added to the
batch and returns an update count for each completed command.
If an error is encountered while a command in the batch is being processed then a
BatchUpdateException is thrown (see Error Handling on page 10) and the
unprocessed commands in the batch are ignored.
In general it may be advisable to treat all the commands in the batch as a single
transaction, allowing the application to have control over whether those commands that
succeeded are committed or not.
Set the Connection object's auto-commit mode to off to group the statements together in
a single transaction. The application can then commit or rollback the transaction as
required.
Calling the method clearBatch clears a Statement object's list of commands.
Using the Close method to close any of the Statement objects releases the database and
JDBC resources immediately. It is recommended that Statement objects be explicitly
closed as soon as they are no longer required.

Result Set Processing
There are a number of ways of returning a result set. Perhaps the simplest is as the result
of executing an SQL statement using the executeQuery method, for example:

Statement stmt;
ResultSet rs;

stmt = con.createStatement();

rs = stmt.executeQuery("SELECT *"
 + " FROM mimer_store.currencies");

while (rs.next()) {
 System.out.println(rs.getString("CURRENCY"));

A ResultSet can be thought of as an array of rows. The 'current row' is the row being
examined and manipulated at any given time, and the location in the ResultSet is the
'current row position'.
Information about the columns in a result set can be retrieved from the metadata, for
example:

Statement stmt;
ResultSet rs;
ResultSetMetaData rsmd;

stmt = con.createStatement();

rs = stmt.executeQuery("SELECT *"
 + " FROM mimer_store.currencies");

rsmd = rs.getMetaData();
for (int i = 1; i <= rsmd.getColumnCount(); i++) {
 System.out.println(rsmd.getColumnName(i));
 System.out.println(" Type: " + rsmd.getColumnTypeName(i));
 System.out.println(" Size: " + rsmd.getColumnDisplaySize(i));
}

Mimer JDBC 23
Driver Guide

Scrolling in Result Sets
The previous examples used forward-only cursors (TYPE_FORWARD_ONLY), which
means that they only support fetching rows serially from the start to the end of the cursor,
this is the default cursor type.
In modern, screen-based applications, the user expects to be able to scroll backwards and
forwards through the data. While it is possible to cache small result sets in memory on the
client, this is not feasible when dealing with large result sets. Support for scrollable
cursors provide the answer.
Scrollable cursors allow you to move forward and back as well as to a particular row
within the ResultSet. With scrollable cursors it is possible to iterate through the result set
many times.
The Mimer drivers’ scrollable cursors are of type TYPE_SCROLL_INSENSITIVE, which
means that the result set is scrollable but also that the result set does not show changes
that have been made to the underlying database by other users, i.e. the view of the
database is consistent. To allow changes to be reflected may cause logically inconsistent
results.

Positioning the Cursor
There are a number of methods provided to position the cursor:
• absolute

• afterLast

• beforeFirst

• first

• last

• next

• previous

• relative

There are also methods to determine the current position of the cursor:
• isAfterLast

• isBeforeFirst

• isFirst

• isLast

The getRow method returns the current cursor position, starting from 1. This provides a
simple means of finding the number of rows in a result set.
For example:

Statement stmt;
ResultSet rs;

stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

rs = stmt.executeQuery("SELECT code, currency"
 + " FROM mimer_store.currencies"
 + " WHERE code LIKE 'A%'");

System.out.println("\nOriginal sort order");
while (rs.next()) {
 System.out.println(rs.getString(1) + " " + rs.getString(2));
}

24 Chapter 3 Programming With JDBC
Updating Data

System.out.println("\nReverse order");
while (rs.previous()) {
 System.out.println(rs.getString(1) + " " + rs.getString(2));
}

rs.last();
System.out.println("\nThere are " + rs.getRow() + " rows");

The Mimer JDBC Driver will automatically perform a pre-fetch whenever a result set is
created. This means that a number of rows are transferred to the client in a single
communication across the network. If only a small number of rows are actually required
use setMaxRows to limit the number of rows returned in the result set.

Result Set Capabilities
A instance of the ResultSet class is created when a query is executed. The capabilities
of the result set depend on the arguments used with the createStatement (or
prepareStatement or prepareCall) method.
The first argument defines the type of the ResultSet, whether it is scrollable or non-
scrollable, and the second argument defines the concurrency option, i.e. the update
capabilities.
A ResultSet should only be made updatable if the functionality is going to be used,
otherwise the option CONCUR_READ_ONLY should be used. If used, both the type and the
concurrency option must be specified.
The following example creates a scrollable result set cursor that is also updatable:

stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

Even if the options used specify that the result set will be scrollable and updatable, it is
possible that the actual SQL query will return a ResultSet that is non-scrollable or non-
updatable.

Holdable cursors
The mimjdbc3.jar driver supports the JDBC 3 specification. As such it provides an
opportunity for application developers to create holdable cursors. The difference between
a holdable cursor and a regular cursor is that regular cursors are closed at the end of the
transaction. The holdable cursor can (theoretically) stay opened for an unlimited period
of time. However, leaving a cursor open for a long period of time may have serious
performance implications for the same reason long lasting transactions may impair server
performance.

Updating Data
Applications can update data by executing the UPDATE, DELETE, and INSERT statements.
An alternative method is to position the cursor on a particular row and then use DELETE
CURRENT, or UPDATE CURRENT statements.

Mimer JDBC 25
Driver Guide

The following example illustrates how this can be done:
Statement select;
PreparedStatement update;
ResultSet rs;

select = con.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);

select.setCursorName("CRN"); /* Name the cursor */

rs = select.executeQuery("SELECT currency"
 + " FROM mimer_store.currencies"
 + " WHERE code = 'ALL'"
 + " FOR UPDATE OF currency");

update = con.prepareStatement("UPDATE mimer_store.currencies"
 + " SET currency = ?"
 + " WHERE CURRENT OF crn");

while (rs.next()) {
 if (rs.getString("CURRENCY").startsWith("Leke")) {
 update.setString(1, "Albanian Leke");
 }
 else {
 update.setString(1, "Leke");
 }
 update.executeUpdate();
}

User-Defined Types
Whenever the application working with user-defined types, a type mapping is used.
For DISTINCT types, the default type mapping is given by the core SQL type which
makes up the DISTINCT type. A structured type is mapped by default to a
predefined JDBC interface which provides a basic functionality to work with its
attributes.
Applications may alter the type mapping to integrate its own type classes with the
database types. The custom type mapping will allow JDBC getter and setter
methods to work directly with the classes in the application.

Default Type Mapping
By default, when fetching a user defined type from the database or supplying one to
the database, the generic class java.sql.Struct is being used to hold the type
attributes. Objects of this class simply holds an array of objects, each one
corresponding the attribute in question.
For example, consider the following SQL type:
create type NAME as (TITLE nvarchar(20),
 GIVEN_NAME nvarchar(50),
 FAMILY_NAME nvarchar(50));

26 Chapter 3 Programming With JDBC
User-Defined Types

When retrieving columns of this type, the method ResultSet.getObject is used,
which returns a java.sql.Struct object. For example:
ResultSet rs = stmt.executeQuery("select EMPLOYEE_NAME from EMPLOYEES");
while (rs.next()) {
 Struct employee_name = rs.getObject(1);
 Object[] employee_name_attributes = employee_name.getAttributes();
 String title = (String)employee_name_attributes[0];
 String given_name = (String)employee_name_attributes[1];
 String family_name = (String)employee_name_attributes[2];

 /* At this point the respective attributes are available in the
 above String objects for further processing. */
}
rs.close();

Custom Java Classes With Type Mapping
A more involved way is to map the SQL type against a Java class which implements
the java.sql.SQLData interface. When mapping the SQL type name, the Java
class might look like this:
import java.sql.*;

public class Name implements SQLData {
 String title,given_name,family_name;
 String type_name;

 /* SQLData interface routines. */

 public String getSQLTypeName() {
 return type_name;
 }

 public void readSQL(java.sql.SQLInput stream,String typeName) throws
java.sql.SQLException
 {
 type_name = typeName;
 title = stream.readString();
 given_name = stream.readString();
 family_name = stream.readString();
 }

 public void writeSQL(java.sql.SQLOutput stream) throws
java.sql.SQLException
 {
 stream.writeString(title);
 stream.writeString(given_name);
 stream.writeString(family_name);
 }

 /* Here follows additional methods to define the characteristics of
 this class.
 * This might be ordinary setter/getter methods for applications to use,
 for example the following
 */

 public String getCombinedName()
 {
 if (title!=null && title.length()>0)
 return title+" "+given_name+" "+family_name;
 return given_name+" "+family_name;
 }

Mimer JDBC 27
Driver Guide

 public String getTitle()
 {
 return title;
 }

 public void setTitle(String title)
 {
 this.title = title;
 }

 public String toString()
 {
 return getCombinedName();
 }
}

The application must register its own type mapping with the connection to make the
JDBC driver aware of the custom class. Whenever the custom type map is activated, the
JDBC methods getObject and setObject will return and accept parameters of the
specified class, for example the following will create a map between the SQL type
MYSCHEMA.NAME and the Java class Name.

java.util.Map map = con.getTypeMap();
map.put("MYSCHEMA.NAME", Class.forName("Name"));
con.setTypeMap(map);

Programming Considerations
Below is a summary of issues to be considered when programming with Mimer JDBC.

