
Mimer SQL
Documentation Set

Version 11.0

Mimer SQL, Documentation Set, Version 11.0, December 2024
© Copyright Mimer Information Technology AB.

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.

Mimer SQL Web Sites:
https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Mimer SQL Version 11.0 i
Documentation Set

Contents

Documentation Set

SQL Reference Manual
Chapter 1 Introduction ... 1

About this Manual ..1

Chapter 2 Reading SQL Syntax Diagrams ... 5
Key to Syntax Diagrams ..5
Reading Standard Compliance Tables ..8

Chapter 3 Introduction to SQL Standards.. 9
History of Standards ..9
SQL-2016...9
The Unicode Standard and ISO/IEC 10646...10

Chapter 4 Mimer SQL Database Objects .. 11
The Data Dictionary ...12
Databanks..12
Idents ...14
Schemas ..15
Tables ..15
Primary Keys and Indexes ...16
Stored Procedures ...17
Synonyms ..18
Shadows ..18
Triggers..19
User-Defined Types and Methods ...19

ii Contents

Sequences ...19
Precompiled Statements ..20
Mimer SQL Character Sets ..20
Collations..20
Data Integrity ..21
Privileges..23

Chapter 5 Collations and Linguistic Sorting.. 25

Chapter 6 SQL Syntax Elements... 37
Separators..37
Special Characters ...37
Identifiers..38
Data Types in SQL Statements ..44
Literals ..64

Chapter 7 Operators and Values... 71
Operators ...71
Value Specifications ...75
Default Values ..76
Assignments...77
Comparisons ..80
Result Data Types..84

Chapter 8 Functions... 87
Scalar Functions...87
Set Functions ...136

Chapter 9 Expressions and Predicates .. 141
Expressions..141
CASE Expression...145
CAST Specification ..148
User-Defined Function ...151
Method Invocation ..151
Predicates ..153

Chapter 10 Search Conditions and Joins .. 165
Search Conditions ..165
Joined Tables ...167
INNER JOINs ...167
OUTER JOINs..169
CROSS JOIN ...172

Mimer SQL Version 11.0 iii
Documentation Set

Standard Compliance ..172

Chapter 11 The SELECT Expression .. 173
The SELECT Clause..175
The FROM Clause and Table-reference..177
The WHERE Clause ..178
The GROUP BY Clause...178
The HAVING Clause..179
The WITH Clause ..179
The VALUES Clause ...184
The UNION Operator ...184
The EXCEPT Operator ..185
The INTERSECT Operator ..185
The ORDER BY Clause...186
The RESULT OFFSET Clause ..186
The FETCH FIRST Clause ..187
Restrictions ..187
Notes..187
Standard Compliance ..187

Chapter 12 SQL Statements .. 191
ALLOCATE CURSOR..196
ALLOCATE DESCRIPTOR..198
ALTER DATABANK ...200
ALTER DATABANK RESTORE...205
ALTER DATABASE ...207
ALTER FUNCTION..209
ALTER IDENT..212
ALTER METHOD...214
ALTER PROCEDURE..216
ALTER ROUTINE ..219
ALTER SEQUENCE ..222
ALTER SHADOW ..223
ALTER STATEMENT...225
ALTER TABLE ...226
ALTER TYPE ...230
CALL ..233
CASE ...235
CLOSE...237

iv Contents

COMMENT...239
COMMIT...241
COMPOUND STATEMENT ...243
CONNECT..245
CREATE BACKUP ...248
CREATE COLLATION ...251
CREATE DATABANK ..253
CREATE DOMAIN ...256
CREATE FUNCTION ...258
CREATE IDENT ...262
CREATE INDEX...264
CREATE METHOD ..267
CREATE MODULE ..269
CREATE PROCEDURE...271
CREATE SCHEMA ..275
CREATE SEQUENCE..277
CREATE SHADOW..280
CREATE STATEMENT ..282
CREATE SYNONYM..284
CREATE TABLE ..285
CREATE TRIGGER ...294
CREATE TYPE ..298
CREATE VIEW...302
DEALLOCATE DESCRIPTOR ...305
DEALLOCATE PREPARE ...306
DECLARE CONDITION ...307
DECLARE CURSOR..309
DECLARE HANDLER ..312
DECLARE SECTION ...314
DECLARE VARIABLE..315
DELETE ...317
DELETE CURRENT...319
DELETE STATISTICS..321
DESCRIBE ...323
DISCONNECT..325
DROP ...326
ENTER ...331
EXECUTE ..332

Mimer SQL Version 11.0 v
Documentation Set

EXECUTE IMMEDIATE ...334
EXECUTE STATEMENT ...335
EXPLAIN..336
FETCH ...339
GET DESCRIPTOR ...344
GET DIAGNOSTICS..351
GRANT ACCESS PRIVILEGE...359
GRANT OBJECT PRIVILEGE ...361
GRANT SYSTEM PRIVILEGE...364
IF..366
INSERT..368
ITERATE..371
LEAVE ...373
LEAVE (PROGRAM ident)...375
LOOP ...376
OPEN...378
PREPARE..380
REPEAT...382
RESIGNAL...384
RETURN ..386
REVOKE ACCESS PRIVILEGE ..388
REVOKE OBJECT PRIVILEGE...391
REVOKE SYSTEM PRIVILEGE ..394
ROLLBACK..396
SELECT ...398
SELECT INTO ...401
SET ..404
SET CONNECTION...406
SET DATABANK..407
SET DATABASE..409
SET DESCRIPTOR..411
SET SESSION ...413
SET SHADOW...416
SET TRANSACTION ...418
SIGNAL..422
START ...424
UPDATE ..426
UPDATE CURRENT..429

vi Contents

UPDATE STATISTICS ...432
WHENEVER...434
WHILE ..435

Chapter 13 Data Dictionary Views .. 437
INFORMATION_SCHEMA.ASSERTIONS...444
INFORMATION_SCHEMA.ATTRIBUTES..444
INFORMATION_SCHEMA.CHARACTER_SETS ..447
INFORMATION_SCHEMA.CHECK_CONSTRAINTS..448
INFORMATION_SCHEMA.COLLATIONS ...448
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE ...449
INFORMATION_SCHEMA.COLUMN_PRIVILEGES...449
INFORMATION_SCHEMA.COLUMN_UDT_USAGE ..450
INFORMATION_SCHEMA.COLUMNS..451
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE455
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE.......................................456
INFORMATION_SCHEMA.DIRECT_SUPERTABLES ..456
INFORMATION_SCHEMA.DIRECT_SUPERTYPES ..457
INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS..457
INFORMATION_SCHEMA.DOMAINS ...458
INFORMATION_SCHEMA.EXT_ACCESS_PATHS ..461
INFORMATION_SCHEMA.EXT_COLLATION_DEFINITIONS....................................462
INFORMATION_SCHEMA.EXT_COLUMN_OFFSET_INFORMATION......................463
INFORMATION_SCHEMA.EXT_COLUMN_REMARKS..466
INFORMATION_SCHEMA.EXT_DATABANKS ...466
INFORMATION_SCHEMA.EXT_IDENTS..467
INFORMATION_SCHEMA.EXT_INDEX_COLUMN_USAGE......................................468
INFORMATION_SCHEMA.EXT_INDEXES ...469
INFORMATION_SCHEMA.EXT_OBJECT_IDENT_USAGE469
INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_USED.......................................471
INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_USING473
INFORMATION_SCHEMA.EXT_OBJECT_PRIVILEGES ...474
INFORMATION_SCHEMA.EXT_ONEROW ..475
INFORMATION_SCHEMA.EXT_ROUTINE_MODULE_DEFINITION.........................475
INFORMATION_SCHEMA.EXT_ROUTINE_MODULE_USAGE.................................476
INFORMATION_SCHEMA.EXT_SCHEMAS ...476
INFORMATION_SCHEMA.EXT_SEQUENCES ..476
INFORMATION_SCHEMA.EXT_SHADOWS ..477
INFORMATION_SCHEMA.EXT_SOURCE_DEFINITION ...477

Mimer SQL Version 11.0 vii
Documentation Set

INFORMATION_SCHEMA.EXT_STATEMENTS ..479
INFORMATION_SCHEMA.EXT_STATEMENT_DEFINITION479
INFORMATION_SCHEMA.EXT_STATISTICS..480
INFORMATION_SCHEMA.EXT_SYNONYMS..480
INFORMATION_SCHEMA.EXT_SYSTEM_PRIVILEGES ..481
INFORMATION_SCHEMA.EXT_TABLE_DATABANK_USAGE481
INFORMATION_SCHEMA.KEY_COLUMN_USAGE ..482
INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS..................482
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS..486
INFORMATION_SCHEMA.MODULES..490
INFORMATION_SCHEMA.PARAMETERS...491
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS.....................................494
INFORMATION_SCHEMA.ROUTINE_COLUMN_USAGE ...495
INFORMATION_SCHEMA.ROUTINE_PRIVILEGES..496
INFORMATION_SCHEMA.ROUTINE_TABLE_USAGE ...496
INFORMATION_SCHEMA.ROUTINES...497
INFORMATION_SCHEMA.SCHEMATA..502
INFORMATION_SCHEMA.SEQUENCES...502
INFORMATION_SCHEMA.SQL_FEATURES ...503
INFORMATION_SCHEMA.SQL_LANGUAGES..504
INFORMATION_SCHEMA.SQL_SIZING ..504
INFORMATION_SCHEMA.TABLE_CONSTRAINTS ..505
INFORMATION_SCHEMA.TABLE_PRIVILEGES...505
INFORMATION_SCHEMA.TABLES..507
INFORMATION_SCHEMA.TRANSLATIONS..507
INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS................................508
INFORMATION_SCHEMA.TRIGGER_COLUMN_USAGE...509
INFORMATION_SCHEMA.TRIGGER_TABLE_USAGE ...509
INFORMATION_SCHEMA.TRIGGERS...510
INFORMATION_SCHEMA.UDT_PRIVILEGES...511
INFORMATION_SCHEMA.USAGE_PRIVILEGES..512
INFORMATION_SCHEMA.USER_DEFINED_TYPES..513
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE ..516
INFORMATION_SCHEMA.VIEW_TABLE_USAGE ..517
INFORMATION_SCHEMA.VIEWS..517
Standard Compliance ..518

Appendix A Reserved Words .. 519

viii Contents

Appendix B Character Sets ... 525
Character Data ...525
National Character Data – Unicode..526

Appendix C Limits .. 527

Appendix D Deprecated Features ... 529
Indicator Variables..529
Operators ...529
Statements ...529
Program Idents ...531
Functions..532
Datetime Scalar Functions ...532
Data Dictionary Views ..532
Host Variable Types ...533

Appendix E Return Status and Conditions .. 535
SQLSTATE Return Codes ...535
SQLCODE Return Codes...536

Appendix F SQL-2016 Compliance ... 537
SQL-2016 Core Features ...537
Features Outside Core Supported by Mimer SQL ...543

Appendix G Languages ... 549

Appendix H Type Precedence Lists.. 553

 Index ... 559

Programmer’s Manual
Chapter 1 Introduction ... 1

About this Manual...1
Database APIs ...2

Chapter 2 Mimer SQL and the ODBC API... 7
The Mimer ODBC Driver ..7
Required Files ..8
Unicode and ANSI Interfaces ...8
Mimer Specific Descriptor Fields..9
Operating Systems...12
Declarations ...12

Mimer SQL Version 11.0 ix
Documentation Set

Initializing the ODBC Environment...13
Error Handling ..18
Transaction Processing ...19
Executing a Command...22
Repeating – Prepared Execution ...22
Result Set Processing..24
Updating Data ..25
Native SQL Escape Clauses..27

Chapter 3 Mimer SQL and the JDBC API.. 31
The Mimer JDBC Driver ...31

Chapter 4 Embedded SQL ... 33
General Principles for Embedding SQL Statements ..34
Processing ESQL...35
Essential Program Structure ..39
Linking Applications ...41
Connecting to a Database ...42
Communicating with the Application Program ...46
Accessing Data ..50
Dynamic SQL...60
Handling Errors and Exceptions...69

Chapter 5 Module SQL ... 75
The Scope of Mimer Module SQL..76
General Principles for SQL Modules..76
Processing MSQL ..80
Communicating with the Application Program ...85
Dynamic SQL...87
Handling errors and exceptions ...88
Host Language Dependent Aspects ..91

Chapter 6 Mimer SQL C API... 97

Chapter 7 Mimer SQL C API Reference .. 117
MimerAddBatch ...121
MimerBeginSession ...122
MimerBeginSession8 ...123
MimerBeginSessionC...124
MimerBeginStatement ...125
MimerBeginStatement8 ...127

x Contents

MimerBeginStatementC ...129
MimerBeginTransaction ...131
MimerCloseCursor ...132
MimerColumnCount ...133
MimerColumnName ...134
MimerColumnName8 ...135
MimerColumnNameC...136
MimerColumnType ...137
MimerCurrentRow ..138
MimerEndSession ..139
MimerEndStatement...140
MimerEndTransaction ..141
MimerExecute ..142
MimerExecuteStatement ..143
MimerExecuteStatement8 ..144
MimerExecuteStatementC ...145
MimerFetch ..146
MimerFetchScroll ...147
MimerFetchSkip ...149
MimerGetBinary ...150
MimerGetBlobData ...152
MimerGetBoolean ..153
MimerGetDouble ..154
MimerGetFloat..155
MimerGetInt32..156
MimerGetInt64..157
MimerGetLob..158
MimerGetNclobData...160
MimerGetNclobData8...162
MimerGetNclobDataC ..164
MimerGetStatistics ...166
MimerGetString ..168
MimerGetString8 ..170
MimerGetStringC..172
MimerGetUUID...174
MimerIsNull ..175
MimerNext ..176
MimerOpenCursor ..177

Mimer SQL Version 11.0 xi
Documentation Set

MimerParameterCount...178
MimerParameterMode ...179
MimerParameterName...180
MimerParameterName8...181
MimerParameterNameC ..182
MimerParameterType ..183
MimerRowSize...184
MimerSetArraySize ..185
MimerSetBinary ...186
MimerSetBlobData...188
MimerSetBoolean ..189
MimerSetDouble ..190
MimerSetFloat..192
MimerSetInt32..194
MimerSetInt64..196
MimerSetLob..197
MimerSetNclobData...199
MimerSetNclobData8 ...200
MimerSetNclobDataC ..201
MimerSetNull ...202
MimerSetString ..203
MimerSetString8 ..205
MimerSetStringC..207
MimerSetStringLen ..209
MimerSetStringLen8 ..211
MimerSetStringLenC..213
MimerSetUUID...215

Chapter 8 Idents and Privileges .. 217
Mimer SQL Idents ..217
Database Privileges ...218

Chapter 9 Transaction Handling and Database Security............................ 221
Transaction Principles..221
Transactions and Logging..224
Protecting Against Data Loss...225
Transaction Control Statements...225

Chapter 10 Distributed Transactions.. 235
Terms and Abbreviations ...235

xii Contents

How Does it Work?...236
Handling failures...236
Mimer SQL Support For Microsoft DTC on Windows...237
Mimer SQL Support for Java Enterprise Edition ..237