Interval Data
Both the JDBC specification and the Java language lack support for INTERVAL data
types.
You can use the getString and setString methods for values accessed by a driver
from database columns containing INTERVAL data.

Closing Objects
Although Java has automatic garbage collection, it is essential that you close JDBC
objects, such as ResultSets, Statements and Connections, when done with them.
Closing objects gives your application better control over resources.
If you don’t close objects, resources are kept allocated in the database server until garbage
collection is triggered, this can exhaust server resources.

Increasing Performance
• Use Stored Procedures

One of the main issues when trying to increase performance is to reduce network
traffic. For example, you can increase performance by using the database server to
return more accurate data instead of returning a large amount of unqualified data
which your application must handle. You can achieve this by using more
sophisticated SQL statements or by using stored procedures (PSM).

28 Chapter 3 Programming With JDBC
Programming Considerations

• Use More Than One Connection
Mimer JDBC drivers are thread-safe and use one lock per connection. So, to achieve
higher concurrency, an application should use several connections.

• Prefetching Data
The drivers are implemented to perform automatic prefetch, i.e. whenever a
resultSet is created, a buffer is filled with successive rows. This is an
optimization for throughput, allowing more data to be fetched to the client in the
single communication made.
The flip side of the coin is that response time, i.e. the time it takes to receive the first
record, may be increased (see Use setMaxRows below.)

• Use setMaxRows
If you know that only a small number of records are to be fetched, then you can use
the setMaxRows method to optimize the response time, i.e. to avoid an array fetch.

• Use PreparedStatements
Another way of increasing performance is to avoid recompiling SQL statements
unnecessarily. Whenever you use Statement.executeXXX methods, statements
are compiled. Instead, use parameterized precompiled statements, i.e.
PreparedStatement, whenever possible.

• Use Batched Statements
Using the Mimer JDBC Driver version 2 or later, you can reduce the number of
network requests by using batched statements.
If, for example, you replace 20 calls to Statement.execute() with 20 calls to
Statement.addBatch() followed by a Statement.executeBatch() call, 20
server network requests are replaced by a single network request.
If response time is an issue, this simple change may give a twenty-fold performance
improvement!
Note that batched statements for PreparedStatement and
CallableStatement differ from the implementation for the Statement class.
When using PreparedStatement or CallableStatement, only a single SQL
statement can be used in a batch. The addBatch() call (without argument) adds a
set of parameters to the batch. When you use batches, the same SQL statement is
called repeatedly with different parameters in a single network request.
In versions 2 and later, you can use the setFetchSize method to control the
amount of data fetched.

Mimer JDBC 29
Driver Guide

Appendix A

Change History
The following sections document changes in the drivers.

New Functions
This section describes the main new functions of each Mimer JDBC version.

New Functions in 3.42.2
• Sealed library

The JDBC library is now sealed. This will prevent code outside the mimjdbc library
to access package access components inside the mimjdbc library. It is unlikely such
(unsupported) practice occurred, but if it does, it is now likely to fail.

• Maven distribution
The JDBC driver is now also distributed via Maven. The library manifest now
contains implementation information such as vendor, library version, build date etc
in order with Maven requirements.

• Direct JAR command line invocation
It is now possible to run the command line diagnostic tools directly from the
command line without specifying main class. For example:

java -jar mimjdbc3.jar --version

New Functions in 3.42
• LOAD statements

Support for START LOAD, COMMIT LOAD and ROLLBACK LOAD has been added.
Executing these statements with an older JDBC driver will return the error -22053
"Statement type not recognized", when any of these statements is attempted.

New Functions in 3.41
• Encrypted Network Communication

128-bit AES-GCM encryption may now be used for network communication
between the server and the clients.
For further information, check the Mimer SQL System Management Handbook, the
section on Network Encryption under the chapter Managing a Database Server.

30 Appendix A Change History
New Functions

New Functions in 3.39
• Support for the BUILTIN.UUID server data type

Support for the type BUILTIN.UUID is added in the form of being able to set the
UUID using PreparedStatement.setObject,
PreparedStatement.setString, PreparedStatement.setBytes and
PreparedStatement.setBinaryStream.
Conversely, result set columns (or output parameters) may be accessed using
ResultSet.getObject, ResultSet.getString, ResultSet.getBytes
or ResultSet.getBinaryStream.

New Functions in 3.38
• Connection authentication using the Secure Remote Password protocol

Connection authentication using the Secure Remote Password protocol is now used
whenever available on the server. This authentication method is available only on
Mimer version 11 servers and later.

New Functions in 3.35
• Connection.isValid

The JDBC 4 feature Connection.isValid is now implemented and supported.
The function confirms the validity of the connection by issuing a server request. If
there is a communication error or the response is not received within the specified
timeout period, the connection is deemed invalid and false is returned.

New Functions in 3.31
• Running JDBC Applications in SINGLE Mode

From version 3.31 it is now possible to run JDBC in SINGLE mode. To run
SINGLE the mimcomm shared library is required and is used when the protocol
"single" is being used.

VMS: On OpenVMS, mimcomm libraries older than version 10.1 will not work.

New Functions in 3.30
• Support for SQL statements START TRANSACTION, COMMIT and ROLLBACK

The JDBC driver now interprets the SQL statements START TRANSACTION,
COMMIT and ROLLBACK properly. Previously, the driver threw an exception
referring to the transaction control methods available through the
java.sql.Connection class.
If a START TRANSACTION statement is executed, a transaction is explicitly
started. If auto commit is on, the auto commit mode is temporarily turned off until
the transaction is committed. If a transaction is already running, the START
TRANSACTION statement is ignored.

Mimer JDBC 31
Driver Guide

If a COMMIT statement is executed the transaction is committed, very much like
calling java.sql.Connection.commit.

New Functions in 3.28
• Error Position and Length Returned in SQLException and SQLWarning

Objects
If an error is related to a specific part of the supplied SQL code, such as a
grammatical error, the character position if such an error is now available through a
call to the Mimer specific method getErrorPosition(). The length of the error
is available through a call to the method getErrorLength(). To call these
methods, the application need either to cast the SQLException to a
com.mimer.jdbc.SQLException object, or use the reflection API to get hold of
the method in question.
For example, the following code example would allow the application to retrieve the
character position within the SQL code concerned with the error:

} catch (java.sql.SQLException se) {
 try {
 java.lang.reflect.Method method =
 se.getClass().getMethod("getErrorLength",new Class[0]);
 output.println("-- errorlength = "+method.invoke(se,new Object[0]));
 } catch (NoSuchMethodException nsme) {
 output.println("-- errorlength = unknown");
 }
}

• Support For Very Many Columns
Previous versions of this JDBC driver did not support SQL queries with more than
1017 columns. The application would experience an "output descriptor overflow"
error (-19053) when calling Statement.execute, Statement.executeQuery,
Connection.prepareStatement or Connection.prepareCall. This limit
has now been removed.

• New Connection Properties
Two new connection properties are introduced for entering a program ident during
connect. The properties are program and programPwd, where program is
program ident name, and programPwd is the password for the program ident.

• setString on BOOLEAN
setString on BOOLEAN parameters now accepts the strings "1" and "0" in
addition to "true" and "false".

New Functions in 3.26
• User-Defined Types

The driver now offers full support for user-defined types. User-defined types may
be fetched into generalized java.sql.Struct objects as well as custom made Java
objects which interacts with the driver using the java.sql.SQLData,
java.sql.SQLInput and java.sql.SQLOutput interfaces. The driver also
provides the type mapping feature needed to map SQL types to the created custom
Java classes.

32 Appendix A Change History
New Functions

The metadata views needed to inspect existing types and their attributes
(DatabaseMetaData.getUDTs and DatabaseMetaData.getAttributes)
are also now provided.
See User-Defined Types on page 25 for information and examples.

New Functions in 3.25
• Full Support for Mimer 10.1 Server Unicode identifiers

The JDBC driver offers full support for the full Unicode identifiers that will be
introduced with the Mimer SQL version 10.1 servers.

New Functions in 3.24 and 2.24
• Support For .setNetworkProtocol And .getNetworkProtocol

The setter and getter routines javax.sql.DataSource.setNetworkProtocol
and javax.sql.DataSource.getNetworkProtocol has been added to allow
applications to alter protocol type. These routines are synonyms to the already
existing .setProtocol and .getProtocol.

New Functions in 3.18, 2.18 and 1.18
The JDBC version 18 drivers may now connect to Mimer SQL Micro servers. Note
however, that many features you normally expect in a Mimer SQL Engine are not
available in the Mimer SQL Micro Edition server.
An application may detect the Mimer SQL product type by calling
DatabaseMetaData.getDatabaseProductName(). This will return “Mimer SQL
Micro”, “Mimer SQL Mobile”, or ”Mimer SQL Engine” - depending on the server type.

New Functions in 3.17, 2.17 and 1.17
Support for the BOOLEAN SQL data type that was introduced in Mimer SQL 9.3 servers.

New Functions in 3.16, 2.16 and 1.16
• The driver can load and use the mimcomm JNI library which allows the JDBC

driver to use all communication methods supported by Mimer on the platform.
• The classes MimerDataSource, MimerConnectionPoolDataSource and

MimerXADataSource have two additional properties: protocol and service. These
are needed when using the mimcomm JNI library. The new properties are
explained further in Deploying Mimer JDBC in JNDI on page 9.

New Functions in 3.15
• The first release of a JDBC 3 compliant driver.
• Holdable cursors.

Mimer JDBC 33
Driver Guide

New Functions in 2.9
Server data type NATIONAL CHARACTER LARGE OBJECT (NCLOB) is now supported.

New Functions in 2.8
The method PreparedStatement.setBytes is now supported on LONGVARBINARY
and PreparedStatement.setString on LONGVARCHAR. In the case of Mimer,
LONGVARBINARY is the same as a BLOB, and LONGVARCHAR is the same as a CLOB.

New Functions in 2.7
The object returned when calling .getBinaryStream, .getAsciiStream and
.getCharacterStream on BLOB and CLOB objects now implements the .mark(),
.reset() and .skip() methods.

New Functions in 2.5
Support for large objects; BINARY LARGE OBJECT (BLOB) and CHARACTER LARGE
OBJECT (CLOB). BLOB’s store any sequence of bytes, CLOB’s store Latin-1 character data.

New Functions in 2.4
Support for server NCHAR and NCHAR VARYING data types. They are used to store
Unicode data. By using these data types, any Java String object can now be stored in the
database. This is not the case when using CHARACTER or CHARACTER VARYING data
types since these can only store Latin-1 characters.

New Functions in 2.3
• Support for javax.sql.DataSource.
• Support for connection pooling using javax.sql.ConnectionPool DataSource
• Support for distributed transactions (XA).

New Functions in 2.0
• Scrollable cursors are now fully supported.
• All date, time and timestamp methods now support the java.util.Calendar

class for handling time zones. Mimer SQL 8.2 servers do not currently support
time zones and this feature enables you to use time zones.

• Batches of statements are supported.
• Batches of prepared statements are supported. Batches of prepared statements are

really useful for increasing performance when executing several INSERT, UPDATE
or DELETE statements.

• Batches of callable statements are supported.
• There are now setter and getter methods for CharacterStreams.
• Several new DatabaseMetaData methods.
• Support for the Mimer SQL statements ENTER and LEAVE.

34 Appendix A Change History
Changed Functions

New Functions in 1.9
Server data type NATIONAL CHARACTER LARGE OBJECT (NCLOB) is now supported.

New Functions in 1.7
• When working with a Mimer SQL version 9 server, the JDBC 1 driver now

supports the new version 9 data types (NCHAR, NCHAR VARYING, BINARY LARGE
OBJECTS, and CHARACTER LARGE OBJECT).

• The SQL statements ENTER and LEAVE are now supported.

New Functions in 1.2
Support for query timeout and cancel. (Connection timeout is not supported.)

Changed Functions
This section describes the main changed functions of each Mimer JDBC version.

Changes in 11.0.1
• Version numbering scheme changed

The version number scheme changed to having the major and minor version being
equal to the matching server version, for example 11.0 and 11.1. The subrelease is
the order number of the JDBC driver. For example 11.0.1, 11.0.2 etc.
The first JDBC version released with the new version number scheme is 11.0.1. The
previous version was 3.42.3.

Changes in 3.41
• Trailing blanks are now ignored during connect

The JDBC driver now ignores trailing blanks in ident names and passwords during
connects. For example, this means connecting to the ident "NOBLANKS" using the
name "NOBLANKS " will succeed. Previously, this failed with a Login failure.

Changes in 3.40
• Reduced memory consumption

Substantial work has been undertaken to reduce the amount of memory allocated by
the driver, specifically during common operations such as preparing and executing
statements, creating results sets, and working with common data types.

Mimer JDBC 35
Driver Guide

Changes in 3.39
• Corrected behavior of ResultSet.isBeforeFirst for empty result sets

The previous behavior of ResultSet.isBeforeFirst was to always return true
when at the beginning of the result set, no matter if it contained any rows or not. This
has been incorrect and not compatible with the JDBC specification which mandates
that false should be returned for empty result sets.
The behavior is now changed to make the routine return false for empty result sets.

• Corrected behavior of current row number on scrollable empty result sets
Previously ResultSet.getRow() returned 1 on empty result sets if
ResultSet.next(), or any other cursor positioning call was made. This was
incorrect. Now, the cursor position is always 0 on empty result sets.

• Corrected behavior of current row number when at the end of the result set
Previously ResultSet.getRow() returned the number of rows in the result set
plus one if the cursor was at the end. This was incorrect. If the cursor is not on a row,
0 should be returned. This is now corrected.

• Statement.setEscapeProcessing is ignored by version 11 servers
The escape clauses are from version 11 servers onward part of the SQL compiler
grammar and always considered. The method
java.sql.Statement.setEscapeProcessing to enable or disable escape
clause processing, is therefore ignored when connected to those servers.

• JDBC now requires 9.2 servers or later
Previously JDBC clients has supported version 8.2 servers (or later.) Now, version
9.2 is required.

Changes in 3.29
• Specific Login Failure Error Code

When both the program and programPwd connection properties are supplied, and
the connection attempt fails, a specific error code is now returned to catch these
errors. From this version, an SQLException with the native error code -2110,
message "Program login failure" is thrown.

Changes in 3.28
• Object Finalizers Now Never Make Server Calls

Object finalizers, such as the finalizers for Connection, ResultSet, and Statement-
objects, used to make server calls to close the corresponding server objects. They
now never do that, but rather note that the object should be freed on the server side,
and the actually close call to the server takes place at later point in time. This is
because finalizers are called by garbage collector and on some platforms the
garbage collector is sensitive to things that might take a long time, such as a remote
network request.
Programmers are advice to explicitly close their database objects at any times to
make the server release unused resources as soon as possible.

36 Appendix A Change History
Changed Functions

Changes in 3.25
When using the protocol local to connect to the database server the shared library
mimcomm.dll is used. When using 64-bit Java the system has been changed to use the
mimcomm64.dll. This library is present in 64-bit installations of Mimer SQL from
version 10.0.6.

Changes in 3.24, 2.24 and 1.24
• Strict Sort Order in DatabaseMetaData.getTypeInfo

The sort order in which rows are returned when calling
DatabaseMetaData.getTypeInfo is now more strict. Previously, rows were
only sorted on DATA_TYPE (the integer type code). Now, the rows are sorted on
DATA_TYPE, core data types first then domains, and TYPE_NAME.

Changes in 3.20, 2.20 and 1.20
• Improved absolute positioning on scrollable result sets

Previously the driver made two server calls when positioning relative to the end of
result set when the result set size was not known. This includes positioning to the
last record. Now, the driver will under all circumstances make at most one server
call to position the cursor.

Changes in 3.16, 2.16 and 1.16
• Changed type mapping for FLOAT(n)

Mimer SQL supports the data type FLOAT(n) which can store a floating point
number with n digits of mantissa and an exponent ranging from -999 to 999.
This data type was previously mapped to the Java type double (which only supports
exponents ranging from -308 to 308). This was problematic since some routines (in
particular getObject()) would fail for very large (or small) values in the database.
The FLOAT(n) data type is now mapped to java.math.BigDecimal. While not a
perfect match, this data type can accurately represent all values that can be stored in
FLOAT(n) columns in the database.
Note that it is still possible to use the methods getDouble() and getFloat() on
FLOAT(n) data, but those methods will fail when the data is out of range for a Java
double (or float).
To store Java double and float values, consider using the Mimer data type DOUBLE
PRECISION for Java double and the Mimer data type REAL for Java float.
Note that the Mimer data type FLOAT (without a precision) is synonymous to
DOUBLE PRECISION and is a bad match for the Java float type which is single
precision.

• Changed string representation for floating point data
The JDBC driver supports the getString() method on all Mimer floating point
columns. Previously this method padded the returned value with zeros to its
declared precision (a FLOAT(15) could return “1.00000000000000”). This version
will not add those zeros (getString() on the same value will return “1”).

Mimer JDBC 37
Driver Guide

Changes in 2.15 and 1.15
• Login failure now returns SQLSTATE 08004.

Previously login failure threw an SQLException with the SQLState 28000.
According to the SQL-2003 standard, this is incorrect, and has been corrected to
return 08004. The 08-class of SQLStates relates to error conditions during the
connect phase.