Chapter 11 Mimer SQL Stored Procedures.. 239
About Routines...239
Syntactic Components of a Routine Definition ...245
Modules..253
SQL Constructs in Routines ...254
Manipulating Data ..261
Result Set Procedures ...264
Managing Exception Conditions...267
Access Rights...274
Using DROP and REVOKE..275
The Mimer SQL PSM Debugger ..275

Chapter 12 Triggers.. 279
Creating a Trigger ..280
Trigger Time ...281
Trigger Event ..284
Trigger Action ...284
Comments on Triggers...286
Using DROP and REVOKE..286

Chapter 13 User-Defined Types And Methods .. 287
Distinct Types...287
Methods..288

Chapter 14 Spatial Data ... 291
Geographical Data ...291
Coordinate System Data ..301

Chapter 15 Universally Unique Identifier - UUID ... 305

Appendix A Host Language Dependent Aspects .. 307
ESQL in C/C++ Programs ..308
ESQL in COBOL Programs..314
ESQL in Fortran Programs...318

Appendix B Return Codes ... 323
SQLSTATE Return Codes ...323
Native Mimer SQL Return Codes...329

Mimer SQL Version 11.0 xiii
Documentation Set

Appendix C Deprecated Features ... 399
INCLUDE SQLCA ..399
SQLDA...399
VARCHAR(size) C language struct..400
SET TRANSACTION ...400
DBERM4 ..400

 Index ... 401

User’s Manual
Chapter 1 Introduction ... 1

About this Manual ..1

Chapter 2 Basic Concepts of Mimer SQL... 5
Tables ..5
Primary Keys and Indexes ...8
Data Integrity..9
Sequences ...12
Synonyms ..13
Databanks..13
Shadows ..14
Mimer SQL Character Sets ..14
Collations and Linguistic Sorting ..14
Stored Procedures ...15
Idents ...16
Schemas ..17
Access Rights and Privileges...17
The Data Dictionary ...19
Mimer SQL Statements..19

Chapter 3 Retrieving Data.. 23
Simple Retrieval ...23
Result Order...24
Table Names..25
Setting Column Labels...25
Eliminating Duplicate Values..26
Selecting Specific Rows...27

xiv Contents

Retrieving Computed Values..34
Using Scalar Functions ..37
Using the CASE Expression...39
Using the CAST Specification ..41
Datetime Arithmetic and Functions ..42
Using Set Functions ...45
Grouped Set Functions – the GROUP BY Clause ...47
Selecting Groups – the HAVING Clause..48
Ordering the Result Table ..49
Retrieving Data From More Than One Table ...51
Handling Null Values ..67
Conceptual Description of the Selection Process ..70

Chapter 4 Collations... 75
Character Sets and Collations..75
Using Collations ...76
Using Collations – Examples..78

Chapter 5 Working With Data .. 85
Inserting Data ...85
Updating Tables ...88
Deleting Rows from Tables ..89
Calling Procedures ...89
Updatable Views ..90

Chapter 6 Managing Transactions.. 91
Transaction Principles ..91
Logging Transactions ...92
Handling Transactions..93

Chapter 7 Creating a Database ... 95
Creating Idents and Schemas ..95
Creating Databanks..97
Creating Tables ..98
Creating Sequences...103
Creating Domains...103
Creating Functions, Procedures, Triggers and Modules ..105
Creating Views ...107
Creating Secondary Indexes ..108
Creating Synonyms ..109
Commenting Objects..110

Mimer SQL Version 11.0 xv
Documentation Set

Altering Databanks, Tables and Idents ..111
Dropping Objects from the Database...113

Chapter 8 Defining Privileges.. 117
Ident Structure ...118
Granting Privileges...119
Revoking Privileges ...121

Chapter 9 Mimer BSQL... 125
Running BSQL ...125
BSQL Commands ..130
Variables in BSQL..160
BSQL and Multiple Connections ..162
Transaction Handling in Mimer BSQL..163
LOBs in BSQL..164
Errors in BSQL...164
Error Messages..166

Appendix A Mimer SQL Explain .. 169

Appendix B The Example Environment.. 179
The EXLOAD program...180
The MIMER_STORE Schema ...182
Procedures...188
Views ...188
Triggers..189
Idents ...189
The MIMER_STORE_MUSIC Schema..190
The MIMER_STORE_BOOK Schema...192
The MIMER_STORE Schema Revisited..194
The MIMER_STORE_WEB Schema ...195
Synonyms ..196

Appendix C Deprecated Features ... 197
BSQL Commands ..197

 Index ... 199

System Management Handbook

xvi Contents

Chapter 1 Introduction ... 1
About this Manual...1
System Management Responsibilities ...3

Chapter 2 The Database Environment.. 5
The Data Dictionary..5
Idents..6
Schemas ..7
Databanks ..7
Databank Options...9
Locating Databank Files...9
Organizing Databank Files ...10
Altering Databank Locations ..13
Accessing Databank Files ..14
Databank File Deletion ...14
Multifile Databanks ...14
Transaction Control ..17
Database Security ..18
Data Integrity ..23

Chapter 3 Creating a Mimer SQL Database ... 27
Registering the Database...28
The Local Database ...28
Accessing a Database Remotely ...29
Mimer SQL License Key...30
MIMLICENSE - Managing the license key ...32
SDBGEN - Generating the System Databanks ..34
Establishing the Ident and Data Structure..36
Managing Database Connections ..37
Executing SQL Statements ..40

Chapter 4 Managing a Database Server ... 43
Database Server Memory Areas ..45
Threads ..47
Network Encryption ..47
Database Server System Requirements ..49
MIMCONTROL - Controlling the Database Server ..50
MIMINFO - System Information..57
Database Server Log ...65
Several Installations on One Machine..66

Mimer SQL Version 11.0 xvii
Documentation Set

Chapter 5 Backing-up and Restoring Data... 67
Database Consistency ...67
Databank Backups...71
Backing-up Databanks...74
Restoring a Databank ..76
Audit trail with READLOG ..79

Chapter 6 Databank Check Functionality... 81
DBC - Databank Check..81
Result File Contents...83
Internal Databank Check ...88

Chapter 7 DBOPEN - Databank Open ... 89
DBOPEN - Databank Open functionality..89
Functions ...91

Chapter 8 Loading and Unloading Data and Definitions 93
MIMLOAD - Data Load and Unload ...94
LOAD - Loading Data...98
UNLOAD - Unloading Data ..101

Chapter 9 Replication... 107
MIMREPADM - Replication Administration ..108
REPSERVER - Replicating the Data ...117
MIMSYNC - Synchronizing Tables...119

Chapter 10 Mimer SQL Shadowing... 123
About Databank Shadowing ..123
Levels of Data Protection...125
Creating and Managing Shadows..128
SQL Shadowing Commands – an Example Session ...128
Shadowing System Databanks ..131
Data Protection Strategy..134
Configuring Your System ...134
Performance Aspects of Shadowing..135
Troubleshooting ...135

Chapter 11 Database Statistics ... 137
Authorization ..137
The SQL Statistics Statements ..137
When to Use the SQL Statistics Statements..138

Chapter 12 SQL Monitoring on the Database Server 141

xviii Contents

SQLMONITOR - SQL Monitoring ...141
Authorization ..146

Chapter 13 DbAnalyzer - index analysis .. 147
Command syntax ...148

Appendix A Executing in Single-user Mode .. 151
File Protection in Single- and Multi-user Mode...151
Specifying Single-user Mode Access ...151
Accessing in Single-user Mode ..152
The SINGLEDEFS Parameter File...153

Appendix B The SQLHOSTS File on VMS and Linux 155
The SQLHOSTS File..155

Appendix C The MULTIDEFS File on VMS and Linux 161
The MULTIDEFS Parameter File ...161
MULTIDEFS Parameters ...163

Appendix D Data Dictionary Tables.. 175
SYSTEM.API_FUNCTION ...180
SYSTEM.AST_CODES..180
SYSTEM.AST_SOURCES...180
SYSTEM.ATTRIBUTES ...181
SYSTEM.CHAR_SETS ..185
SYSTEM.CHECK_CONSTRAINTS ...186
SYSTEM.COLLATE_DEFS..186
SYSTEM.COLLATIONS...187
SYSTEM.COLUMNS..187
SYSTEM.COLUMN_OBJECT_USE ..192
SYSTEM.COLUMN_PRIVILEGES...192
SYSTEM.COMMENTS...193
SYSTEM.DATABANKS..193
SYSTEM.DIRECT_SUPERTYPES ..194
SYSTEM.DOMAINS...195
SYSTEM.DOMAIN_CONSTRAINTS ...199
SYSTEM.EXEC_STATEMENTS..199
SYSTEM.FIPS_FEATURES ..200
SYSTEM.FIPS_SIZING..200
SYSTEM.HEURISTICS..201
SYSTEM.KEY_COLUMN_USAGE ..201

Mimer SQL Version 11.0 xix
Documentation Set

SYSTEM.LEVEL2_RESTRICT ..202
SYSTEM.LEVEL2_VIEWCOL..203
SYSTEM.LEVEL2_VIEWRES..203
SYSTEM.LIBRARIES ..203
SYSTEM.LOGINS..204
SYSTEM.MANYROWS..204
SYSTEM.MESSAGE ...204
SYSTEM.METHOD_SPECIFICATION_PARAMETERS ...205
SYSTEM.METHOD_SPECIFICATIONS..209
SYSTEM.MODULES..212
SYSTEM.NANO_DATABANKS ...213
SYSTEM.NANO_DESCRIPTORS...213
SYSTEM.NANO_OBJECTS ..213
SYSTEM.NANO_ROUTINE_USE ...213
SYSTEM.NANO_USERS...213
SYSTEM.OBJECT_COLUMN_USE ..213
SYSTEM.OBJECT_OBJECT_USE..214
SYSTEM.OBJECT_PROGRAMS ..215
SYSTEM.OBJECTS...216
SYSTEM.ONEROW...217
SYSTEM.PARAMETERS...217
SYSTEM.REFER_CONSTRAINTS ... 222
SYSTEM.ROUTINES...224
SYSTEM.SCHEMATA ...227
SYSTEM.SEQUENCE_VALUE_TABLE..227
SYSTEM.SEQUENCES...228
SYSTEM.SERVER_INFO..229
SYSTEM.SEVERITY ...230
SYSTEM.SOURCE_DEFINITION..230
SYSTEM.SPECIFIC_NAMES..231
SYSTEM.SQL_CONFORMANCE..231
SYSTEM.SQL_LANGUAGES..232
SYSTEM.STATEMENT_DESCRIPTORS..233
SYSTEM.STATEMENT_ROUTINE_USE..233
SYSTEM.SYNONYMS...234
SYSTEM.TABLES ...234
SYSTEM.TABLE_CONSTRAINTS ..235
SYSTEM.TABLE_PRIVILEGES...236

xx Contents

SYSTEM.TABLE_TYPES ..237
SYSTEM.TRANSLATIONS ..238
SYSTEM.TRIGGERED_COLUMNS ..238
SYSTEM.TRIGGERS...238
SYSTEM.TYPE_INFO..240
SYSTEM.USAGE_PRIVILEGES..243
SYSTEM.USER_DEF_TYPES...244
SYSTEM.USERS ...248
SYSTEM.VIEWS ..249

Appendix E System Limits .. 251

Appendix F Deprecated Features ... 253
Export/Import ..253
Load/Unload ...253
Readlog from UTIL ...253
Backup/Restore from UTIL...253
Statistics from UTIL ..253
Shadowing Management from UTIL...254

 Index .. 255

Mimer SQL

SQL Reference
Manual

Version 11.0

Mimer SQL, SQL Reference Manual, Version 11.0, December 2024
© Copyright Mimer Information Technology AB.

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.

Mimer SQL Web Sites:
https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Mimer SQL Version 11.0 i
SQL Reference Manual

Contents
Chapter 1 Introduction ... 1

About this Manual ..1
Related Mimer SQL Publications.. 1
Suggestions for Further Reading.. 2
Acronyms, Terms and Trademarks .. 3

Chapter 2 Reading SQL Syntax Diagrams ... 5
Key to Syntax Diagrams..5

KEYWORDS.. 6
Parameters .. 7
Syntax Diagram Example .. 7

Reading Standard Compliance Tables...8

Chapter 3 Introduction to SQL Standards.. 9
History of Standards..9
SQL-2016 ..9
The Unicode Standard and ISO/IEC 10646 ..10

EOR - European Ordering Rules .. 10

Chapter 4 Mimer SQL Database Objects .. 11
System and Private Objects .. 11

The Data Dictionary ...12
Databanks...12

System Databanks.. 13
User Databanks .. 13
Specifying the Location of User Databanks .. 13

Idents ..14
USER Idents.. 14
PROGRAM Idents... 14
GROUP Idents .. 14

Schemas ...15
Tables..15

Base Tables and Views.. 16

ii Contents

Primary Keys and Indexes...16
Stored Procedures ...17

Routines – Functions and Procedures .. 17
Modules ... 18

Synonyms ...18
Shadows..18
Triggers ...19
User-Defined Types and Methods ..19
Sequences ..19
Precompiled Statements ...20
Mimer SQL Character Sets ..20
Collations ..20
Data Integrity ..21

Primary Keys and Unique Keys.. 21
Foreign Keys – Referential Integrity .. 21
Domains .. 22
Check Constraints.. 22
Check Options in View Definitions ... 23

Privileges ..23
System Privileges... 23
Object Privileges .. 23
Access Privileges ... 24
About Privileges.. 24

Chapter 5 Collations and Linguistic Sorting.. 25
Multilevel Comparisons ... 25
Alternate Weighting.. 26
Tailorings... 27
Sorting Examples ... 30
Collating Details.. 32
Indic.. 33
Japanese... 35
Korean ... 36
Vietnamese ... 36

Chapter 6 SQL Syntax Elements... 37
Separators...37
Special Characters ...37
Identifiers ..38

SQL Identifiers .. 38
Naming Objects .. 39
Qualified Object Names .. 39
Outer References... 40
Parameter Markers and Host Identifiers ... 41
Target Variables ... 43
Reserved Words... 43

Mimer SQL Version 11.0 iii
SQL Reference Manual

Standard Compliance... 43
Data Types in SQL Statements ...44

Character Strings .. 44
National Character Strings... 46
Binary ... 50
Numerical ... 52
Datetime... 53
Interval.. 54
Boolean .. 57
Spatial Data Types ... 58
Universally Unique Identifier (UUID) .. 58
ROW Data Type.. 59
The Null Value... 59
Data Type Compatibility ... 60
Datetime and Interval Arithmetic... 60
Host Variable Data Type Conversion... 61
Standard Compliance... 63

Literals ..64
String Literals... 64
Numerical Integer Literals.. 65
Numerical Decimal Literals.. 66
Numerical Floating Point Literals .. 66
DATE, TIME and TIMESTAMP Literals ... 67
Interval Literals .. 67
Binary Literals.. 68
Boolean literals.. 68
Spatial literals .. 69
Standard Compliance... 69

Chapter 7 Operators and Values ... 71
Operators..71

Set Operators .. 71
Arithmetical Operators.. 72
String Operators.. 72
Bit Operators ... 72
Comparison Operators... 73
Logical Operators.. 74
Operator Precedence ... 74
Standard Compliance... 75

Value Specifications ..75
Standard Compliance... 76

Default Values ..76
Standard Compliance... 76

Assignments ..77
String Assignments... 77
Numerical Assignments ... 77
Datetime Assignment Rules .. 79
Interval Assignment Rules ... 79
Binary Assignment Rules... 79

iv Contents

Boolean Assignment Rules... 79
Standard Compliance .. 80

Comparisons ..80
Character String Comparisons ... 80
Numerical Comparisons .. 81
Datetime and Interval Comparisons .. 81
Binary Comparisons... 81
Boolean Comparisons ... 82
Null Comparisons... 82
Truth Tables.. 82
Standard Compliance .. 83

Result Data Types ..84
Standard Compliance .. 85

Chapter 8 Functions... 87
Scalar Functions ..87

ABS .. 89
ACOS... 90
ASCII_CHAR .. 90
ASCII_CODE .. 91
ASIN... 91
ATAN ... 92
ATAN2 ... 92
BEGINS ... 93
BUILTIN.BEGINS_WORD .. 93
BUILTIN.MATCH_WORD ... 94
BUILTIN.UTC_TIMESTAMP... 95
CHARACTER_LENGTH ... 96
CEILING .. 96
COS ... 97
COSH... 97
COT.. 98
CURRENT_DATE .. 98
CURRENT_PROGRAM .. 99
CURRENT_USER.. 99
CURRENT VALUE... 100
DAY.. 100
DAYOFMONTH.. 101
DAYOFWEEK... 101
DAYOFYEAR.. 102
DEGREES... 102
EXP .. 103
EXTRACT.. 103
FLOOR .. 104
HOUR .. 104
INDEX_CHAR... 105
IRAND.. 105
LEFT .. 106
LN... 106
LOCALTIME.. 107
LOCALTIMESTAMP .. 107

Mimer SQL Version 11.0 v
SQL Reference Manual

LOCATE... 108
LOG10.. 109
LOWER .. 109
MINUTE.. 110
MOD ... 110
MONTH .. 111
NEXT VALUE .. 111
OCTET_LENGTH ... 112
OVERLAY.. 113
PASTE.. 114
POSITION.. 115
POWER.. 115
QUARTER ... 116
RADIANS ... 116
REGEXP_MATCH .. 117
REPEAT... 122
REPLACE .. 122
RIGHT .. 123
ROUND .. 123
SECOND.. 124
SESSION_USER.. 124
SIGN... 125
SIN .. 125
SINH ... 126
SOUNDEX ... 126
SQRT.. 127
SUBSTRING.. 127
TAIL .. 128
TAN... 129
TANH.. 129
TRIM... 130
TRUNCATE ... 131
UNICODE_CHAR ... 131
UNICODE_CODE... 132
UPPER ... 132
USER.. 132
WEEK... 133
YEAR.. 133
Standard Compliance... 133

Set Functions ...135
Syntax for Set Functions.. 135
AVG .. 135
COUNT... 135
MAX .. 135
MIN ... 135
SUM.. 135
Examples ... 135
Operational Mode ... 136
Null Values... 136
Restrictions .. 136
Results of Set Functions .. 136
Evaluating Set Functions ... 137

vi Contents

Standard Compliance .. 137

Chapter 9 Expressions and Predicates .. 139
Expressions ..139

Syntax.. 139
Unary Operators... 140
Binary Operators .. 140
Operands... 140
Evaluating Arithmetical Expressions.. 141
Evaluating String Expressions.. 142
Select Specification.. 143

CASE Expression ...143
CASE Expression First Form.. 143
CASE Expression Second Form .. 144
Short Forms for CASE... 145

CAST Specification ..146
Rules.. 146
Example... 149

User-Defined Function...149
Method Invocation..149

Standard Compliance .. 150
Predicates ...151

Predicate Syntax .. 151
The Basic Predicate... 152
The Quantified Predicate .. 153
The IN Predicate .. 154
The BETWEEN Predicate... 154
The LIKE Predicate.. 155
The NULL Predicate .. 157
The EXISTS Predicate .. 157
The OVERLAPS Predicate ... 158
The UNIQUE Predicate ... 159
The DISTINCT Predicate .. 159
Standard Compliance .. 161

Chapter 10 Search Conditions and Joins .. 163
Search Conditions..163

Rules.. 163
Examples... 164
Standard Compliance .. 164

Joined Tables ...165
INNER JOINs...165

JOIN ON.. 165
JOIN USING ... 166
NATURAL JOIN.. 166

OUTER JOINs ...167
LEFT OUTER JOIN ... 168

Mimer SQL Version 11.0 vii
SQL Reference Manual

RIGHT OUTER JOIN.. 168
FULL OUTER JOIN .. 169

CROSS JOIN...170
Standard Compliance ..170

Chapter 11 The SELECT Expression .. 171
The SELECT Clause...173

SELECT *... 173
SELECT table.* ... 174
SELECT expression ... 174
SELECT … AS Column-label.. 174
The Keywords ALL and DISTINCT... 174

The FROM Clause and Table-reference ...175
General Syntax.. 175
Intermediate Result Sets.. 175
Correlation Names.. 175

The WHERE Clause..176
The GROUP BY Clause..176

The COLLATE Clause.. 177
The HAVING Clause ...177
The WITH Clause..177

Recursive Queries .. 179
The VALUES Clause ..182
The UNION Operator..182
The EXCEPT Operator ...183
The INTERSECT Operator ...183
The ORDER BY Clause ..184
The RESULT OFFSET Clause ...184
The FETCH FIRST Clause..185
Restrictions ..185
Notes ...185
Standard Compliance ..185

Chapter 12 SQL Statements .. 189
Access Control Statements ... 189
Connection Statements.. 189
Data Definition Statements.. 190
Declarative Statements .. 191
Embedded SQL Statements.. 191
Embedded SQL Control Statements.. 191
Procedural SQL Statements.. 191
System Administration Statements... 192
Usage Modes .. 193

viii Contents

ALLOCATE CURSOR ...194
Usage... 194
Description .. 194
Restrictions ... 194
Notes.. 194
Example... 195
Standard Compliance .. 195

ALLOCATE DESCRIPTOR ...196
Usage... 196
Description .. 196
Notes.. 196
Example... 196
Standard Compliance .. 197

ALTER DATABANK ..198
Usage... 198
Description .. 199
Restrictions ... 201
Notes.. 201
Examples... 202
Standard Compliance .. 202

ALTER DATABANK RESTORE..203
Usage... 203
Description .. 203
Restrictions ... 203
Notes.. 203
Example... 204
Standard Compliance .. 204

ALTER DATABASE ..205
Usage... 205
Description .. 205
Restrictions ... 205
Notes.. 206
Example... 206
Standard Compliance .. 206

ALTER FUNCTION..207
Usage... 207
Description .. 207
Restrictions ... 208
Notes.. 208
Example... 208
Standard Compliance .. 208

ALTER IDENT..210
Usage... 210
Description .. 210
Restrictions ... 210
Notes.. 210
Examples... 211
Standard Compliance .. 211

Mimer SQL Version 11.0 ix
SQL Reference Manual

ALTER METHOD...212
Usage ... 212
Description... 212
Restrictions .. 212
Notes .. 213
Example ... 213
Standard Compliance... 213

ALTER PROCEDURE ...214
Usage ... 214
Description... 214
Restrictions .. 215
Notes .. 215
Example ... 215
Standard Compliance... 216

ALTER ROUTINE..217
Usage ... 217
Description... 217
Restrictions .. 218
Notes .. 218
Examples ... 219
Standard Compliance... 219

ALTER SEQUENCE..220
Usage ... 220
Description... 220
Restrictions .. 220
Notes .. 220
Example ... 220
Standard Compliance... 220

ALTER SHADOW..221
Usage ... 221
Description... 221
Restrictions .. 221
Notes .. 222
Example ... 222
Standard Compliance... 222

ALTER STATEMENT ..223
Usage ... 223
Description... 223
Restrictions .. 223
Notes .. 223
Example ... 223
Standard Compliance... 223

ALTER TABLE ..224
Usage ... 224
Description... 224
Language Elements.. 226
Restrictions .. 226
Examples ... 227

x Contents

Notes.. 227
Standard Compliance .. 227

ALTER TYPE ...228
Usage... 229
Description .. 229
Restrictions ... 229
Standard Compliance .. 230

CALL..231
Usage... 231
Description .. 231
Restrictions ... 231
Notes.. 231
Examples... 231
Standard Compliance .. 232

CASE ...233
Usage... 233
Description .. 233
Notes.. 234
Examples... 234
Standard Compliance .. 234

CLOSE ...235
Usage... 235
Description .. 235
Restrictions ... 235
Notes.. 235
Example... 235
Standard Compliance .. 236

COMMENT...237
Usage... 237
Description .. 238
Restrictions ... 238
Notes.. 238
Example... 238
Standard Compliance .. 238

COMMIT...239
Usage... 239
Description .. 239
Restrictions ... 239
Notes.. 239
Example... 240
Standard Compliance .. 240

COMPOUND STATEMENT ...241
Usage... 241
Description .. 241
Restrictions ... 241
Notes.. 242
Example... 242
Standard Compliance .. 242

Mimer SQL Version 11.0 xi
SQL Reference Manual

CONNECT ...243
Usage ... 243
Description... 243
Restrictions .. 244
Notes .. 244
Example ... 244
Standard Compliance... 245

CREATE BACKUP..246
Usage ... 246
Description... 246
Restrictions .. 247
Notes .. 247
Example ... 248
Standard Compliance... 248

CREATE COLLATION ..249
Usage ... 249
Description... 249
Restrictions .. 249
Notes .. 249
Examples ... 249
Standard Compliance... 249

CREATE DATABANK...251
Usage ... 251
Description... 251
Restrictions .. 253
Notes .. 253
Example ... 253
Standard Compliance... 253

CREATE DOMAIN...254
Usage ... 254
Description... 254
Language Elements.. 255
Restrictions .. 255
Notes .. 255
Examples ... 255
Standard Compliance... 255

CREATE FUNCTION...256
Usage ... 256
Description... 256
Restrictions .. 258
Notes .. 258
Examples ... 259
Standard Compliance... 259

CREATE IDENT...260
Usage ... 260
Description... 260
Restrictions .. 261
Notes .. 261

xii Contents

Example... 261
Standard Compliance .. 261

CREATE INDEX...262
Usage... 262
Description .. 262
Restrictions ... 263
Notes.. 263
Examples... 264
Standard Compliance .. 264

CREATE METHOD ..265
Usage... 265
Description .. 265
Restrictions ... 266
Standard Compliance .. 266

CREATE MODULE ..267
Usage... 267
Description .. 267
Language Elements ... 267
Restrictions ... 267
Notes.. 267
Example... 268
Standard Compliance .. 268

CREATE PROCEDURE...269
Usage... 269
Description .. 269
Restrictions ... 271
Notes.. 272
Example... 272
Standard Compliance .. 272

CREATE SCHEMA ..273
Usage... 273
Description .. 273
Language Elements ... 273
Restrictions ... 274
Notes.. 274
Example... 274
Standard Compliance .. 274

CREATE SEQUENCE ...275
Usage... 275
Description .. 275
Restrictions ... 276
Notes.. 276
Examples... 277
Standard Compliance .. 277

CREATE SHADOW ...278
Usage... 278
Description .. 278
Restrictions ... 278

Mimer SQL Version 11.0 xiii
SQL Reference Manual

Notes .. 278
Example ... 279
Standard Compliance... 279

CREATE STATEMENT ...280
Usage ... 280
Description... 280
Language Elements.. 280
Restrictions .. 281
Notes .. 281
Examples ... 281
Standard Compliance... 281

CREATE SYNONYM ...282
Usage ... 282
Description... 282
Restrictions .. 282
Notes .. 282
Example ... 282
Standard Compliance... 282

CREATE TABLE ...283
Usage ... 285
Description... 285
Language Elements.. 289
Restrictions .. 289
Notes .. 290
Example ... 290
Standard Compliance... 290

CREATE TRIGGER...292
Usage ... 292
Description... 292
Restrictions .. 293
Notes .. 294
Examples ... 295
Standard Compliance... 295

CREATE TYPE..296
Usage ... 297
Description... 297
Access Options ... 298
Restrictions .. 299
Notes .. 299
Standard Compliance... 299

CREATE VIEW ..300
Usage ... 300
Description... 300
Language Elements.. 301
Restrictions .. 301
Notes .. 301
Example ... 302
Standard Compliance... 302

xiv Contents

DEALLOCATE DESCRIPTOR ..303
Usage... 303
Description .. 303
Notes.. 303
Example... 303
Standard Compliance .. 303

DEALLOCATE PREPARE ..304
Usage... 304
Description .. 304
Notes.. 304
Example... 304
Standard Compliance .. 304

DECLARE CONDITION...305
Usage... 305
Description .. 305
Restrictions ... 305
Notes.. 305
Example... 306
Standard Compliance .. 306

DECLARE CURSOR ...307
Usage... 307
Description .. 307
Language Elements ... 307
Restrictions ... 308
Notes.. 308
Examples... 308
Standard Compliance .. 309

DECLARE HANDLER ...310
Usage... 310
Description .. 310
Restrictions ... 311
Notes.. 311
Example... 311
Standard Compliance .. 311

DECLARE SECTION ...312
Usage... 312
Description .. 312
Notes.. 312
Example... 312
Standard Compliance .. 312

DECLARE VARIABLE...313
Usage... 313
Description .. 313
Restrictions ... 314
Notes.. 314
Examples... 314
Standard Compliance .. 314

Mimer SQL Version 11.0 xv
SQL Reference Manual

DELETE...315
Usage ... 315
Description... 315
Language Elements.. 315
Restrictions .. 315
Notes .. 315
Example ... 316
Standard Compliance... 316

DELETE CURRENT ..317
Usage ... 317
Description... 317
Restrictions .. 317
Notes .. 317
Example ... 318
Standard Compliance... 318

DELETE STATISTICS...319
Usage ... 319
Description... 319
Restrictions .. 319
Notes .. 319
Example ... 319
Standard Compliance... 320

DESCRIBE ..321
Usage ... 321
Description... 321
Restrictions .. 321
Examples ... 322
Standard Compliance... 322

DISCONNECT ...323
Usage ... 323
Description... 323
Example ... 323
Standard Compliance... 323

DROP...324
Usage ... 324
Description... 325
Restrictions .. 325
Notes .. 325
Example ... 327
Standard Compliance... 327

ENTER...329
Usage ... 329
Description... 329
Restrictions .. 329
Notes .. 329
Example ... 329
Standard Compliance... 329

xvi Contents

EXECUTE ..330
Usage... 330
Description .. 330
Restrictions ... 331
Example... 331
Standard Compliance .. 331

EXECUTE IMMEDIATE ...332
Usage... 332
Description .. 332
Restrictions ... 332
Example... 332
Standard Compliance .. 332

EXECUTE STATEMENT ...333
Usage... 333
Description .. 333
Restrictions ... 333
Examples... 333
Standard Compliance .. 333

EXPLAIN..334
Usage... 334
Description .. 334
Notes.. 334
Example... 335
Standard Compliance .. 336

FETCH ...337
Usage... 337
Description .. 337
Language Elements ... 338
Restrictions ... 338
Notes.. 338
Examples... 339
Standard Compliance .. 339