• Several error messages have been clarified
Error texts returned when a cast from a character column to something else now
more clearly state the failed cast. Note that this particular improvement applies to
client side casts only. For instance, this includes casts where an SQL parameter type
is INTEGER and its value is set using the PreparedStatement.setString
method.
The driver now displays an accurate error text when a connection attempt fails
because the application hasn't specified the database name, or it has specified an
empty database name.
When the application refers to a column name that does not exist in the result set,
the error text now includes existing columns names. To keep error texts reasonably
short, if this error occurs on a result set with many columns, only a selection of
column names. This situation is indicated with three consecutive periods in the error
text.
Errors returned from the Mimer TCP server (listening on port 1360 on behalf of
Mimer SQL servers) now include a descriptive text, previously only the error code
was displayed to the caller.

Changes in 2.14 and 1.14
• Extended Server Information

JDBC clients now present more detailed information to the servers about who it is,
which version it is and in which environment it is executing in. Future servers will
provide tools to monitor this information.

• Changing autocommit mode always commits open transactions
Earlier on, the Mimer JDBC driver mimiced the ODBC behavior when autocommit
mode is changed. The ODBC spec says that open transactions should be
automatically committed when the autocommit mode goes from off to on. The
JDBC specification requires drivers to commit open transactions on all changes in
autocommit state. From version 14 onwards, the Mimer JDBC driver implements
this behavior.
An observant reader might question why this has any significance at all? After all,
when autocommit mode is on, we expect all statements to be committed
automatically anyway? The difference lies in how open result sets are treated. As
you may know, result sets are by default closed when transactions are committed.
In practice, running in autocommit mode means that transactions are committed
_as_soon_as_possible_. For instance, a statement returning a result set will typically
be committed when the application explicitly closes the result set, or if the result set
is forward-only when the entire set has been read. Changing the autocommit mode
during the life of the result set will now always trigger a commit which will close
the result set.

38 Appendix A Change History
Changed Functions

Changes in 2.9
The driver now returns the correct object type when doing
CallableStatement.getObject. According to the JDBC specification, getObject
should return a Java object whose type corresponds to what type the output parameter was
registered to with the CallableStatement.registerOutParameter method call.
Earlier drivers always returned the default Java object type.

Changes in 2.7
• All .getUnicodeStream on NCHAR columns no longer throw

IndexOutOfBoundsException.
• All .getCharacterStream returned incorrect results for NCHAR and NCHAR

VARYING columns. This problem is corrected.
• All .getAsciiStream, .getBinaryStream, and .getCharacterStream on

CHAR, CHAR VARYING, NCHAR, NCHAR VARYING, BINARY and BINARY VARYING
columns have been reworked to reduce memory footprint, and also to provide more
efficient .mark(), .reset(), and .skip() implementations.

Changes in 2.2
• Column names and labels are now regarded as equal. From an SQL standard point

of view, the column name should be hidden when a correlation name is specified.
• Both ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnLabel return the correlation name when one
is specified.

• Default network buffers have been reduced in size to increase server scalability.

Changes in 2.1
A Mimer SQL beta license key is no longer required on the server.

Changes in 1.3
Statement.executeQuery no longer accepts non-query statements and
Statement.executeUpdate no longer accepts statements other than updates, inserts
or deletes.

Changes in 1.2
The name of the Mimer driver class is changed to com.mimer.jdbc.Driver (earlier
com.mimer.jdbc1.Driver).

Mimer JDBC 39
Driver Guide

Corrected Problems
This section describes the main corrected functions of each Mimer JDBC version.

Corrections in 11.0.1
• When using multiple class loaders, driver may throw UnsatisfiedLinkError

When the application is loading the Mimer JDBC driver and connecting through
multiple custom class loaders, the driver throws ‘UnsatisfiedLinkError: Native
library <x> already loaded in another classloader’, when connecting to the database
server using the local, nativetcp or single protocol.
The correction involves making a temporary copy of the shared library providing
native access to the database. The temporary copy is placed in a directory with
restricted access privileges in the temporary directory as specified by the
java.io.tmpdir system property. The default value of this property varies depending
on platform but is normally /tmp on Linux, the directory referenced by the TEMP
environment variable on Windows and the directory referenced by the
SYS$SCRATCH logical name on VMS.

Corrections in 3.42
• ResultSet.getDate, .getTime and .getTimestamp used the incorrect timezone

when java.util.Calendar was specified
Previous versions of the JDBC driver used the incorrect timezone when a
java.util.Calendar was supplied when setting an SQL DATE, TIME or
TIMESTAMP (which does not have a time zone) parameter value using a
java.sql.Date, java.sql.Time or java.sql.Timestamp object. The
correct behavior is that the Calendar object contains a timezone which specifies the
timezone to be used for the stored value while the time in the java object contains
the timezone which is was created in (nearly always the current time zone of the
Java runtime). Essentially, the Calendar object should in most cases specify the
timezone of the database server. This means that if the Java runtime runs in the
GMT+4 timezone, setting the time 12:00:00 using a Calendar object specified to be
in timezone GMT+1 the time used in the parameter value should be 09:00:00.
The previous, incorrect, behavior was that the timezone of the Calendar object was
used to determine the timezone of the value to be set, and where the actual data in
the database was assumed to be GMT+0. This meant, in the above example, that
when the time 12:00:00 was to be set with the Calendar with timezone GMT+1, the
value used in the parameter was 11:00:00.

• Register pair 1/2 contains wrong type.
When calling the java.sql.SQLInput.readDouble or
java.sql.SQLInput.readLong methods when accessing User Defined Types
in version 10.1 servers, the following errors was triggered in JDBC version 3.41.a.
The problem does not appear when working with version 11 servers. There is no
known workaround, other than using other methods.
readLong signature: ()J) Register pair 1/2 contains wrong type
readDouble signature: ()D) Register pair 1/2 contains wrong type

40 Appendix A Change History
Corrected Problems

Corrections in 3.41a
• Incomplete Scrollable Result set

Scrollable result sets created with a statement using at least one parameter, when
connected to a server of version 10.1 or older, were erroneously detecting end of
table at a certain point in the result set, causing the end of the result set to not being
returned. The point where the end was detected was when about 64 kb had been
returned. Smaller result sets were unaffected by the error.

Corrections in 3.40
• Invalid internal statement identifier after Statement.getResultSet

Corrected issue introduced in version 3.39 where the error -19039 "Invalid internal
statement identifier" occurs if execute is made using Statement.execute, the
statement was a query and the ResultSet object was picked up using
Statement.getResultSet. There must also be an already existing statement
executing before this execute, and that there are fetches on that result set prior to the
call to ResultSet.next which triggers the error. The result set must also have a
certain size, large enough so that it does not fit in the first response from the server.
This size is by default 60 kb, but may vary depending on fetch size.

• NullPointerException after Statement or ResultSet object has been finalized
prior to being returned to connection pool
When Statement or ResultSet objects has not been explicitly closed by the
application, they are eventually garbage collected by the JVM. If this occurred just
before the connection was returned to the connection pool, a NullPointerException
occurred. This problem was introduced in JDBC 3.26.

• Truncation of TIME and TIMESTAMP decimals produced an exception, rather
than a warning.
When TIME and TIMESTAMP decimals was truncated when setting a parameter,
an exception was previously thrown with the error code -22061 and text "Datetime
field overflow". This has now been changed to a warning (accessible by calling
PreparedStatement.getWarnings). An example situation were this will occur
is when a TIMESTAMP(2) is set with the value '2019-11-10 12:13:14.156'.

Corrections in 3.39
• NullPointerException calling ResultSet.isLast

Connecting to older servers could in version 3.38 give an internal -19078 error. The
error appears if the ident name supplied during login was 3+4n characters long (for
any n>=0).

• -19078 errors when connecting to older servers
The releases 38.a and 38.b contained an error causing ResultSet.isLast to throw a
NullPointerException if they were called on a forward only result set which had
reached the end, or in other words was position at after last row.

Mimer JDBC 41
Driver Guide

• When connecting to 10.1 servers and older an -19041 internal error could
appear
Unusual errors during the connect phase would trigger an auxiliary error -19041
with the following text "Error -19041 while retrieving error description for ...". The
situation occurred when the server returned an error which wasn't already known by
the JDBC client, which in itself in rather unusual.

• ResultSet.isLast problem
The releases 38.a and 38.b contained an error causing ResultSet.isLast to throw a
NullPointerException if they were called on a forward only result set which had
reached the end, or in other words was position at after last row.

• Corrected ArrayIndexOutOfBoundsException when positioning from before-
First
Corrected ArrayIndexOutOfBoundsException or eternal loop occurring when a
scrollable cursor has been started (at least one row fetched) and positioned in the
result set, then positioned on before first (such as using ResultSet.absolute(0), and
then positioned near the end of a result set whose size must also exceed the size of
one server response package.
This error was introduced with version 2.1.

• Corrected positioning for large negative values for ResultSet.absolute
Previously, when starting the cursor (the first positioning call of the result set), with
a call to ResultSet.absolute(-n) where n is equal to the size of the result set plus one,
ResultSet.isBeforeFirst was incorrectly returning false. Also, ResultSet.getRow()
did not return 0 as expected.
This error was introduced with version 2.1.

Corrections in 3.38
• FLOAT(p) parameters could be partially corrupted when p is even

When FLOAT(p) parameters were set, the value could sometimes be corrupt for
even values of p, when the value was set using a call to
PreparedStatement.setInt or PreparedStatement.setLong, and that the
number of digits in the integer exceeded the precision.
That is, FLOAT(2)-parameters was vulnerable for values 100 and up, FLOAT(4)
was vulnerable for values 10000 and up, etc.
Note: No corrupted values were ever stored in tables.

• Incorrect character values in streams returned by ResultSet.getAsciiStream
and CallableStatement.getAsciiStream
Character codes in the range 128-255 was not returned properly when calling
InputStream.read() on streams returned by ResultSet.getAsciiStream
and CallableStatement.getAsciiStream. Instead a negative character value
was returned.
Characters were returned correct by InputStream.read(byte[]) and
InputStream.read(byte[],int,int).

42 Appendix A Change History
Corrected Problems

• Parameters were required to be set before statement being executed
Older drivers required all parameters of a PreparedStatement to always be set after
the statement was executed. This is no longer the case. Parameters now retain their
values through successive executions of the statement. For example, while the
below sequence previously inserted only the tuple (1,2), it now inserts the tuples
(1,2) and (1,3).
PreparedStatement ps = con.prepareStatement("insert into A values (?,?)");
ps.setInt(1,1);
ps.setInt(2,2);
ps.execute();
ps.setInt(2,3);
ps.execute();

The older behavior was not compatible with the JDBC specification which in
section 13.2.2 specifically states that "the values set for the parameter markers of a
PreparedStatement object are not reset when it is executed".

• Error handling when adding parameter sets to batches
Previously, when an error occurred during the last
PreparedStatement.addBatch, the batch was left in an error state making it
impossible to execute the batch until the error was corrected, for example by adding
another parameter set. The error seen during the call to
PreparedStatement.executeBatch was -22065, SQLSTATE HY010, with
the text "Must call addBatch() before executing the batch".

Corrections in 3.37
• Internal error on timeouts when using local shared memory communication

In previous versions there was a chance there was an internal error -22046 with the
text "An internal error occurred in readFromServer ([...])", if a garbage collection
occurred at the same time a server request timed out if local shared memory
communication was used.
(If the timeout was not set with Statement.setQueryTimeout, or any other
communication protocol than local shared memory was used (JDBC URL starting
with anything other than jdbc:mimer:local:), the error never occurred.)

• Corrected problem, NullPointerException if PreparedStatement.setString was
called after PreparedStatement.getMoreResults
In previous versions, a NullPointerException would occur if
PreparedStatement.setString (or any other setter method) was called after a
call to PreparedStatement.getMoreResults. This is no longer the case.

Corrections in 3.35
• Casting numerical values to Java boolean variables

When calling ResultSet.getBoolean and
CallableStatement.getBoolean on a numerical column or output parameter
(such as INTEGER, BIGINT, DECIMAL, REAL or DOUBLE PRECISION), true
is now returned for all non-zero values. Previously, true was only returned for the
value 1, while an exception was thrown for all other non-zero values.

Mimer JDBC 43
Driver Guide

Corrections in 3.31
• Connection Hangs When Using a Stream From a Large Object as Input to

Another Large Object on the same connection
When obtaining a stream from a large object column (such as by calling
Clob.getCharacterStream, ResultSet.getCharacterStream,
Blob.getBinaryStream or ResultSet.getBinaryStream) and using this
stream as a parameter on the same connection, the JDBC driver will hang, and the
process has to be aborted.

• Cannot Use the String "0e0" to Set a Floating Point Value
Previously, attempting to use the value "0e0" to set a parameter value of any
numeric data type would result in a -22038 numeric conversion error. It now
succeeds.

• Output Descriptor Overflow Errors (-19053) When Compiling Unusually Large
SQL Statements
When compiling large SQL statements, specifically with many parameters, an
output descriptor overflow error (-19053) could occur. The number of parameters
for the error to occur was about 350.

• Finalized Connections May Stall the Garbage Collector
In versions prior to 3.31, connections being finalized issued a server request to end
the connection. This could take some time, thus stalling the garbage collector.
Finalized connections no longer issue this request, but rather close the network
connection.

• Extra Zero Characters Appended to Character Columns With UTF-16 Surro-
gate Characters
When setting a NCHAR or NVARCHAR column with a value containing UTF-16
surrogate characters, one or more zero characters was inserted at the end of the
character string. For example, inserting a string containing the character MUSICAL
SYMBOL G CLEF (0x1d11e) which in a Java String is represented by the char pair
0xd834 and 0xdd1e, the resulting characters in the database would be 0x1d11e and
0x00000.
The problem was introduced in 3.30.

• Warning For TYPE_SCROLL_SENSITIVE Cursor
The cursor modes which are supported in Mimer are TYPE_FORWARD_ONLY and
TYPE_SCROLL_INSENSITIVE. This means, in Mimer a cursor is always either
forward only or scrollable, and scrollable cursors are always insensitive to changes
made by other statements and other transactions. (This is in database terms called
"cursor stability" and is a basic characteristic of Mimer.)
The third JDBC cursor mode TYPE_SCROLL_SENSITIVE is supported as an option,
but the underlying database will never show any changes in the result set - the cursor
is always stable. In this case the JDBC driver issues a warning saying that an
TYPE_SCROLL_INSENSITIVE result set was used instead.
The problem was that this warning was not shown until the statement was executed.
This is now changed so that the warning is shown directly when the statement is
created.

44 Appendix A Change History
Corrected Problems

• PreparedStatement.setObject Failed with Byte and Short Data Types
Previously any attempt to set a parameter using
PreparedStatement.setObject (or CallableStatement.setObject)
with a Byte or Short data type would throw an SQLException with the error code -
22006. This is now corrected.

Corrections in 3.30
• Statement Leak When Executing Statements In a Program Ident Without Ever

Leaving the Ident
Previous versions of the driver retained a strong reference to all created Statement
(or PreparedStatement or CallableStatement) objects until the application leaves the
program ident. If the application never leaves the program ident, memory resources
may eventually become scarce. The reference was kept even though the statement
object was closed properly.
From this version onwards, the statement is delisted once being closed, thus causing
properly closed statements to be released properly.

• PreparedStatement.setString May Corrupt Parameters Or Cause an ArrayIn-
dexOutOfBounds Exception
In version 3.29, applications which set parameters of the type CHARACTER,
CHARACTER VARYING, NATIONAL CHARACTER or NATIONAL
CHARACTER VARYING using a call to PreparedStatement.setString or
CallableStatement.setString may experience ArrayIndexOutOfBounds exceptions
during the setString method call. If parameters are set in reverse order (i.e. setting
parameter n+1 before n) the exception may have been avoided, but parameter
contents may have been corrupted.
Problem was introduced in version 3.29 and corrected in 3.30.

• Update Counts Not Reported Properly After Call To PreparedStatement.execu-
teUpdate and CallableStatement.executeUpdate
The update count, the number of rows affected by an INSERT, UPDATE or
DELETE statement executed through a PreparedStatement or CallableStatement
object was reported improperly. The correct behavior is to return the number of
rows affected, or -1 if unknown. In the named cases, 1 was incorrectly returned for
all cases, regardless of the number of rows affected.
Problem was introduced in 3.28 and corrected in 3.30.

Corrections in 3.29
• UTF-16 Surrogate Characters

The JDBC driver now handles UTF-16 surrogate characters properly on all uses,
except when storing data into columns of the type NATIONAL CHARACTER
LARGE OBJECT (see Surrogate Characters in NATIONAL CHARACTER LARGE
OBJECT Data on page 55).
Earlier versions of the JDBC driver did not handle UTF-16 surrogate characters in
a uniform way which led to various errors including cast errors, truncation errors or
that character data was rejected by the server because valid strings was not supplied
by the driver.

Mimer JDBC 45
Driver Guide

An UTF-16 surrogate character is a legal Unicode character which cannot be
represented using a 16-bit word. These characters are, according to the Unicode
standard, represented using two consecutive 16-bit words which together make up
the complete character.

Corrections in 3.28
• Meta Data Lookup Functions In Multithreaded Applications

Older versions of the JDBC driver experienced threading difficulties when JDBC
meta data lookup functions were being called.
Multithreaded applications calling ResultSetMetData.getCatalogName(),
ResultSetMetData.getSchemaName(), ResultSetMetData.getTableName(), or
ResultSetMetData.getColumnTypeName() simultaneously may experience
Connection closed problems. A common situation in which this occurred is when
using DbVisualizer and reconnecting to a database.

• Meta Data Lookup Functions In Resultsets With Many Columns
Versions prior to version 28 of the JDBC driver may not be able to lookup catalog,
schema, table and column type name through the meta data lookup functions
ResultSetMetData.getCatalogName(), ResultSetMetData.getSchemaName(),
ResultSetMetData.getTableName(), or ResultSetMetData.getColumnTypeName()
if the underlying result set contained more than about 360 columns. There is now no
such limit.
Note however that there is a known problem with older Mimer servers (prior to
10.1) which in combination with earlier versions of the JDBC driver made the upper
limit 120 columns.