FOR 340
Usage... 340
Description .. 340
Restrictions ... 340
Notes.. 340
Examples... 340
Standard Compliance .. 341

GET DESCRIPTOR ...342
Usage... 343
Description .. 343
Notes.. 348
Examples... 348
Standard Compliance .. 348

GET DIAGNOSTICS ..349
Usage... 350
Description .. 350

Mimer SQL Version 11.0 xvii
SQL Reference Manual

Language Elements.. 356
Notes .. 356
Example ... 356
Standard Compliance... 356

GRANT ACCESS PRIVILEGE ..357
Usage ... 357
Description... 357
Restrictions .. 358
Notes .. 358
Example ... 358
Standard Compliance... 358

GRANT OBJECT PRIVILEGE...359
Usage ... 359
Description... 360
Restrictions .. 360
Notes .. 360
Example ... 360
Standard Compliance... 361

GRANT SYSTEM PRIVILEGE ..362
Usage ... 362
Description... 362
Restrictions .. 363
Notes .. 363
Example ... 363
Standard Compliance... 363

IF ..364
Usage ... 364
Description... 364
Language Elements.. 364
Notes .. 364
Example ... 365
Standard Compliance... 365

INSERT..366
Usage ... 366
Description... 366
Language Elements.. 367
Restrictions .. 367
Notes .. 367
Example ... 367
Standard Compliance... 367

ITERATE..369
Usage ... 369
Description... 369
Restrictions .. 369
Notes .. 369
Example ... 369
Standard Compliance... 370

xviii Contents

LEAVE ...371
Usage... 371
Description .. 371
Restrictions ... 371
Notes.. 371
Example... 372
Standard Compliance .. 372

LEAVE (PROGRAM ident)..373
Usage... 373
Description .. 373
Restrictions ... 373
Example... 373
Standard Compliance .. 373

LOOP ...374
Usage... 374
Description .. 374
Restrictions ... 374
Notes.. 374
Example... 375
Standard Compliance .. 375

OPEN ...376
Usage... 376
Description .. 376
Restrictions ... 377
Notes.. 377
Example... 377
Standard Compliance .. 377

PREPARE ..378
Usage... 378
Description .. 378
Notes.. 378
Example... 379
Standard Compliance .. 379

REPEAT...380
Usage... 380
Description .. 380
Restrictions ... 380
Notes.. 380
Example... 380
Standard Compliance .. 381

RESIGNAL...382
Usage... 382
Description .. 382
Restrictions ... 383
Notes.. 383
Example... 383
Standard Compliance .. 383

Mimer SQL Version 11.0 xix
SQL Reference Manual

RETURN ..384
Usage ... 384
Description... 384
Restrictions .. 384
Notes .. 384
Example ... 384
Standard Compliance... 385

REVOKE ACCESS PRIVILEGE..386
Usage ... 386
Description... 386
Restrictions .. 387
Notes .. 387
Example ... 387
Standard Compliance... 387

REVOKE OBJECT PRIVILEGE ..389
Usage ... 389
Description... 390
Restrictions .. 390
Notes .. 390
Example ... 391
Standard Compliance... 391

REVOKE SYSTEM PRIVILEGE..392
Usage ... 392
Description... 392
Restrictions .. 392
Notes .. 392
Example ... 393
Standard Compliance... 393

ROLLBACK...394
Usage ... 394
Description... 394
Restrictions .. 394
Notes .. 394
Example ... 394
Standard Compliance... 395

SELECT...396
Usage ... 396
Description... 396
Examples ... 397
Standard Compliance... 398

SELECT INTO ...399
Usage ... 399
Description... 399
Language Elements.. 400
Restrictions .. 400
Notes .. 400
Examples ... 401
Standard Compliance... 401

xx Contents

SET ..402
Usage... 402
Description .. 402
Restrictions ... 402
Notes.. 402
Examples... 402
Standard Compliance .. 403

SET CONNECTION ...404
Usage... 404
Description .. 404
Example... 404
Standard Compliance .. 404

SET DATABANK ...405
Usage... 405
Description .. 405
Restrictions ... 405
Notes.. 405
Example... 406
Standard Compliance .. 406

SET DATABASE ...407
Usage... 407
Description .. 407
Restrictions ... 407
Notes.. 407
Example... 407
Standard Compliance .. 408

SET DESCRIPTOR..409
Usage... 409
Description .. 409
Notes.. 409
Example... 410
Standard Compliance .. 410

SET SESSION ...411
Usage... 411
Description .. 411
Restrictions ... 412
Examples... 412
Standard Compliance .. 413

SET SHADOW ...414
Usage... 414
Description .. 414
Restrictions ... 414
Notes.. 414
Example... 415
Standard Compliance .. 415

SET TRANSACTION ...416
Usage... 416
Description .. 416

Mimer SQL Version 11.0 xxi
SQL Reference Manual

Restrictions .. 418
Notes .. 418
Example ... 418
Standard Compliance... 418

SIGNAL ...420
Usage ... 420
Description... 420
Notes .. 421
Example ... 421
Standard Compliance... 421

START ...422
Usage ... 422
Description... 422
Restrictions .. 422
Example ... 422
Standard Compliance... 423

UPDATE ..424
Usage ... 424
Description... 424
Language Elements.. 424
Restrictions .. 425
Notes .. 425
Example ... 425
Standard Compliance... 426

UPDATE CURRENT..427
Usage ... 427
Description... 427
Language Elements.. 428
Restrictions .. 428
Notes .. 428
Example ... 428
Standard Compliance... 429

UPDATE STATISTICS ..430
Usage ... 430
Description... 430
Restrictions .. 430
Notes .. 431
Example ... 431
Standard Compliance... 431

WHENEVER ..432
Usage ... 432
Description... 432
Notes .. 432
Example ... 432
Standard Compliance... 432

WHILE ...433
Usage ... 433
Description... 433

xxii Contents

Restrictions ... 433
Notes.. 433
Example... 433
Standard Compliance .. 434

Mimer SQL Version 11.0 xxiii
SQL Reference Manual

Chapter 13 Data Dictionary Views... 435
INFORMATION_SCHEMA.ASSERTIONS..442
INFORMATION_SCHEMA.ATTRIBUTES ..442
INFORMATION_SCHEMA.CHARACTER_SETS...445
INFORMATION_SCHEMA.CHECK_CONSTRAINTS ..446
INFORMATION_SCHEMA.COLLATIONS..446
INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE..447
INFORMATION_SCHEMA.COLUMN_PRIVILEGES..447
INFORMATION_SCHEMA.COLUMN_UDT_USAGE ...448
INFORMATION_SCHEMA.COLUMNS...449
INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE.................................453
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE.....................................454
INFORMATION_SCHEMA.DIRECT_SUPERTABLES...454
INFORMATION_SCHEMA.DIRECT_SUPERTYPES..455
INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS...455
INFORMATION_SCHEMA.DOMAINS ..456
INFORMATION_SCHEMA.EXT_ACCESS_PATHS...459
INFORMATION_SCHEMA.EXT_COLLATION_DEFINITIONS460
INFORMATION_SCHEMA.EXT_COLUMN_OFFSET_INFORMATION.....................461
INFORMATION_SCHEMA.EXT_COLUMN_REMARKS ..464
INFORMATION_SCHEMA.EXT_DATABANKS ...464
INFORMATION_SCHEMA.EXT_IDENTS...465
INFORMATION_SCHEMA.EXT_INDEX_COLUMN_USAGE.....................................466
INFORMATION_SCHEMA.EXT_INDEXES ..467
INFORMATION_SCHEMA.EXT_OBJECT_IDENT_USAGE......................................467
INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_USED469
INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_USING....................................471
INFORMATION_SCHEMA.EXT_OBJECT_PRIVILEGES..472
INFORMATION_SCHEMA.EXT_ONEROW..473
INFORMATION_SCHEMA.EXT_ROUTINE_MODULE_DEFINITION473
INFORMATION_SCHEMA.EXT_ROUTINE_MODULE_USAGE................................474
INFORMATION_SCHEMA.EXT_SCHEMAS ..474
INFORMATION_SCHEMA.EXT_SEQUENCES..474
INFORMATION_SCHEMA.EXT_SHADOWS ...475
INFORMATION_SCHEMA.EXT_SOURCE_DEFINITION ..475
INFORMATION_SCHEMA.EXT_STATEMENTS..477
INFORMATION_SCHEMA.EXT_STATEMENT_DEFINITION....................................477
INFORMATION_SCHEMA.EXT_STATISTICS ...478

xxiv Contents

INFORMATION_SCHEMA.EXT_SYNONYMS..478
INFORMATION_SCHEMA.EXT_SYSTEM_PRIVILEGES ..479
INFORMATION_SCHEMA.EXT_TABLE_DATABANK_USAGE479
INFORMATION_SCHEMA.KEY_COLUMN_USAGE..480
INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS.................480
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS..484
INFORMATION_SCHEMA.MODULES..488
INFORMATION_SCHEMA.PARAMETERS ..489
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS492
INFORMATION_SCHEMA.ROUTINE_COLUMN_USAGE...493
INFORMATION_SCHEMA.ROUTINE_PRIVILEGES..494
INFORMATION_SCHEMA.ROUTINE_TABLE_USAGE...494
INFORMATION_SCHEMA.ROUTINES...495
INFORMATION_SCHEMA.SCHEMATA ...500
INFORMATION_SCHEMA.SEQUENCES...500
INFORMATION_SCHEMA.SQL_FEATURES...501
INFORMATION_SCHEMA.SQL_LANGUAGES ...502
INFORMATION_SCHEMA.SQL_SIZING ..502
INFORMATION_SCHEMA.TABLE_CONSTRAINTS..503
INFORMATION_SCHEMA.TABLE_PRIVILEGES..503
INFORMATION_SCHEMA.TABLES ...505
INFORMATION_SCHEMA.TRANSLATIONS ...505
INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS506
INFORMATION_SCHEMA.TRIGGER_COLUMN_USAGE...507
INFORMATION_SCHEMA.TRIGGER_TABLE_USAGE ..507
INFORMATION_SCHEMA.TRIGGERS...508
INFORMATION_SCHEMA.UDT_PRIVILEGES...509
INFORMATION_SCHEMA.USAGE_PRIVILEGES ...510
INFORMATION_SCHEMA.USER_DEFINED_TYPES..511
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE..514
INFORMATION_SCHEMA.VIEW_TABLE_USAGE..515
INFORMATION_SCHEMA.VIEWS..515
Standard Compliance ..516

Appendix A Reserved Words .. 517
Reserved Keywords in the SQL Standard .. 519

Mimer SQL Version 11.0 xxv
SQL Reference Manual

Appendix B Character Sets ... 523
Character Data ...523
National Character Data – Unicode ..524

Appendix C Limits .. 525

Appendix D Deprecated Features ... 527
Indicator Variables...527
Operators..527
Statements..527

ALTER IDENT Change Password.. 527
CREATE IDENT AS OS_USER.. 528
GET DIAGNOSTICS EXCEPTION INFO .. 528
JOIN Without SELECT... 528
CONNECT ... 528
ORDER BY Ordinal Position ... 528
SELECT NULL .. 528
SET TRANSACTION CHANGES ... 529
CREATE IDENT.. 529
ENTER ... 529

Program Idents...529
MIMER_SW... 529
MIMER_BR.. 529
MIMER_SC.. 530

Functions..530
BIT_LENGTH .. 530
Arithmetic Functions ... 530

Datetime Scalar Functions..530
CURRENT_TIME.. 530
CURRENT_TIMESTAMP .. 530

Data Dictionary Views ...530
Host Variable Types...531

Appendix E Return Status and Conditions .. 533
SQLSTATE Return Codes ...533
SQLCODE Return Codes...534

Appendix F SQL-2016 Compliance ... 535
SQL-2016 Core Features ...535
Features Outside Core Supported by Mimer SQL ..541

Appendix G Languages.. 547

Appendix H Type Precedence Lists.. 551

 Index ... 557

xxvi Contents

Mimer SQL Version 11.0 1
SQL Reference Manual

Chapter 1

Introduction
Mimer SQL is an advanced relational database management system (RDBMS) developed
by Mimer Information Technology AB.
The main characteristics of Mimer SQL are zero maintenance, small footprint and high
performance. These are based on a number of unique technical solutions to handle some
of the more complicated functionality that a database management system must provide.
For example, Mimer SQL provides a solution to the problem of allowing simultaneous
access to the database without the danger of a deadlock occurring. This greatly simplifies
database management and allows truly scalable performance, even during heavy system-
load.
Another significant technical innovation is the data storage mechanism, which is
constantly optimized for the highest possible performance and ensures that no manual
reorganization of the database is ever needed.
Mimer SQL offers a uniquely scalable and portable solution, including multi-core
support. The product is available on a wide range of platforms from small embedded and
handheld devices running for example Android or Linux, to workgroup and enterprise
servers running Linux, Windows, macOS and OpenVMS. This makes Mimer SQL
ideally suited for open environments where interoperability, portability and small
footprint are important.
The database management language Mimer SQL (Structured Query Language) is
compatible in all essential features with the currently accepted SQL standards, see the
Introduction to SQL Standards on page 9, for details.
This manual provides a full reference description of the Mimer SQL language. It is a
complement to the Mimer SQL User’s Manual and the Mimer SQL Programmer’s
Manual.

About this Manual
The manual is intended for all users of Mimer SQL in both interactive and embedded
contexts. It contains a complete description of the syntax and usage of all statements in
Mimer SQL.

Related Mimer SQL Publications
• Mimer SQL Programmer's Manual

contains a description of how Mimer SQL can be embedded within application
programs, written in conventional programming languages.

2 Chapter 1 Introduction
About this Manual

• Mimer SQL User's Manual
is user-oriented guide to the SQL statements, which may provide help for less
experienced users in formulating statements correctly (particularly the SELECT
statement, which can be quite complex). Does also contain a description of the
BSQL utility.

• Mimer SQL System Management Handbook
describes system administration functions, including export/import, backup/restore,
databank shadowing and the statistics functionality. The SQL statements which are
part of the System Management API are described in the Mimer SQL Reference
Manual.

• Mimer SQL Platform-specific Documents
containing platform-specific information. A set of one or more documents is
provided, where required, for each platform on which Mimer SQL is supplied.

• Mimer SQL Release Notes
contain general and platform-specific information relating to the Mimer SQL
release for which they are supplied.

• Mimer JDBC Guide
contains information about the different Mimer JDBC drivers available.

Suggestions for Further Reading
We can recommend to users of Mimer SQL the many works of C. J. Date. His insight into
the potential and limitations of SQL, coupled with his pedagogical talents, makes his
books invaluable sources of study material in the field of SQL theory and usage. In
particular, we can mention the following publication:
A Guide to the SQL Standard (Fourth Edition, 1997). ISBN 0-201-96426-0. This work
contains much constructive criticism and discussion of the SQL standard, including SQL-
99.
Other useful publications are:
SQL: 1999 - Understanding Relational Language Concepts, by Jim Melton, Alan R.
Simon, and Jim Gray. ISBN 1-55860-456-1. Explains SQL-99.
Advanced SQL: 1999 - Understanding Object-Relational and Other Advanced Features,
by Jim Melton. ISBN 1-55860-677-7. In-depth guide to SQL-99’s practical application.
Unicode information can be found here https://www.unicode.org.

For JDBC Users
JDBC information can be found here https://www.oracle.com/technetwork/java/index.html.
For information on specific JDBC methods, please see the documentation for the java.sql
package. This documentation is normally included in the Java development environment.
JDBC™ API Tutorial and Reference, 2nd edition. ISBN 0-201-43328-1. A useful book
published by JavaSoft.

For ODBC Users
Microsoft ODBC 3.0 Programmer's Reference and SDK Guide for Microsoft Windows
and Windows NT. ISBN 1-57231-516-4.

https://www.oracle.com/technetwork/java/index.html
https://www.unicode.org

Mimer SQL Version 11.0 3
SQL Reference Manual

This manual contains information about the Microsoft Open Database Connectivity
(ODBC) interface, including a complete API reference.
The documentation set in the Mimer SQL Windows distribution includes an ODBC API
help.

SQL Standards
Official documentation of the accepted SQL standards may be found in:
ISO/IEC 9075:2016(E) Information technology - Database languages - SQL. This
document contains the standard referred to as SQL-2016.

Acronyms, Terms and Trademarks

All other trademarks are the property of their respective holders.

Term Description

API Application Programming Interface

BSQL The Mimer SQL facility for using SQL interactively or by running a
command file

CAE Common Applications Environment

CLI Call Level Interface

ENV Européenne Norme Vorausgabe, European Pre-Standard

EOR European Ordering Rules

IEC International Electrotechnical Commission

ISO International Standards Organization

JDBC The Java database API specified by Sun Microsystems, Inc.

NFC Normalization Form C

NIST National Institute of Standards and Technology

ODBC Open Data Base Connectivity

PSM Persistent Stored Modules, the term used by ISO/ANSI for stored
procedures

SDK Software Development Kit

SQL Structured Query Language

UCA Unicode Collation Algorithm

UCS Universal Multiple-Octet Coded Character Set

4 Chapter 1 Introduction
About this Manual

Mimer SQL Version 11.0 5
SQL Reference Manual

Chapter 2

Reading SQL
Syntax Diagrams

The syntax of SQL statements is presented in the form of diagrams, showing how the
statements may be written. The diagrams are read from left to right.
Valid statements are constructed by following the lines in the diagrams and “picking up”
elements of the syntax on the way.
It is not practical to give the full, exhaustive syntax of each SQL statement in a single
diagram. Instead, many of the syntax diagrams for statements in Chapter 12, SQL
Statements refer to language elements, which are themselves expanded into syntax
diagrams in Chapter 7, Operators and Values.
For each syntax diagram, references are given to where in the manual the expansion of
the language elements may be found.
A sample diagram illustrating most of the features of the syntax diagrams is given at the
end of this chapter, together with some valid and some invalid formulations.

Key to Syntax Diagrams

 A word bounded by diagram lines must be separated from adjoining words by at least
one separator.
A separator is represented by a white-space character.

Words separated from each other by at least one space in the syntax diagram must also be
separated from each other by at least one separator in the real statement.

6 Chapter 2 Reading SQL Syntax Diagrams
Key to Syntax Diagrams

Where the descriptive names for identifiers used in the diagrams consist of more than one
word, these are bound together by hyphens.

Branched lines indicate alternative constructions. Only one branch may be followed for
any one passage along the line: in this example either option-1 or option-2 may be
used, but not both.

This representation is used to show that a section of the syntax construction may be
repeated. Any construction required between the repetitions is shown on the repeat line.
In this example, the statement must contain at least one instance of parameter. If several
instances are given, they must be separated from each other by a comma. If a comma or
other separator is specified in a list, white spaces need not be used between the elements
of the list.

Arrows at the beginning and end of a statement show that the statement is complete.

Dots at the beginning or end of a line in a diagram show that the statement on the line is
incomplete.
The continuation may be in the same diagram or relate to a separate diagram, as in the
language elements, see Chapter 7, Operators and Values. The dots are not part of the
statement syntax.

KEYWORDS
Keywords are words that are defined in the SQL language. Keywords are written in
UPPERCASE in the diagrams. They must always be written in the statement exactly as
shown, except that the case of letters is not significant.
Examples of keywords are:

ALTER
CREATE
NULL
TABLE

Spaces between keywords are significant. Thus the keywords CREATE TABLE in this
example must be separated by at least one white space character.

Mimer SQL Version 11.0 7
SQL Reference Manual

Parameters
Parameters are indicated by words in lowercase in the diagrams, and replaced by the
appropriate identifiers or constructions when statements are written. Examples of
parameters are:

column-name
expression
data-type

The blank spaces in the diagrams are significant. Words bound together by hyphens (e.g.
column-name, data-type) represent single parameters.

Syntax Diagram Example
The following sample illustrates the use of the syntax diagrams.

Some valid formulations are:
KEYWORD-1 (parameter) option-1 KEYWORD-2 string

KEYWORD-1 (parameter, parameter) option-1 KEYWORD-2 string option-3

KEYWORD-1 (parameter, parameter, parameter) option-2 KEYWORD-2 string

The following formulations are not valid:
KEYWORD-1 (parameter) KEYWORD-2 string

option-1 or option-2 missing
KEYWORD-1 parameter option-1 KEYWORD-2 string

parentheses missing
KEYWORD-1 (parameter,) parameter option-2 KEYWORD-2 string

closing parentheses wrongly placed
KEYWORD-1 (parameter, parameter) option-1KEYWORD-2 stringoption-3

separating blanks missing
KEYWORD-1 (parameter parameter parameter) option-2 KEYWORD-2 string

no commas in parameter list

8 Chapter 2 Reading SQL Syntax Diagrams
Reading Standard Compliance Tables

Reading Standard Compliance Tables
For each language element and statement, the standards compliance is noted in a table,
e.g. for GRANT ACCESS PRIVILEGE:

The compliance of a certain statement is always compared to the current ANSI/ISO
standard, which at the moment of writing is SQL-2016.
The table indicates how Mimer SQL complies to SQL-2016. Mimer SQL is fully
compliant with all features in core SQL-2016, but Mimer SQL also supports a number of
features outside core SQL-2016 which can be seen on the second row of the table.
Finally, extensions specific to Mimer SQL is described.
If portability over different database platforms is important, care should be taken to use
standard SQL whenever possible. When you have to use Mimer SQL extensions these
should be isolated so they can be exchanged when porting to another database. Even if
you only use standard SQL there is no warranty that the code can be used with other
database products as practically all vendors only implements a subset of the standard.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Feature outside
core

Feature F731, “INSERT column privileges”
support for granting insert on individual
columns.

Mimer SQL
extension

The keyword PRIVILEGES is optional and not
mandatory in Mimer SQL.

Mimer SQL Version 11.0 9
SQL Reference Manual

Chapter 3

Introduction to SQL
Standards

The language SQL is standardized by international standard bodies such as ISO and
ANSI. By using standard SQL it should be easier to move applications between different
database systems without the need to rewrite a substantial amount of code. Using standard
SQL does not give any warranty though as all vendors does not implement all features in
the standard.
Mimer Information Technology's policy is to develop Mimer SQL as far as possible in
accordance with the established standard. This enables users to switch to and from Mimer
SQL easily.
The current standard for SQL is ISO/IEC 9075:2016, referred to here as SQL-2016.
The standard is written in a very formal manner. It is therefore difficult to use as a
programming guide. SQL-2016 does not contain any specifications for administration of
a database system and it does not specify any physical limitations. e.g. the maximum
number of columns in table and maximum record size.

History of Standards
The first standard for SQL was published in 1986 and commonly known as SQL-1. An
amendment to this standard, containing support for referential integrity, was published in
1989. The next major version of the standard was published in 1992 and is often referred
to as SQL-92 (or SQL-2.) In 1996 a standard for stored procedures and functions was
published (SQL/PSM), which was followed by the next major version, SQL-99. As
mentioned, the current standard was published in 2016 and is called SQL-2016.

SQL-2016
This standard incorporates most of SQL-2016 and SQL/PSM. The publication of this
standard made all earlier standards obsolete. SQL-2016 contains the following parts:
• Part 1: Framework (SQL/Framework)
• Part 2: Foundation (SQL/Foundation)
• Part 3: Call-Level Interface (SQL/CLI)
• Part 4: Persistent Stored Modules (SQL/PSM)
• Part 9: Management of External Data (SQL/MED)

10 Chapter 3 Introduction to SQL Standards
The Unicode Standard and ISO/IEC 10646

• Part 10: Object Language Bindings (SQL/OLB)
• Part 11: Information and Definition Schema (SQL/Schemata)
• Part 13: Routines and Types Using the Java™ Programming Language (SQL/JRT)
• Part 14: XML-Related Specifications (SQL/XML)
Source: ISO/IEC 9075:2016(E) Information technology - Database languages - SQL.
The SQL-2016 standard contains different features and a subset of these features forms
Core SQL-2016. The features included in Core SQL-2016 can be seen in Chapter F,
SQL-2016 Compliance. This appendix also contains a list of non-core features supported
by Mimer SQL.

The Unicode Standard and ISO/IEC 10646
The Unicode Standard is fully compatible with the international standard ISO/IEC 10646,
Information Technology – Universal Multiple-Octet Coded Character Set (UCS).
While modeled on the ASCII character set, the Unicode Standard goes far beyond
ASCII’s limited ability to encode only the upper- and lowercase letters A through Z. It
provides the capacity to encode all characters used for the written languages of the world
– more than 1 million characters can be encoded. The Unicode character encoding treats
alphabetic characters, ideographic characters, and symbols equivalently, which means
they can be used in any mixture and with equal facility.
In addition to the Unicode standard, there is a technical standard called Unicode Collation
Algorithm (UCA), which is kept synchronized with the ISO/IEC 14651 standard for
International String Ordering.

EOR - European Ordering Rules
The Unicode Default Order and ISO/IEC 14651 have defined the default Latin alphabet
to contain not only the base letters A through Z, but also a number of more or less
language specific base letters. One example, the Romanian letter Î is not a variant of I; it
is a separate base letter between I and J.
The EOR, European Ordering Rules, ENV 13710 (and ISO 12199 - Alphabetical
ordering of multilingual terminological and lexicographical data represented in the Latin
alphabet) have taken a more natural approach: The alphabet is A through Z, and the other
language specific letters are secondary variants of the corresponding base letter.
Mimer SQL is using the EOR tailoring as the basis for all specific language tailorings.

Mimer SQL Version 11.0 11
SQL Reference Manual

Chapter 4

Mimer SQL
Database Objects

This chapter provides a general introduction to the basic concepts of Mimer SQL
databases and Mimer SQL objects.
Mimer SQL is a relational database system. This means that the information in the
database is presented to the user in the form of tables. The tables represent a logical
description of the contents of the database which is independent of, and insulates the user
from, the physical storage format of the data.
The Mimer SQL database includes the data dictionary which is a set of tables describing
the organization of the database and is used primarily by the database management
system itself.
The database, although located on a single server, may be accessed from many distinct
clients, linked over a network.
Commands are available for managing the connections to different databases, so the
actual database being accessed may change during the course of an SQL session.
At any one time, however, the database may be regarded as one single organized
collection of information.

System and Private Objects
Mimer SQL database objects can be divided into the following groups:

• System Objects
System objects are global to the database. System object names must be unique for
each object type since they are global and therefore common to all users.
The system objects in a Mimer SQL database are: databanks, idents, schemas and
shadows. A system object is owned by the ident that created it and only the creator
of the object can drop it.

• Private Objects
Private objects belong to a schema. Private object names are local to a schema, so
two different schemas may contain an object with the same name. It is also possible
to have objects with the same name in a schema, if they are of different types.
The private objects in a Mimer SQL database are collations, domains, functions,
indexes, modules, precompiled statements, procedures, sequences, synonyms,
tables, triggers and views.

12 Chapter 4 Mimer SQL Database Objects
The Data Dictionary

Private objects are usually fully identified by their qualified name, which is the
name of the schema to which they belong and the name of the object in the following
form: schema.object, see Qualified Object Names on page 39.
Routines may exist in multiple versions having the same name. See Mimer SQL
Programmer’s Manual, Chapter 11, Parameter Overloading.
Conflicts arising from the use of the same object name in two different schemas are
avoided when the qualified name is used. If a private object name is specified
without explicit reference to its schema, it is assumed to belong to a schema with the
same name as the current ident.

The Data Dictionary
The data dictionary contains information on all the database objects stored in a Mimer
SQL database and how they relate to one another.
The data dictionary stores information about:
• Databanks, see Databanks on page 12
• Idents, see Idents on page 14
• Schemas, see Schemas on page 15
• Tables and Views, see Tables on page 15
• Indexes, see Primary Keys and Indexes on page 16
• Functions and procedures, see Routines – Functions and Procedures on page 17
• Modules, see Modules on page 18
• Synonyms, see Synonyms on page 18
• Triggers, see Triggers on page 19
• Shadows, see Shadows on page 18
• Sequences, see Sequences on page 19
• Collations, see Collations on page 20
• Domains, see Domains on page 22
• Precompiled statements, see Precompiled Statements on page 20
• Access rights and privileges, see Privileges on page 23.

Databanks
A databank is the physical file where a collection of tables is stored. A Mimer SQL
database can contain any number of databanks.
There are two types of databanks; system databanks and user databanks.

Mimer SQL Version 11.0 13
SQL Reference Manual

System Databanks
System databanks contain system information used by the database manager. These
databanks are defined when the system is created.
The system databanks are:
• SYSDB, containing the data dictionary tables
• TRANSDB, used for transaction handling
• LOGDB, used for transaction logging
• SQLDB, used in transaction handling and for temporary storage of internal work

tables.

User Databanks
User databanks contain the user tables. These databanks are defined by the user(s)
responsible for setting up the database. See Specifying the Location of User Databanks
on page 13 for details concerning path names for user databank files.
The division of tables between different user databanks is a physical file storage issue and
does not affect the way the database contents are presented to the user. Except in special
situations (such as when creating tables), databanks are completely invisible to the user.
Note: Backup and restore in Mimer SQL can be performed on a per-databank basis

rather than on entire database basis. See the Mimer SQL System Management
Handbook, Chapter 5, Backing-up and Restoring Data for more information.

Specifying the Location of User Databanks
The location for a user databank file can be specified completely (as an absolute path
name) or with some of the path name components omitted (a relative path name).
The default values used for omitted path name components are taken from the path name
for the system databank file SYSDB, which is located in the database home directory.
Note: The databank location stored in the Mimer SQL data dictionary is the path

name as explicitly specified, i.e. without the addition of default values for any
omitted path name components. Such additions are determined and added each
time the file is accessed.

Refer to the Mimer SQL System Management Handbook, Chapter 2, The Database
Environment for recommendations concerning databank file management and for
information on how the path name for a databank file is determined.

14 Chapter 4 Mimer SQL Database Objects
Idents

Idents
An ident is an authorization-id used to identify users, programs and groups. The different
types of idents in a Mimer SQL database are USER, PROGRAM and GROUP idents.