Corrections in 3.27
• ResultSet.wasNull Reporting Incorrect Null Status For BOOLEAN Columns

The ResultSet.wasNull method is supposed to return whether the most recently
retrieved column or output parameter held the SQL NULL value or not. Prior to
version 27 this was not working properly in the Mimer JDBC Driver on SQL
BOOLEAN data since the value returned by ResultSet.wasNull returned the null
value status of the column or output parameter retrieved prior to the last retrieved
column or output parameter. If the BOOLEAN column or output parameter was the
first one to be retrieved, ResultSet.wasNull always returned false no matter the
actual value of the column or output parameter in question.

• Update counts not returned properly for WHERE CURRENT operations
Older JDBC drivers did not return update counts for UPDATE WHERE CURRENT
and DELETE WHERE CURRENT. 0 was always returned, even though a row was
updated or deleted.
The problem affected the return values from the methods Statement.executeUpdate
and Statement.getUpdateCount.

46 Appendix A Change History
Corrected Problems

Corrections in 3.26
• Driver fails to recognize escape character when doing dictionary lookups

Prior to this release, the driver did not recognize SQL LIKE-clause escape
characters when doing dictionary lookups through the java.sql.DatabaseMetaData
interface.
The proper behavior for an application is that it should ask the driver which
character is being used as an escape character in meta data lookups. This is done
through the DatabaseetaData.getSearchStringEscape method. In the case
of Mimer this will always return an exclamation mark (!). The application must
then precede those underscores (_) and percent marks (%) which aren't wildcards
with an escape character. Escape characters must also be preceded by an escape
character.
The problem corrected in version 3.26 was that the Mimer JDBC driver still treated
escape wildcard characters as wildcard characters, thus possibly returning more
results than expected.

Corrections in 3.25
• Mimer JDBC URL’s did not recognize numerical IPv6 addresses

Earlier versions of the Mimer JDBC driver did not recognize the method to specify
numerical IPv6 addresses in URL’s using square brackets which is defined in RFC
2732. For example, the following two URL’s are now recognized properly:

jdbc:mimer://[::1]/odbc_net
jdbc:mimer://[::1]:1360/odbc_net

It was, however, possible to use a numerical IPv6 address as an URL attribute, or
when using the javax.sql.DataSource interface to make database connections. For
example, the following two URL’s were, and are still, working properly:

jdbc:mimer:/odbc_net?serverName=::1
jdbc:mimer:/odbc_net?serverName=::1&portNumber=1360

• Enter a program ident with long ident name
Attempts to enter program idents using the ENTER statements and supplying an
ident name longer than 18 characters, always failed with a -14006 “Login failure”
error. Problem is corrected in Mimer JDBC 3.25.

Corrections in 3.24, 2.24 and 1.24
• Invalid internal statement identifier when using a java.sql.Statement object

that has been retained
When doing the below, the application received the -19039 “Invalid internal
statement identifier” error.
• Entering a program ident using the Mimer SQL statement ENTER.
• Creating a new java.sql.Statement, java.sql.PreparedStatement or
java.sql.CallableStatement

• Leaving the program ident using the Mimer SQL statement LEAVE.

Mimer JDBC 47
Driver Guide

• Attempting to execute statements created above. These are only available when
the program ident entered in step 1 is active.

This error condition is now properly managed, and the user will receive the -22071
error along with a descriptive error message.
For more information about ENTER and LEAVE, please refer to the Mimer SQL
Reference Manual.

• BOOLEAN columns was shown twice in views
BOOLEAN columns was in earlier versions of their driver shown twice in the views
returned by DatabaseMetaData.getTypeInfo and
DatabaseMetaData.getColumns. This is now corrected.

Corrections in 3.23 and 2.23
Scrollable cursors created with a SELECT statement with parameter markers did not
always perform well before release 23. The symptoms where either that the parameter
appeared to be ignored, or the server returns a -10303 “negative overflow occurred in
arithmetic operation CHP.”

Corrections in 3.23, 2.23 and 1.23
The DatabaseMetaData.getColumns view could previously return the -10312 error
when connected to Mimer SQL 9.1 servers or older. See known problem System Views
Raising Error -10312 on page 56 for more information, as the very same problem still
applies to DatabaseMetaData.getTypeInfo().
DatabaseMetaData.getColumns in release 23 clients and newer will avoid the
problem.

Corrections in 3.22, 2.22 and 1.22
When using the driver with IBM WebSphere 6, connection attempts may end with a
“java.sql.SQLException: Connection is closed” message. This is because the driver did
not allow pooled connections (javax.sql.PooledConnection) to be closed after the
associated Connection has already been closed. The error was not seen when using
Websphere 5 or earlier.

Corrections in 3.21, 2.21 and 1.21
Fetching a scrollable cursor by positioning the cursor on a row relative to the end of the
result set (e.g. specifying a negative row number to the ResultSet.absolute method)
after the last row of the result set has already been visited produced incorrect results. The
problem was introduced in version 20 of the JDBC driver.

Corrections in 3.20, 2.20 and 1.20
• Improved error handling

If the connection with the server was lost (or if the server is shut down), earlier
JDBC drivers could produce a null pointer exception in some circumstances. The
new JDBC driver will produce an appropriate SQLException.

48 Appendix A Change History
Corrected Problems

Also, the method Connection.isClosed() will now return true on any
connection that has received an SQLException indicating that the connection with
the server was lost.

• Uninformative error message when connecting to Mimer 8.1 servers and older.
When connecting via TCP/IP to Mimer SQL 8.1 servers and older, which aren't
accepting connections from JDBC drivers, applications may receive the
uninformative internal error -22046. This problem is related to certain server
versions, but JDBC drivers from version 20 can recover from this condition and
return a proper error message.

Correction in 3.19, 2.19 and 1.19
Version numbers for servers older than 9.3 was not returned properly by the Mimer JDBC
n.18 drivers. This problem was seen in DatabaseMetaData.getProductVersion,
DatabasMetaData.getDatabaseMajorVersion and
DatabaseMetaData.getDatabaseMinorVersion.

Corrections in 3.18, 2.18 and 1.18
• PreparedStatement.setString threw no exception on BOOLEAN data types

Version 17 JDBC drivers did never throw an exception if the application called
PreparedStatement.setString with an illegal string. That is, a string that is
not ’true’ or ’false’. This is corrected in version 18.

• LITERAL_SUFFIX and LITERAL_PREFIX for DATE, TIME, TIMESTAMP and
INTERVAL data types
Result sets returned by DatabaseMetaData.getTypeInfo did not contain any
data in the columns LITERAL_SUFFIX and LITERAL_PREFIX for data types
DATE, TIME, TIMESTAMP and all INTERVAL data types. From version 18,
these columns have a relevant value.
This correction applies for all server versions. Using an older JDBC driver against
a v9.3.5 Mimer SQL server or later will also return correct values for these columns.

• Changed behavior for protocol type tcp
Specifying the protocol TCP in the Mimer JDBC URL, would instruct the driver to
connect using the native TCP/IP-stack. From version 18, specifying the TCP
protocol makes the driver connect using the Java TCP/IP-stack.
The behavior when the protocol is unspecified has not been changed, that is, the
Java TCP/IP-stack is used.

Mimer JDBC 49
Driver Guide

Corrections in 3.16, 2.16 and 1.16
• DatabaseMetaData.getColumns returns too many columns

Older versions of the Mimer JDBC driver returned, when calling
DatabaseMetaData.getColumns, duplicate rows for BINARY LARGE
OBJECT, CHARACTER LARGE OBJECT and NATIONAL CHARACTER
LARGE OBJECT columns. For example, querying a table with one CHARACTER
column and one BINARY LARGE OBJECT column returned a result set of three
rows. One row for the CHARACTER column, and two for the BINARY LARGE
OBJECT column. This is now corrected.

• DATE/TIME comparison problems
Previous drivers did not recognize TIMESTAMP’s representing a value prior to the
timestamp 1000-01-01 00:00:00, DATE values prior to the date 1000-01-01 and
TIME values prior to 10:00:00 correctly. Although the driver would retrieve and
display those values correctly, comparison operations may fail for identical values,
leading to potentially duplicate primary keys, or that query conditions may fail for
no obvious reason. These problems are now corrected.

Corrections in 2.14
• PreparedStatement batches whose size exactly matched the network buffer

size failed
Batches of PreparedStatements failed if data in the entire batch exactly matched the
amount of space available in the network buffer.
This could mean, for instance, that a batch of 19 rows would fail, while batches of
18 and 20 rows would succeed.

Corrections in 2.14 and 1.14
• Non-public constructor in the Driver-class made applications fail loading the

Mimer JDBC driver
Applications that don't rely on DriverManager.getConnection, or the
javax.sql.DataSource class, to create a Connection to Mimer, but instead are
creating a connection by using the Driver class couldn't load the
com.mimer.jdbc.Driver class of the 1.13 and 2.13 Mimer JDBC drivers. More
specifically, the following didn't work:
Class dc = Class.forName("com.mimer.jdbc.Driver");
Driver d = (Driver)dc.getInstance();

Example of products using this (or similar) techniques, and thus avoiding the
DriverManager object, are Sun Java Studio Creator and the Squirrel SQL
database viewer.

50 Appendix A Change History
Corrected Problems

• Reading a BLOB stream might hang the connection
Reading Binary Large Objects through an InputStream (obtained through
ResultSet.getBinaryStream) would place the network connection in an
inconsistent state, in practice the session would hang, if the size of the object is
larger than the size of the default network packet size, and the application tries to
read the entire object in one call (InputStream.read(b,off,len) where len is
larger than the size of the object). This is no longer the case.

• Clarified error texts when streams are closed
The error texts saying that streams have been closed now explain why the stream
was closed. This could be of several reasons, the server connection went dead, the
transaction was committed or rolled back, the statement in which the result set
containing the stream was closed, and so forth. This is now explained in the error
message.

Corrections in 2.13 and 1.13
• Fetching data might throw an SQLException with vendor code 1

Fetching data (ResultSet.next) could erroneously throw SQLExceptions with
vendor code 1. This was wrong and is now corrected.

• Large BLOB problem
Whenever BLOB’s was read in several passes from the server, and the application
specified a length longer than the actual BLOB, the driver hanged. Many platforms
deliver TCP/IP packets in chunks of about 64 kb so this problem would occur when
reading BLOB’s larger than that.

Corrections in 2.12 and 1.12
• The midjdbc2 driver now fully supports SQL DATE, TIME, and TIMESTAMP data

types.
• By mistake the Beta release (1.10/2.10) lacked support of the SQL constructs for

manipulating session and transaction characteristics, such as SET TRANSACTION
READ ONLY. These SQL statements are now supported, see the Mimer SQL
Reference Manual for more information.

• Scrollable cursors now take the value set by Statement.setFetchDirection
into account when selecting fetch strategy on scrollable result sets. This does not
apply to 1.12.

• A problem which caused a premature end of table when a scrollable cursor has
seen the end of the result set, is fetching backwards (using
ResultSet.previous) and the fetch size has been set to a value less than the
size of the result set. This problem did not apply to the JDBC 1 driver.

• When earlier versions did a ResultSet.afterLast or ResultSet.last after
setting Statement.maxRows to a value that actually limits the result set size, the
cursor was positioned on the wrong row, beyond the end of the result set. This is
now corrected.

Mimer JDBC 51
Driver Guide

Corrections in 2.11 and 1.11
• Previously an InputStream.skip(n) on a stream derived from a BLOB column,

or a CharacterStream.skip(n) on a stream derived from a CLOB or NCLOB
column may leave the network state out of sync. This was seen with the error
-22046 ’An internal error occurred in ReadFromServer’. This problem is now
corrected.
Note: For the JDBC 1 driver, this problem applies to streams derived from the

getUnicodeStream method call on CLOB and NCLOB columns.
• A problem with large SQL statements has been fixed. SQL statements larger than

about 20 000 characters were unable to compile because of an
ArrayIndexOutOfBoundsException.

Corrections in 2.10 and 1.10
• Previous versions of the driver did not return the correct data type on

CallableStatement.getObject calls. The specification states that the object
type returned should match whatever type was specified when the output parameter
was registered through the CallableStatement.registerOutParameter
call. Previously, the object type returned matched the data type on the server.

• When calling ResultSet.findColumn, ResultSet.getString(String)
and similar column name related methods, the Mimer driver previously did a case
sensitive search. This was incorrect. The search should be case insensitive, which it
now is.

• 2.8 and 1.8 versions of the Mimer JDBC driver introduced a problem setting
CHARACTER and CHARACTER VARYING columns via a CharacterStream object.
The end result lost characters without throwing errors. This is now corrected.

• A JDBC driver using a database server with many indexes could have performance
problems with the DatabaseMetaData.getSchemas call. This is now corrected
for 9.2-servers and later. Unfortunately, since the problem is server related, older
servers cannot easily be corrected.

• JDBC drivers connecting to Mimer SQL 8.2 servers unexpectedly threw
SQLException exceptions when using DatabaseMetaData.getCatalogs or
DatabaseMetaData.getUDTs. This is now corrected. Note that neither of these
queries should return any rows with Mimer SQL 8.2 servers.

• java.sql.Blob and java.sql.Clob objects returned from calls to
ResultSet.getBlob and ResultSet.getClob now stay alive throughout the
entire transaction. Once the transaction in which the object is created is ended, all
calls to the objects will throw a ’transaction has ended’ exception. Previously, these
objects could not be used once the resultset was closed.

Corrections in 2.9
• Scrollable result sets returned an error when calling setFetchDirection. This is

no longer the case.
• ResultSet.getString did not return correct characters for å, ä, ö and similar

Latin-1 but non-ASCII characters when other default character encoding than
ISO 8859-1 was used. This included for instance Macintosh computers. This is
now corrected.

52 Appendix A Change History
Corrected Problems

Corrections in 2.7
• Earlier versions incorrectly returned SQLSTATE 22001 for numeric value out of

range. The correct 22003 is now returned.
• Procedure calls with large output parameters (typically CHAR(100),

VARCHAR(100) or larger) could end with the following exception message:
An internal error occurred in MimConnection.readFromServer (packlen=148,
bufLen=100, maxReceive=0).

This problem is now corrected.
• Batches of statements were not cleared when being executed. This forced the

programmer to call Statement.clearBatch() before building another batch.
From now on, batches are automatically cleared after being executed.

Corrections in 2.6
Server resources was not released even when the application was properly closing
Statement, PreparedStatement and CallableStatement objects. This could
sometimes cause the following error when attempting to drop a table:

Error code: -16002, msg: Table locked by another cursor, state: S1000

This problem is now corrected.

Corrections in 2.2
• Correction of

DatabaseMetaData.supportsTransactionIsolationLevel(0) which
erroneously returned true.

• ResultSet.getConcurrency() and ResultSet.getType() returned wrong
values for scrollable cursors.

• DatabaseMetaData.getSystemFunctions() returned the nonexisting
USERNAME function.

• A ResultSet.fetchSize with a large number no longer throws an
ArrayIndexException.

• ResultSets created from a PreparedStatement or CallableStatement no
longer fails on the second .next call.

Corrections in 1.9
• ResultSet.getString did not return correct characters for å, ä, ö and similar

Latin-1 but non-ASCII characters when other default character encoding than
ISO 8859-1 was used. This included for instance Macintosh computers. This is
now corrected.

• The driver now returns the correct object type when doing
CallableStatement.getObject. According to the JDBC specification,
getObject should return a Java object whose type corresponds to what type the
output parameter was registered to with the
CallableStatement.registerOutParameter method call. Earlier drivers
always returned the default Java object type.

Mimer JDBC 53
Driver Guide

Corrections in 1.7
Earlier versions incorrectly returned SQLSTATE 22001 for numeric value out of range.
The correct 22003 is now returned.

Known Restrictions
The following sections document known restrictions.

Mimer SQL Experience v10.1 Limited Support for Statement.getMaxFieldSize and
Statement.setMaxFieldSize

Mimer SQL Experience

There are no support for Statement.setMaxFieldSize and
Statement.getMaxFieldSize when connected to a version 10.1 Mimer SQL
Experience server.

54 Appendix A Change History
Known Restrictions

Mimer SQL Experience v10.1 Native SQL Escape Clause Support

Mimer SQL Experience

The version 10.1 Mimer SQL Experience server does not support the following native
SQL escape clauses:
• ASCII, for example {fn ASCII(x)}
• CHAR, for example {fn CHAR(x)}
• BIT_LENGTH, for example {fn BIT_LENGTH(x)}
• POSITION of the form {fn POSITION(x in y)}.

(The form {fn POSITION(x,y)} is still supported.)
• SUBSTRING of the form {fn SUBSTRING(x from y for z)}.

(The form {fn SUBSTRING(x,y,z)} is still supported.)
• DATABASE, {fn DATABASE()}
• DAYNAME, {fn DAYNAME(t)}
• MONTHNAME, {fn MONTHNAME(t)}
• QUARTER, {fn QUARTER(t)
• TIMESTAMPADD,

for example {fn TIMESTAMPADD(SQL_TSI_SECOND,t,n)}
• TIMESTAMPDIFF,

for example {fn TIMESTAMPDIFF(SQL_TSI_SECOND,t,t2)}
• CONVERT, for example {fn CONVERT(x,SQL_CHAR)}
• DIFFERENCE, such as {fn DIFFERENCE(x,y)}
• ACOS, {fn ACOS(n)}
• ASIN, {fn ASIN(n)}
• ATAN, {fn ATAN(n)}
• ATAN2, {fn ATAN2(n,m)}
• COS, {fn COS(n)}
• COT, {fn COT(n)}
• PI, {fn PI()}
• DEGREES, {fn DEGREES(n)}
• EXP, {fn EXP(n)}
• LOG, {fn LOG(n)}
• LOG10, {fn LOG10(n)}
• POWER, {fn POWER(n,m)}
• RADIANS, {fn RADIANS(n)}
• SIN, {fn SIN(n)}
• SQRT, {fn SQRT(n)}
• TAN, {fn TAN(n)}
• NOW, {fn NOW()}

Mimer JDBC 55
Driver Guide

Optional JDBC 2 features not supported:
• Connection timeout
• Updatable result sets
• Searching for data in large objects using the Blob.position or
Clob.position methods

• java.sql.Array java objects (dependent on the SQL ARRAY data type)
• java.sql.Ref java object (dependent on the SQL REF data type)
• Type inheritance
• Typed tables and typed table inheritance
• Referring to procedure and function parameters by name
• The JAVA_OBJECT user defined type

Optional JDBC 3 features not supported:
• Updating parts of an existing large object using Blob.setBytes or
Clob.setBytes

• Truncating an existing large object using Blob.truncate or Clob.truncate
• Transaction savepoints
• Time zones
• Support for the SQL DATALINK type and setting and retrieving java.net.URL

objects
• Retrieving values of auto generated keys

Known Problems
This section describes the known problems with Mimer JDBC.