USER Idents
USER idents identify individual users who can connect to a Mimer SQL database.
A USER ident's access to the database is usually protected by a password, and is also
restricted by the specific privileges granted to the ident. USER idents are generally
associated with specific physical individuals who are authorized to use the system.
For a USER ident it is possible to add one or several OS_USER logins which allows the
user currently logged in to the operating system to access the Mimer SQL database
without providing a password.
For example: if the current operating system user is ALBERT and there is an OS_USER
login called ALBERT for an ident in Mimer SQL, ALBERT may start Mimer BSQL (for
example) and connect directly to Mimer SQL simply by giving the ident name at the
Username: prompt and press <return> at the password: prompt.
If the ident name is the same as the OS_USER login no ident name needs to be given, it is
sufficient to press <return> at the username: prompt.
A USER ident may be defined without a password and in that case it is only possible to
connect to Mimer SQL by using the OS_USER login. Dropping and adding password and
OS_USER logins is done with ALTER IDENT statement.

PROGRAM Idents
PROGRAM idents do not strictly connect to Mimer SQL, but they may be entered from
within an application program by using the ENTER statement.
The ENTER statement may only be used by an ident who is already connected to a Mimer
SQL database.
An ident is granted the privilege to enter a PROGRAM ident. A PROGRAM ident is set up to
have certain privileges and these apply after the ENTER statement has been used.
PROGRAM idents are generally associated with specific functions within the system, rather
than with physical individuals.
The LEAVE statement is used to return to the state of privileges and database access that
existed before ENTER was used.

GROUP Idents
GROUP idents are collective identities used to define groups of USER and/or PROGRAM
idents.
Any privileges granted to or revoked from a GROUP ident automatically apply to all
members of the group. Any ident can be a member of as many groups as required, and a
group can include any number of members.
GROUP idents provide a facility for organizing the privilege structure in the database
system. All idents are automatically members of a logical group which is specified in
Mimer SQL statements by using the keyword PUBLIC.

Mimer SQL Version 11.0 15
SQL Reference Manual

Schemas
A schema defines a local environment within which private database objects can be
created. The ident creating the schema has the right to create objects in it and to drop
objects from it.
When a USER or PROGRAM ident is created, a schema with the same name is automatically
created by default, and the created ident becomes the creator of the schema. This happens
unless WITHOUT SCHEMA is specified in the CREATE IDENT statement. For idents who
are not supposed to create database objects, it’s good practice to specify WITHOUT
SCHEMA.
When a private database object is created, the name for it can be specified in a fully
qualified form which identifies the schema in which it is to be created. The names of
objects must be unique within the schema to which they belong, according to the rules for
the particular object-type.
If an unqualified name is specified for a private database object, a schema name
equivalent to the name of the current ident is assumed.

Tables
Data in a relational database is logically organized in tables, which consist of horizontal
rows and vertical columns. Columns are identified by a column-name. Each row in a table
contains data pertaining to a specific entry in the database. Each field, defined by the
intersection of a row and a column, contains a single item of data.
Each row in a table must have the same set of data items (one for each column in the
table), but not all the items need to be filled in. A column can have a default value defined
(either as part of the column specification itself or by using a domain with a default value)
and this is stored in a field where an explicit value for the data item has not been specified.
If no default value has been defined for a column, the null value is stored when no data
value is supplied (the way the null value is displayed depends on the application – in
Mimer BSQL the minus sign is used).
A relational database is built up of several inter-dependent tables which can be joined
together. Tables are joined by using related values that appear in one or more columns in
each of the tables.
Part of the flexibility of a relational database structure is the ability to add more tables to
an existing database. A new table can relate to an existing database structure by having
columns with data that relates to the data in columns of the existing tables. No alterations
to the existing data structure are required.
All data in a column contains information of one data type. The data type determines
which data that can be stored in a column also the maximum length of the data. A data
type may either be of fix or varying length. A fix data type will always use the same
amount of physical space whereas a varying type only uses as much space as is needed.
More information about data types can be found in Data Types in SQL Statements on
page 44.

16 Chapter 4 Mimer SQL Database Objects
Primary Keys and Indexes

Base Tables and Views
The logical representation of data in a Mimer SQL database is stored in tables. This is
what the user sees, as distinct from the physical storage format which is transparent to the
user.
The tables which store the data are referred to as base tables. Users can directly examine
data in the base tables.
In addition, data may be presented in views, which are created from specific parts of one
or more base tables. To the user, views may look the same as tables, but operations on
views are actually performed on the underlying base tables.
Access privileges on views and their underlying base tables are completely independent
of each other, so views provide a mechanism for setting up specific access to tables.
The essential difference between a table and a view is underlined by the action of the
DROP command, which removes objects from the database. If a table is dropped, all data
in the table is lost from the database and can only be recovered by redefining the table and
re-entering the data. If a view is dropped, however, the table or tables on which the view
is defined remain in the database, and no data is lost. Data may, however, become
inaccessible to a user who was allowed to access the view but who is not permitted to
access the underlying base table(s).
Note: Since views are logical representations of tables, all operations requested on a

view are actually performed on the underlying base table, so care must be
taken when granting access privileges on views.
Such privileges may include the right to insert, update and delete information.
As an example, deleting a row from a view will remove the entire row from the
underlying base table and this may include table columns the user of the view
had no privilege to access.

Views may be created to simplify presentation of data to the user by including only some
of the base table columns in the view or only by including selected rows from the base
table. Views of this kind are called restriction views.
Views may also be created to combine information from several tables (join views). Join
views can be used to present data in more natural or useful combinations than the base
tables themselves provide (the optimal design of the base tables will have been governed
by rules of relational database modeling). Join views may also contain restriction
conditions.

Primary Keys and Indexes
Rows in a base table are uniquely identified by the value of the primary key defined for
the table. The primary key for a table is composed of the values of one or more columns.
A table cannot contain two rows with the same primary key value. (If the primary key
contains more than one column, the key value is the combined value of all the columns in
the key. Individual columns in the key may contain duplicate values as long as the whole
key value is unique).
Other columns may also be defined as UNIQUE. A unique column is also a key, because
it may not contain duplicate values, and need not necessarily be part of the primary key.
The columns of the primary key may not contain null values (this is one of the
requirements of a strictly relational database).

Mimer SQL Version 11.0 17
SQL Reference Manual

Primary keys and unique columns are automatically indexed to facilitate effective
information retrieval.
Other columns or combinations of columns may be defined as a secondary index to
improve performance in data retrieval. Secondary indexes are defined on a table after it
has been created (using the CREATE INDEX statement).
A secondary index may be useful when, for example, a search is regularly performed on
a non-keyed column in a table with many rows, then defining an index on the column may
speed up the search. The search result is not affected by the index but the speed of the
search is optimized.
It should be noted, however, that indexes create an overhead for update, delete and insert
operations because the index must also be updated.
An index can be used in select statements as an ordinary table, but explicit write
operations on indexes are not allowed. There is no guarantee that the presence of an index
will actually improve performance because the decision to use it or not is made by the
internal query optimization process.
SQL queries are automatically optimized when they are internally prepared for execution.
The optimization process determines the most effective way to execute the query and in
some cases optimal query execution may not actually involve using an index.

Stored Procedures
In Mimer SQL you can define functions, procedures and modules, collectively known as
stored procedures.
Mimer SQL stored procedures enable you to define and use powerful functionality
through the creation and execution of routines. By using stored procedures, you can move
application logic from the client to the server, thereby reducing network traffic.
Stored procedures are stored in the data dictionary and you can invoke them when needed.
For a complete and detailed discussion of stored procedures, see Mimer SQL
Programmer’s Manual, Chapter 11, Mimer SQL Stored Procedures.
Mimer SQL stored procedures are based on the ISO standard for Persistent Stored
Modules (PSM).

Routines – Functions and Procedures
The term routine is a collective term for functions and procedures. Functions are
distinguished from procedures in that they return a single value and the parameters of a
function are used for input only. A function is invoked by using it where a value
expression would normally be used.
Mimer SQL supports standard procedures and also result set procedures, which are
procedures capable of returning the row value(s) of a result set.
Standard procedures are invoked directly by using the CALL statement and can pass
values back to the calling environment through the procedure parameters.
In embedded SQL, result set procedures are invoked by declaring a cursor which includes
the procedure call specification and by then using the FETCH statement to execute the
procedure and return the row(s) of the result set.

18 Chapter 4 Mimer SQL Database Objects
Synonyms

In interactive SQL, a result set procedure is invoked by using the CALL statement directly
and the result set values are presented in the same way as for a SELECT returning more
than one row.
The creator of a routine must hold the appropriate access rights on any database objects
referenced from within the routine. These access rights must remain as longs as the
routine exists.
Routine names, like those of other private objects in the database, are qualified with the
name of the schema to which they belong.

Modules
A module is simply a collection of routines. All the routines in a module are created when
the module is created and belong to the same schema.
EXECUTE rights on the routines contained in a module are held on a per-routine basis, not
on the module.
If a module is dropped, all the routines contained in the module are dropped.
Under certain circumstances a routine may be dropped because of the cascade effect of
dropping some other database object. If such a routine is contained in a module, it is
implicitly removed from the module and dropped. The other routines contained in the
module remain unaffected.
In general, care should be taken when using DROP or REVOKE in connection with routines,
modules or objects referenced from within routines because the cascade effects can often
affect many other objects.
For more information, see Mimer SQL User’s Manual, Chapter 7, Dropping Objects
from the Database, and the Mimer SQL User’s Manual, Chapter 8, Revoking Privileges.

Synonyms
A synonym is an alternative name for a table, view or another synonym. Synonyms can
be created or dropped at any time.
Using synonyms can be a convenient way to address tables that are contained in another
schema.
For example, if a view customer_details is contained in the schema mimer_store,
the full name of the view is mimer_store.customer_details.
This view may be referenced from another schema mimer_store_book by its fully
qualified name as given above. Alternatively, a synonym may be created for the view in
schema mimer_store_book, e.g. cust_details. Then the name cust_details can
simply be used to refer to the view.

Shadows
Mimer SQL Shadowing is a separate product you can use to create and maintain one or
more copies of a databank on different disks. Shadowing provides extra protection from
the consequences of disk crashes, etc. Shadowing requires a separate license.
Read more in the Mimer SQL System Management Handbook, Chapter 10, Mimer SQL
Shadowing.

Mimer SQL Version 11.0 19
SQL Reference Manual

Triggers
A trigger defines a number of procedural SQL statements that are executed whenever a
specified data manipulation statement is executed on the table or view on which the
trigger has been created.
There are two types of triggers, row triggers and statement triggers. A row trigger is
executed once for each row that is modified by a data manipulation operation. A
statement trigger is invoked once for a data manipulation operation.
The trigger can be set up to execute AFTER, BEFORE or INSTEAD OF the data
manipulation statement. Trigger execution can also be made conditional on a search
condition specified as part of the trigger.
Read more in the Mimer SQL Programmer’s Manual, Chapter 12, Triggers.

User-Defined Types and Methods
With user-defined types, it is possible to create new data types that can be used in table
definitions and stored procedures.The data type used in a user-defined type definition
may be a predefined data type or another user-defined type.
It is possible to define methods for a user-defined type. Methods are very similar to
functions, they have only in parameters and return a single value. There are three different
types of methods, constructor, instance and static methods.
Constructor methods are used to create new instances of a user-defined type. An instance
method can only be used with an instance of a user-defined type. A static method is
similar to a function, the only difference is how they are invoked. Both instance and
constructor methods have an implicit parameter named SELF which represents an
instance of a user-defined type.
It is possible to alter a user-defined type by adding or dropping methods.
An ident can use a user-defined type created by another ident, if the user has been granted
usage privilege on the user-defined type. Likewise, in order to be able to use a method the
user must have been granted execute privilege on the method.

Sequences
A sequence is a database object that provides a series of integer values.
A sequence has a start value, an increment step value and a minimum value and a
maximum value defined when it is created (by using the CREATE SEQUENCE statement).
A sequence can be specified as having a certain data type which will determine the span
of possible values for the sequence. The possible data types are SMALLINT, INTEGER and
BIGINT.
A sequence with CYCLE option will generate its series of values repeatedly.
A sequence with NO CYCLE becomes exhausted when the end value has been used, and
can not be used any more. (An exhausted sequence can be reset using the ALTER
SEQUENCE statement.)
A sequence is created with an undefined value initially.

20 Chapter 4 Mimer SQL Database Objects
Precompiled Statements

To generate the next value in the integer series of a sequence the NEXT VALUE function
is used, see NEXT VALUE on page 111. When this expression is used for the first time
after the sequence has been created, it establishes the initial value for the sequence.
Subsequent uses will establish the next value in the series of integer values of the
sequence as the current value of the sequence.
It is also possible to get the current value of a sequence by using the CURRENT VALUE
function, see CURRENT VALUE on page 100. This function can not be used until the
initial value has been established for the sequence (by using NEXT VALUE for the first
time).
If a sequence is dropped with the CASCADE option in effect, column defaults referencing
the sequence will be removed, but the columns will still exist. Similarly domain defaults
referencing the sequence will be removed, but the domains will still exist. Other objects
referencing the sequence will be dropped.

Precompiled Statements
A precompiled statement is a named query that can be executed by using this name. The
query must be a DML statement, i.e. DELETE, INSERT, SELECT or UPDATE, or a SET or
CALL statement. When the statement is created a compiled version of the query is stored
in the data dictionary. Precompiled statements are primarily intended for use in mobile
and embedded environments in which no SQL compiler is available due to limited
memory resources.

Mimer SQL Character Sets
For character data, Mimer SQL uses the character set ISO 8859-1, also known as the
Latin1 character set. By default, character data is sorted in the numerical order of its code
according to the ISO8BIT collation.
For national character data, Mimer SQL uses the Unicode character set, which is a
universal character set, see https://www.unicode.org for more information. National character
data is sorted according to the UCS_BASIC collation. UCS_BASIC is a collation in which
the ordering is determined entirely by the Unicode scalar values of the characters in the
strings being sorted.
See the Mimer SQL Reference Manual, Appendix B, Character Sets for more
information.

Collations
As stated in the previous section, character and national character data is sorted according
to specific collations.
A collation, also known as a collating sequence, is a database object containing a set of
rules that determines how character strings are compared, searched and alphabetically
sorted. The rules in the collation determine whether one character string is less than, equal
to or greater than another. A collation also determines how case-sensitivity and accents
are handled.
You can specify a collation for ordering characters when you create or alter a table or
create a domain.

https://www.unicode.org

Mimer SQL Version 11.0 21
SQL Reference Manual

If you have specified a collation for a column, the collation is used implicitly in SQL
statements.
You only need to explicitly use a collate clause in SQL statements if you want to override
the default collation or the collation you specified when creating or altering the column
or creating the domain.
For more information, see Mimer SQL User’s Manual, Chapter 4, Collations.

Data Integrity
A vital aspect of a Mimer SQL database is data integrity. Data integrity means that the
data in the database is complete and consistent both at its creation and at all times during
use.
Mimer SQL has built-in facilities to ensure the data integrity in the database:
• Primary keys and unique keys
• Foreign keys (also referred to as referential integrity)
• Domains
• Check constraints in table definitions
• Check options in view definitions
These features should be used whenever possible to protect the integrity of the database,
guaranteeing that incorrect or inconsistent data is not entered into it. By applying data
integrity constraints through the database management system, the responsibility of
ensuring the data integrity of the database is moved from the users of the database to the
database designer.

Primary Keys and Unique Keys
Rows in a base table are uniquely identified by the value of the primary key defined for
the table. The primary key for a table is composed of the values of one or more columns.
A table cannot contain two rows with the same primary key value. If the primary key
contains more than one column, the key value is the combined value of all the columns in
the key. Individual columns in the key may contain duplicate values as long as the whole
key value is unique.
Apart from a primary key constraint its also possible to add one or more unique
constraints. The primary key constraint and the unique constraint are similar, but treat null
values in different ways. A null value can never be stored in a primary key column, but a
unique constraint column can contain null values.
The definition of the primary key is also a definition of the most effective access path for
the table.

Foreign Keys – Referential Integrity
A foreign key is one or more columns in a table defined as cross-referencing the primary
key or a unique key of a table.
Data entered into the foreign key must either exist in the key that it cross-references or be
null. This maintains referential integrity in the database, ensuring that a table can only
contain data that already exists in the selected key of the referenced table.

22 Chapter 4 Mimer SQL Database Objects
Data Integrity

As a consequence of this, a key value that is cross-referenced by a foreign key of another
table must not be removed from the table to which it belongs by an update or delete
operation if this ultimately violates the referential constraint.
The DELETE rule defined for the referential constraint provides a mechanism for
adjusting the values in a foreign key in a way that may permit a cross-referenced key
value to effectively be removed.
Similarly, the UPDATE rule defined for the referential constraint provides a mechanism for
adjusting the values in a foreign key in a way that may permit a cross-referenced key
value to effectively be updated.
Note: The referential integrity constraints are effectively checked at the end of an

INSERT, DELETE or UPDATE statement, or at COMMIT depending on whether
the constraint is declared as IMMEDIATE or DEFERRED.

Foreign key relationships are defined when a table is created using the CREATE TABLE
statement and can be added to an existing table by using the ALTER TABLE statement.
The cross-referenced table must exist prior to the declaration of foreign keys on that table,
unless the cross-referenced and referencing tables are the same.
If foreign key relationships are defined for tables in a CREATE SCHEMA statement, it is
possible to reference a table that will not be created until later in the CREATE SCHEMA
statement.
Note: Both the table containing the foreign key and the cross-referenced table must

be stored in a databank with either the TRANSACTION or LOG option.

Domains
Each column in a table holds data of a single data type and length, specified when the
column is created or altered. The data type may be specified explicitly, e.g.
CHARACTER(20) or INTEGER, or through the use of domains, which can give more
precise control over the data that will be accepted in the column.
A domain definition consists of a data type with optional check conditions and an optional
default value. Data which falls outside the constraints defined by the check conditions is
not accepted in a column which is defined using the domain. If a variable or parameter in
a stored routine is defined as a domain with a check constraint, it is not possible to assign
the parameter or variable a value which is allowed by the check constraint.
A column defined using a domain for which a default value is defined will automatically
receive that value if row data is entered without a value being explicitly specified.
A variable in a stored routine or trigger declared using a domain for which a default value
is defined will automatically receive that value unless an explicit default clause is present
in the declaration.
In order for an ident to create a table containing columns whose data type is defined
through the use of a domain, the ident must first have been granted USAGE rights on it, see
the Mimer SQL User’s Manual, Chapter 8, Granting Privileges.

Check Constraints
Check constraints may be specified in table and domain definitions to make sure that the
values in a table row conform to certain conditions. See the Mimer SQL User’s Manual,
Chapter 7, Check Constraints for more information.

Mimer SQL Version 11.0 23
SQL Reference Manual

Check Options in View Definitions
You can maintain view integrity by including a check option in the view definition. This
causes data entered through the view to be checked against the view definition. If the data
conflicts with the conditions in the view definition, it is rejected.

Privileges
Privileges control users' access to database objects and the operations they can perform
in the database.
USER and PROGRAM idents are usually protected by a password, which must be given
together with the correct ident name in order for a user to gain access to the database or
to enter a program ident. (Alternatively, an OS_USER login can be used to login without
providing a password.)
Passwords are stored in encrypted form in the data dictionary and cannot be read by any
ident, including the system administrator. A password may only be changed by the ident
to which it belongs or by the creator of the ident.
A set of access and privileges define the operations each ident is permitted to perform.
There are three classes of privileges in a Mimer SQL database:
• system privileges
• object privileges
• access privileges.

System Privileges
System privileges control the right to perform backup and restore operations, the right to
execute the UPDATE STATISTICS statement as well as the right to create new databanks,
idents, schemas and to manage shadows.
System privileges are granted to the system administrator when the system is installed and
may be granted by the administrator to other idents in the database. As a general rule,
system privileges should be granted to a restricted group of users.
Note: An ident who is given the privilege to create new idents is also able to create

new schemas.

Object Privileges
Object privileges control membership in group idents, the right to invoke functions and
procedures, the right to enter program idents, the right to create new tables or sequences
in a specified databank and the right to use a domain or sequence.
The creator of an object is automatically granted full privileges on that object.
Thus the creator of:
• a group is automatically a member of the group
• a function or procedure may execute the routine
• a program ident may enter the program ident
• a schema may create objects in and drop objects from the schema
• a databank may create tables and sequences in the databank

24 Chapter 4 Mimer SQL Database Objects
Privileges

• a table has all access rights on the table
• a domain may use that domain
• a sequence may use that sequence.
The creator of an object generally has the right to grant any of these privileges to other
users. In the case of functions and procedures, this actually depends on the creator's
access rights on objects referenced from within the routine.

Access Privileges
Access privileges define access to the contents of the database, i.e. the rights to retrieve
data from tables or views, delete data, insert new rows, update data and to refer to table
columns as foreign key references.

About Privileges
Granted privileges can be regarded as instances of grantor/privilege stored for an ident.
An ident will hold more than one instance of a privilege if different grantors grant it.
A privilege will be held as long as at least one instance of that privilege is stored for the
ident. All privileges may be granted with the WITH GRANT OPTION which means that
the receiver has, in turn, the right to grant the privilege to other idents. An ident will hold
a privilege with the WITH GRANT OPTION as long as at least one of the instances stored
for the ident was granted with this option.
If the same grantor grants a privilege to an ident more than once, this will not result in
more than one instance of the privilege being recorded for the ident. If a particular grantor
grants a privilege without the WITH GRANT OPTION and subsequently grants the
privilege again with the WITH GRANT OPTION, the WITH GRANT OPTION will be added
to the existing instance of the privilege.
Each instance of a privilege held by an ident is revoked separately by the appropriate
grantor. It is possible to revoke the WITH GRANT OPTION without revoking the
associated privilege completely. See the Mimer SQL User’s Manual, Chapter 8, Defining
Privileges for more information.

Mimer SQL Version 11.0 25
SQL Reference Manual

Chapter 5

Collations and
Linguistic Sorting

This chapter provides the basic concepts of national characters and linguistic sorting.
The default Unicode sorting order is provided in
https://www.unicode.org/Public/UCA/latest/allkeys.txt.
This table (the Default Unicode Collation Element Table) provides a mapping from
characters to collation elements for all the explicitly weighted characters.

Multilevel Comparisons
There are different levels of comparisons to pay attention to, such as case and accent
sensitivity. From the Default Unicode Collation Element Table, referred to above, the
following definition for the letter b is picked:

0062 ; [.0A29.0020.0002.0062] # LATIN SMALL LETTER B

Within square brackets there are four levels of comparison keys; the Primary level, the
Secondary level, the Tertiary level and the Quaternary level.

Primary level:
Typically, this is used to denote differences between base characters (for example,
a < b). It is the strongest difference. For example, dictionaries are divided into
different sections by the base character. This is also called the level-1 strength.
Mimer SQL’s predefined level 1 collations have names ending with _1, e.g.
ENGLISH_1.

Secondary level:
Accents in the characters are usually considered secondary differences (for
example, ab < áb < ac). A secondary difference is ignored when there is a primary
difference anywhere in the strings. This is also called the level-2 strength.
Mimer SQL’s predefined level 2 collations have names ending with _2, e.g.
ENGLISH_2.
Note: In some languages (such as Icelandic), certain accented letters are

considered to be separate base characters.

https://www.unicode.org/Public/UCA/latest/allkeys.txt

26 Chapter 5 Collations and Linguistic Sorting

Tertiary level:
Upper and lower case differences in characters are distinguished at the tertiary level
(for example, ab < Ab < áb). In addition, a variant of a letter differs from the base
form on the tertiary level (such as a and ª). A tertiary difference is ignored when
there is a primary or secondary difference anywhere in the strings. This is also called
level-3 strength.
Mimer SQL’s predefined level 3 collations have names ending with _3, e.g.
ENGLISH_3.

Quaternary level:
When punctuation is ignored (such as space and hyphen) at level 1-3, an additional
level can be used to distinguish words with and without punctuation (for example,
ab < a c < a-c < ac). A quaternary difference is ignored when there is a primary,
secondary, or tertiary difference. This is also called the level-4 strength.

Multilevel comparison means the following: Two strings are compared on the primary
level. If the comparison for this level fails to establish a unique and determined sequence
for the strings, the second level are taken into consideration. If this likewise fails to
produce a unique sequence, the tertiary level is invoked, and after this the quaternary level
is used. If still a unique sequence can not be established, the two strings are regarded as
equivalent.
How far to go in this comparison chain is decided by the definition of the collation used
on the data. See Tailorings on page 27.

Alternate Weighting
Alternate collation elements, i.e. punctuation, can be treated different depending on the
weighting method used:

Non-ignorable
Alternate collation elements are treated as normal collation elements. This is the
default option.

Shifted
Alternate collation elements are set to zero at the primary, secondary and tertiary
level, and the fourth-level weight is set to the primary weight. All other collation
elements, with a non-zero primary weight, will receive a fourth-level weight of
0xFFFF. If the primary weight is zero, the fourth-level weight is also zero.

Shift-trimmed
Alternate collation elements are set to zero at the primary, secondary and tertiary
level, and the fourth-level weight is set to the primary weight. All other collation
elements are set to zero. This will emulate POSIX behavior.

Mimer SQL Version 11.0 27
SQL Reference Manual

The following gives an example of the alternate weighting differences.

Tailorings
A tailoring is a set of rules and attributes that forms a so called collation delta string,
which is used as the basis when creating a collation. When a new collation is to be created,
the tailoring describes how to modify an existing collation definition to get the new one.
A collation is created by the CREATE COLLATION statement, see CREATE COLLATION
on page 251.

Attributes
When creating a collation, the tailoring string can include attribute settings for
comparison level, accent order, which case that should be first in order and alternate
weighting.
Attributes are optional.

Non-ignorable Shifted Shift-trimmed

de luge death death

de Luge de luge deluge

de-luge de-luge de luge

de-Luge deluge de-luge

death de Luge deLuge

deluge de-Luge de Luge

deLuge deLuge de-Luge

demark demark demark

Option Values Description

Level [Level 1]

[Level 2]

[Level 3]

[Level 4]

Sort level for the collation.
[Level 3] is default.

Accent order [AccentOrder Forward]

[AccentOrder Backward]

Secondary level ordering
direction.
[AccentOrder Forward] is
default.

Case first [CaseFirst Lower]

[CaseFirst Upper]

Tertiary level case ordering.
[CaseFirst Lower] is default.

Alternate [Alternate Non-ignorable]

[Alternate Shifted]

[Alternate Shift-trimmed]

Alternatives for punctuation.
[Alternate Non-
ignorable] is default.

28 Chapter 5 Collations and Linguistic Sorting

Special sort rules

Hiragana [Hiragana On]

[Hiragana Off]

Option for Japanese sorting.
Use
[Hiragana On][Level 4] for
full Japans ordering.
[Hiragana Off] is default.

Numeric [Numeric On]

[Numeric Off]

Option for numeric sorting.
[Numeric Off] is default.

Language Attribute Description

Chinese [CJK KangXi]

[CJK PinYin]

[CJK Stroke]

[CJK ZhuYin]

Use special sort rules for Chinese characters.

Japanese [CJK Kanji] Use the JIS X 4061-1996 collation rules. Gives
proper ordering of PROLONGED SOUND
MARK and ITERATION MARK.

Korean [CJK Hanja] Sort Hanja characters secondary different from the
corresponding Hangul character.

Vietnamese [CJK ChuNom] Use syllable by syllable processing. In lexical
ordering, differences in letters are treated as
primary, differences in tone markings as
secondary, and differences in case as tertiary
differences. Ordering according to primary and
secondary differences proceeds syllable by
syllable. According to this principle, a dictionary
lists “ban mai” before “bàn cát” because the
secondary difference in the first syllable takes
precedence over the primary difference in the
second.

Assamese,
Bengali,
Gujarati,
Hindi,
Kannada,
Konkani,
Malayalam,
Manipuri,
Marathi,
Nepali,
Oriya,
Punjabi,
Sanskrit,
Tamil,
Telugu

[Indic] Use traditional collation rules for Indic languages,
which provides for proper sorting of words ending
with a dead consonant (without an inherent
vowel).

Mimer SQL Version 11.0 29
SQL Reference Manual

Rules
The rules in a tailoring string defines how to change the underlying collation. Each rule
contains a string of ordered characters that starts with a reset value.

Note: ; can be used to represent secondary relations and , to represent tertiary
relations, instead of << and <<< respectively.

Example
The following is a Danish tailoring example:

Symbol Example Example description

& &Z Reset at this letter. Rules will be relative to this letter from
here on.

< a < b Identifies a primary level difference between a and b.

<< e << ê Identifies a secondary level difference between e and ê.

<<< s <<< S Identifies a tertiary level difference between s and S.

= i = y Signifies no difference between i and y.

" "," The quoted character , (comma).

#0141# Hexadecimal representation of Polish L with stroke.

[level 4]
[casefirst upper]
[alternate shifted]
& Y << ü <<< Ü
& Z < æ <<< Æ << ä <<< Ä < ø <<< Ø << ö <<< Ö < å <<< Å << aa
<<< Aa <<< AA

30 Chapter 5 Collations and Linguistic Sorting

Sorting Examples

Numerical data sorting
Here is an example on how to sort numerical data properly:

SQL>CREATE TABLE alphanum (codes VARCHAR(10));
SQL>INSERT INTO alphanum VALUES('A123');
SQL>INSERT INTO alphanum VALUES('A234');
SQL>INSERT INTO alphanum VALUES('A23');
SQL>INSERT INTO alphanum VALUES('A3');
SQL>INSERT INTO alphanum VALUES('A1');

SQL>-- Regular order [Numeric Off]
SQL>SELECT * FROM alphanum ORDER BY codes;

CODES
==========
A1
A123
A23
A234
A3

SQL>-- Numeric order [Numeric On]
SQL>CREATE COLLATION numeric FROM eor USING '[Numeric On]';
SQL>SELECT * FROM alphanum ORDER BY codes COLLATE numeric;

CODES
==========
A1
A3
A23
A123
A234

Two column sorting
Here is an example on how to sort two fields properly; in this case 'last name', 'first name':

SQL>create table name(last varchar(32),first varchar(32));
SQL>insert into name values('van Diesel','Peter');
SQL>insert into name values('van Diesel','Thomas');
SQL>insert into name values('vanDiesel','Peter');
SQL>insert into name values('vanDiesel','Thomas');
SQL>insert into name values('Van Diesel','Peter');
SQL>insert into name values('Van Diesel','Thomas');
SQL>insert into name values('Van','Stephan');
SQL>insert into name values('Van','Buster');
SQL>create collation names from EOR_1
SQL&using '[level 4][alternate shifted]&9<","'; -- ',' before 'A'
SQL>select last || ', ' || first as fullname
SQL&from name order by fullname collate names;

FULLNAME
========
Van, Buster
Van, Stephan
van Diesel, Peter
vanDiesel, Peter
Van Diesel, Peter
van Diesel, Thomas
vanDiesel, Thomas
Van Diesel, Thomas

Mimer SQL Version 11.0 31
SQL Reference Manual

Name prefix handling
Example on how to treat different Mac prefixes as equal. Typical names are MacAlister,
McAlister, McDonell, MacDougel and M'Dougel.