Surrogate Characters in NATIONAL CHARACTER LARGE OBJECT Data
When storing large object data, current Mimer SQL servers require the client and/or
application to supply the size and length of the large object in advance prior to
actually storing the data. This poses a problem if the data contains UTF-16 surrogate
characters, since the application will know the length of the data by the number of
UTF-16 code points, while the server regards the length as being the number of
Unicode characters. The number of Unicode characters may therefore be less than
the number of UTF-16 code points in the input data.
In these situations, database objects of the type NATIONAL CHARACTER
LARGE OBJECT will be padded with zero characters up to the length originally
specified. When at a later date the object is retrieved, it may appear to have grown
in length. The actual number of characters grown equals the number of surrogate
characters in the input data.

56 Appendix A Change History
Known Problems

System Views Raising Error -10312
The system metadata returned by DatabaseMetaData.getTypeInfo,
DatabaseMetaData.getProcedureColumns, and
DatabaseMetaData.getBestRowIdentifier from Mimer SQL 9.1 servers or
older may return -10312 “numeric value out of range”.
The error will not appear if no user created domains are present and returned by the
views, or if less than 32768 system objects have been created in the database.

Statements Never Executed By java.sql.Statement.executeUpdate()
When issuing the statements ENTER, LEAVE, LEAVE RETAIN, SET
DATABASE, SET DATABANK, and SET SHADOW are reported as having
completed successfully, but they are actually never executed on the server.
UPDATE STATISTICS and DELETE STATISTICS always return with an “Invalid
internal DDU identifier” error.
All these statements are executed properly when being executed either using a
java.sql.PreparedStatement or a java.sql.CallableStatement, but
also using the java.sql.Statement.execute method.
The problem appeared in Mimer SQL servers in version 9.3.1 and was corrected in
version 9.3.7G.

Update Counts on Errors in Batched Statements
Whenever an error occurs in a batched Statement, the driver is unable to return the
correct information about the number of executed rows. The correct behavior is to
return an integer array within a thrown BatchUpdateException object whose
length corresponds to the number of batch statements. The Mimer driver is now
returning an integer array with one entry per statement, with all entries set to 0.

Mimer JDBC 57
Driver Guide

Index
A
applet 16

B
batch operations 20
BOOLEAN 32

C
CLASSPATH 5
COMMIT LOAD 29
commit mode 17
connection 7
connection pools 10

D
DataSource 9
distinct type 25
distributed transactions 10
DriverManager 6, 9, 13, 15

E
encryption 29
error handling 10

G
garbage collection 27

H
holdable cursors 24

I
INTERVAL 27

J
J2EE 9, 10
Java applet 16

Java Virtual Machine 1
JDBC

batch updates 17
callableStatement objects 20
connecting 6
cursors

positioning 23
error handling 10
executing 19
JDBC 2 17
loading 5
performance 21
preparedStatement objects 19
result sets 22

capabilities 24
scrolling 23

statement objects 19
transactions 17

auto-commit 17
manual-commit 18

updating data 24
JNDI 9
JNDI repository 14
JVM 1

L
LOAD 29
locking 17
logging 3

M
Maven distribution 29
Mimer SQL

connecting to 9

N
native SQL escape clause 54
NCLOB 33

58 Index

P
performance 21, 28
prefetch 28
PreparedStatements 28
PSM 27

R
Result 22
ROLLBACK LOAD 29

S
scrollable cursors 23
scrolling 23
sealed library 29
Secure Remote Password 30
security restriction 16
setMaxRows 28
START LOAD 29
stored procedures 27
structured type 25

T
thread-safe 28
trace driver 3
transaction 17
type 4 drivers 1
TYPE_FORWARD_ONLY 23
TYPE_SCROLL_INSENSITIVE 23
TYPE_SCROLL_SENSITIVE 43

U
URL 7, 13, 15
user-defined types 25
UUID 30

X
XA 10

	Driver Guide
	Contents
	Introduction
	About this Guide
	Definitions, Terms and Trademarks

	Requirements
	Environment
	Logging

	Using the Mimer JDBC Driver
	Loading a Driver
	Connecting the Traditional Way
	Connecting With URL
	URL Syntax

	Connecting the J2EE Way
	Deploying Mimer JDBC in JNDI
	Deploying Mimer JDBC in a Connection Pool
	Deploying Mimer JDBC in Distributed Transaction Environments

	Error Handling
	The Class SQLException
	The Class SQLWarning

	Viewing Driver Characteristics
	The mimcomm JNI library
	Java Program Examples
	JDBC Application Example
	JDBC Application Example for J2EE
	Using the Driver from Applets
	Executing the Java Applet Example

	Programming With JDBC
	Examples in this Chapter
	Transaction Processing
	JDBC Transactions
	Auto-commit Mode
	Manual-commit Mode
	Setting the Transaction Isolation Level

	Executing an SQL Statement
	Using a Statement Object
	Using a PreparedStatement Object
	Using a CallableStatement Object

	Batch Update Operations
	Enhancing Performance

	Result Set Processing
	Scrolling in Result Sets
	Positioning the Cursor

	Result Set Capabilities
	Holdable cursors

	Updating Data
	User-Defined Types
	Default Type Mapping
	Custom Java Classes With Type Mapping

	Programming Considerations
	Interval Data
	Closing Objects
	Increasing Performance

	Change History
	New Functions
	New Functions in 3.42.2
	New Functions in 3.42
	New Functions in 3.41
	New Functions in 3.39
	New Functions in 3.38
	New Functions in 3.35
	New Functions in 3.31
	New Functions in 3.30
	New Functions in 3.28
	New Functions in 3.26
	New Functions in 3.25
	New Functions in 3.24 and 2.24
	New Functions in 3.18, 2.18 and 1.18
	New Functions in 3.17, 2.17 and 1.17
	New Functions in 3.16, 2.16 and 1.16
	New Functions in 3.15
	New Functions in 2.9
	New Functions in 2.8
	New Functions in 2.7
	New Functions in 2.5
	New Functions in 2.4
	New Functions in 2.3
	New Functions in 2.0
	New Functions in 1.9
	New Functions in 1.7
	New Functions in 1.2

	Changed Functions
	Changes in 11.0.1
	Changes in 3.41
	Changes in 3.40
	Changes in 3.39
	Changes in 3.29
	Changes in 3.28
	Changes in 3.25
	Changes in 3.24, 2.24 and 1.24
	Changes in 3.20, 2.20 and 1.20
	Changes in 3.16, 2.16 and 1.16
	Changes in 2.15 and 1.15
	Changes in 2.14 and 1.14
	Changes in 2.9
	Changes in 2.7
	Changes in 2.2
	Changes in 2.1
	Changes in 1.3
	Changes in 1.2

	Corrected Problems
	Corrections in 11.0.1
	Corrections in 3.42
	Corrections in 3.41a
	Corrections in 3.40
	Corrections in 3.39
	Corrections in 3.38
	Corrections in 3.37
	Corrections in 3.35
	Corrections in 3.31
	Corrections in 3.30
	Corrections in 3.29
	Corrections in 3.28
	Corrections in 3.27
	Corrections in 3.26
	Corrections in 3.25
	Corrections in 3.24, 2.24 and 1.24
	Corrections in 3.23 and 2.23
	Corrections in 3.23, 2.23 and 1.23
	Corrections in 3.22, 2.22 and 1.22
	Corrections in 3.21, 2.21 and 1.21
	Corrections in 3.20, 2.20 and 1.20
	Correction in 3.19, 2.19 and 1.19
	Corrections in 3.18, 2.18 and 1.18
	Corrections in 3.16, 2.16 and 1.16
	Corrections in 2.14
	Corrections in 2.14 and 1.14
	Corrections in 2.13 and 1.13
	Corrections in 2.12 and 1.12
	Corrections in 2.11 and 1.11
	Corrections in 2.10 and 1.10
	Corrections in 2.9
	Corrections in 2.7
	Corrections in 2.6
	Corrections in 2.2
	Corrections in 1.9
	Corrections in 1.7

	Known Restrictions
	Known Problems

	Index