SQL>create collation mac_english_3 from english_3 using
SQL&'&MAC<<<mc<<<Mc<<<MC<<<m#27#<<<M#27#';
SQL>create collation mac_english_2 from mac_english_3 using '[level 2]';
SQL>create table macs (name varchar(32));
SQL>insert into macs values('M''Dougel');
SQL>insert into macs values('McDonell');
SQL>insert into macs values('MacAlister');
SQL>insert into macs values('McAlister');
SQL>insert into macs values('MacDougel');
SQL>select * from macs order by name collate english_3;
name
================================
M'Dougel
MacAlister
MacDougel
McAlister
McDonell

 5 rows found

SQL>select * from macs order by name collate mac_english_3;
name
================================
MacAlister
McAlister
McDonell
MacDougel
M'Dougel

 5 rows found

SQL>select * from macs where name = 'macalister' collate mac_english_2;
name
================================
MacAlister
McAlister

 2 rows found

SQL>select * from macs where name = 'mcalister' collate mac_english_2;
name
================================
MacAlister
McAlister

 2 rows found

SQL>select * from macs where name = 'm''alister' collate mac_english_2;
name
================================
MacAlister
McAlister

 2 rows found

32 Chapter 5 Collations and Linguistic Sorting

Collating Details

Expanding Characters
A single character can map to a sequence of collation elements. For instance, ß is
equivalent to ss. In German Phonebook ä, ö and ü sort as though they were ae, oe and
ue respectively.

Contracting Character Sequences
Many languages have digraphs, which actually counts as separate letters. In traditional
Spanish, ch sorts between c and d, and ll sorts between l and m. Two characters are
mapped into a single collation element that cause the combination to be ordered
differently from either character individually.
Another example of contractions are lj and nj in Bosnian and Croatian, which sorts after
l and n respectively.

Backward Accent Ordering
Some languages, particularly French, require words to be ordered on the secondary level
by comparing backwards from right to left.

Example

Order without contraction Order with contraction “nj” sorting after “n”

Na Na

Ni Ni

Nj Nk

Nja Nz

Njz Nj

Nk Nja

Nz Njz

Oa Oa

English ordering French ordering

Cote Cote

Coté Côte

Côte Coté

Côté Côté

Mimer SQL Version 11.0 33
SQL Reference Manual

Indic

Attribute: [indic]
Function: Method for traditional Indic collation
The traditional Indic sort order is as follows:
1 Vowel
2 Vowelless consonant
3 Vowelless consonant + Vowel
4 Vowelless consonant + Vowelless consonant
5 Vowelless consonant + Vowelless consonant + Vowel
6 ... and so on
As the consonant letters in Indic scripts includes an inherent vowel /a/, the following
transformations are applied before sorting:
1 Consonant + Virama => Vowelless consonant
2 Consonant + Vowel-sign => Vowelless consonant + Vowel
3 Consonant => Vowelless consonant + A
Transformation examples:

The method for traditional Indic collation effectively works for the following scripts:
• Devanagari (Hindi, Konkani, Marathi, Nepali and Sanskrit)
• Bengali (Assamese, Bengali and Manipuri)
• Gujarati
• Oriya
• Telugu
• Kannada
• Malayalam
The famous authoritative Monier-Williams: Sanskrit-English Dictionary is a good
reference:
https://www.ibiblio.org/sripedia/ebooks/mw/
https://www.ibiblio.org/sripedia/ebooks/mw/0000/mw__0033.html
The [indic] attribute also works for Tamil, but with different rules as used in the
authoritative University of Madras: Tamil Lexicon http://dsal.uchicago.edu/dictionaries/tamil-lex/

Punjabi does not need any tailoring, the default order follows the rules in the Punjabi
University: Punjabi-English Dictionary ISBN:8173800960.

https://www.ibiblio.org/sripedia/ebooks/mw/
https://www.ibiblio.org/sripedia/ebooks/mw/0000/mw__0033.html
http://dsal.uchicago.edu/dictionaries/tamil-lex/

34 Chapter 5 Collations and Linguistic Sorting

Without the [indic] attribute, a very large tailoring is needed for traditional collation.
See the following example for Devanagari.
·#<#0915##094D#
Γ#<#0916##094D#
Δ#<#0917##094D#
Ε#<#0918##094D#
Ζ#<#0919##094D#
Η#<#091A##094D#
[A#<#091B##094D#
[B#<#091C##094D#
[C#<#091D##094D#
[D#<#091E##094D#
[E#<#091F##094D#
[F#<#0920##094D#
Θ#<#0921##094D#
Ι#<#0922##094D#
Κ#<#0923##094D#
Λ#<#0924##094D#
Μ#<#0925##094D#
Ν#<#0926##094D#
Ξ#<#0927##094D#
Ο#<#0928##094D#
Π#<#092A##094D#
\A#<#092B##094D#
\B#<#092C##094D#
\C#<#092D##094D#
\D#<#092E##094D#
\E#<#092F##094D#
\F#<#0930##094D#
΢#<#0932##094D#
Τ#<#0933##094D#
Υ#<#0935##094D#
Χ#<#0936##094D#
Ψ#<#0937##094D#
Ω#<#0938##094D#
Ϊ#<#0939##094D#

Γ##094D##0905#=#0915#
Γ##094D##0906#=#0915##093E#
Γ##094D##0907#=#0915##093F#
Γ##094D##0908#=#0915##0940#
Γ##094D##0909#=#0915##0941#
Γ##094D##090A#=#0915##0942#
Γ##094D##090B#=#0915##0943#
Γ##094D##0960#=#0915##0944#
Γ##094D##090C#=#0915##0962#
Γ##094D##0961#=#0915##0963#
Γ##094D##090D#=#0915##0945#
Γ##094D##090E#=#0915##0946#
Γ##094D##090F#=#0915##0947#
Γ##094D##0910#=#0915##0948#
Γ##094D##0911#=#0915##0949#
Γ##094D##0912#=#0915##094A#
Γ##094D##0913#=#0915##094B#
Γ##094D##0914#=#0915##094C#

...
same pattern for #0916#..#0938# (32)
...

Ϋ##094D##0905#=#0939#
Ϋ##094D##0906#=#0939##093E#
Ϋ##094D##0907#=#0939##093F#
Ϋ##094D##0908#=#0939##0940#
Ϋ##094D##0909#=#0939##0941#
Ϋ##094D##090A#=#0939##0942#
Ϋ##094D##090B#=#0939##0943#

Mimer SQL Version 11.0 35
SQL Reference Manual

Ϋ##094D##0960#=#0939##0944#
Ϋ##094D##090C#=#0939##0962#
Ϋ##094D##0961#=#0939##0963#
Ϋ##094D##090D#=#0939##0945#
Ϋ##094D##090E#=#0939##0946#
Ϋ##094D##090F#=#0939##0947#
Ϋ##094D##0910#=#0939##0948#
Ϋ##094D##0911#=#0939##0949#
Ϋ##094D##0912#=#0939##094A#
Ϋ##094D##0913#=#0939##094B#
Ϋ##094D##0914#=#0939##094C#

Japanese

Attribute: [CJK Kanji]
Function: JIS X 4061-1996 rules for SOUND/ITERATION MARKS
This attribute is an implementation of JIS X 4061-1996 and the collation rules are based
on that standard.
The following criteria are considered in order until the collation order is determined. By
default, Levels 1 to 4 are applied and Level 5 is ignored (as JIS does).

Level 1: alphabetic ordering
The character classes are sorted in the following order:

Space characters, Symbols and Punctuations, Digits,
Latin Letters, Greek Letters, Cyrillic Letters,
Hiragana/Katakana letters, Kanji ideographs.

In the class, alphabets are collated alphabetically; Kana letters are AIUEO-betically (in
the Gozyuon order).
For Kanji, see Kanji Classes on page 36.
Other characters are collated as defined.
Characters not defined as a collation element are ignored and skipped on collation.

Level 2: diacritic ordering
In the Latin vowels, the order is as shown the following list.

One without diacritical mark, then with diacritical mark.

In Kana, the order is as shown the following list.
A voiceless kana, the voiced, then the semi-voiced
(if exists). (eg. Ka before Ga; Ha before Ba before Pa)

Level 3: case ordering
A small Latin character is less than the corresponding capital character.
In Kana, the order is as shown in the following list:

replaced PROLONGED SOUND MARK(U+30FC);
Small Kana;
replaced ITERATION MARK (U+309D, U+309E, U+30FD or U+30FE);
then normal kana

36 Chapter 5 Collations and Linguistic Sorting

For example, Katakana A + PROLONGED SOUND MARK, Katakana A + Small
Katakana A, Katakana A + ITERATION MARK, Katakana A + Katakana A.

Level 4: variant ordering
Hiragana is lesser than Katakana.

Level 5: width ordering
A character that belongs to the block Halfwidth and Fullwidth Forms is greater
than the corresponding normal character.
Note: According to the JIS standard, the level 5 should be ignored.

Kanji Classes
There are three Kanji classes:

1 The 'saisho' (minimum) Kanji class
It comprises five Kanji-like characters, i.e. U+3003, U+3005, U+4EDD, U+3006,
U+3007. Any Kanji except U+4EDD are ignored on collation.

2 The 'kihon' (basic) Kanji class
It comprises JIS levels 1 and 2 kanji in addition to the minimum Kanji class. Sorted
in the JIS order. Any Kanji excepting those defined by JIS X 0208 are ignored on
collation.

3 The 'kakucho' (extended) Kanji class
All the CJK Unified Ideographs in addition to the minimum Kanji class. Sorted in
the Unicode order.

Note: This is the implemented class.

Korean

Attribute: [CJK Hanja]
Function: Special sort table access
Hanja characters are sorted with secondary difference from the corresponding Hangul
character.

Vietnamese

Attribute: [CJK ChuNom]
Function: Syllable by syllable processing
In lexical ordering, differences in letters are treated as primary, differences in tone
markings as secondary, and differences in case as tertiary differences. Ordering according
to primary and secondary differences proceeds syllable by syllable. According to this
principle, a dictionary lists “ban mai” before “bàn cát” because the secondary difference
in the first syllable takes precedence over the primary difference in the second.

Mimer SQL Version 11.0 37
SQL Reference Manual

Chapter 6

SQL Syntax
Elements

This chapter presents the basic elements of the SQL language and the simplest
relationships between them.
It covers the following units:

Separators
Characters having the Unicode property “White_Space” are used as separators, e.g.
<TAB>, <LF>, <VT>, <FF>, <CR> and <SP>.

Special Characters
Certain special characters have particular meanings in SQL statements; for example:
delimiters, double quotation marks, single quotation marks and arithmetic and
comparative operators.
The special characters $ and # may, in some circumstances, be used in the same contexts
as letters, see Identifiers on page 38.
A separator is used to separate keywords, identifiers and literals from each other.

Syntax unit Summary Section

Separators Syntax element delimiters. Separators on page 37

Special
characters

Syntax pattern characters. Special Characters on
page 37

Identifiers SQL identifiers, host variable names and
keywords.

Identifiers on page 38

Data types Character, integer, decimal, floating
point, date, time, timestamp, interval,
binary, boolean.

Data Types in SQL
Statements on page 44

Literals Character, integer, decimal, floating
point, date, time, timestamp, interval,
binary, boolean.

Literals on page 64

38 Chapter 6 SQL Syntax Elements
Identifiers

Identifiers
An identifier is defined as a sequence of one or more characters forming a unique name.
Identifiers are constructed according to certain fixed rules. It is useful to distinguish
between SQL identifiers, which are local to SQL statements and host identifiers, which
relate to the host programming language.
Rules for constructing host identifiers may vary between host languages.

SQL Identifiers
SQL identifiers consist of a sequence of one or more Unicode characters. The maximum
length of an SQL identifier is 128 characters.
SQL identifiers (except for delimited identifiers) must begin with a character having the
Unicode property “ID_Start” or one of the special characters $ or #, and may then contain
characters having the Unicode property “ID_Continue”. For a detailed description, see
https://www.unicode.org/reports/tr31.
The case of letters in SQL identifiers is not significant, not even if it is a delimited
identifier.

Delimited Identifiers
Delimited identifiers means identifiers enclosed in double quotation marks: "". Such
identifiers are special in two aspects:
• They can contain characters normally not supported in SQL identifiers.
• They can be identical to a reserved word.
Two consecutive double quotation marks within a delimited identifier are interpreted as
one double quotation mark.

Unicode Delimited Identifiers
A Unicode delimited identifier consists of a sequence of Unicode characters enclosed in
double quotation marks and preceded by the letter U and an ampersand, i.e. U&. Unicode
characters can be given by four hexadecimal digits preceded by a backslash character (\),
or by six hexadecimal digits preceded with a backslash character and a plus character
(\+).
Two consecutive backslash characters within a Unicode delimited identifier are
interpreted as a single backslash character.
A Unicode delimited identifier is typically used when an identifier contains a character
difficult to type using the keyboard. For example the identifier München can be given as
U&"M\00FCnchen".

Examples
The following examples illustrate the general rules for forming SQL identifiers:

Valid Invalid Explanation

COLUMN_1 COLUMN+1 COLUMN+1 is an expression

#14 14 14 is an integer literal

"MODULE" MODULE MODULE is a reserved word

https://www.unicode.org/reports/tr31

Mimer SQL Version 11.0 39
SQL Reference Manual

Note: Leading blanks are significant in delimited identifiers.

Naming Objects
Objects in the database may be divided into two classes:

System Objects
System objects, such as databanks, idents, schemas and shadows, are global to the system.
System object names must be unique within each object class since they are common to
all users. System objects are uniquely identified by their name alone.

Private Objects
Private objects, such as domains, functions, indexes, modules, precompiled statements,
procedures, sequences, synonyms, tables, triggers and views, belong to a schema and
have names that are local to that schema. In a given schema, the names used for tables,
synonyms, views, indexes and constraints must be unique within that group of objects,
i.e. a table cannot have a name that is already being used by a synonym, view, index or
constraint etc. Similarly, in a given schema, the names used for domains must be unique
within that group of objects.
Functions and procedures may have the same name as long as they differ with regard to
the number of parameters or the data type of the parameter. See Mimer SQL
Programmer’s Manual, Chapter 11, Parameter Overloading.
The names of all other objects, modules and sequences in the schema must be unique
within their respective object-type. Two different schemas may contain objects of the
same type with the same name. Private objects are uniquely identified by their qualified
name (see below).

Qualified Object Names
Names of private objects in the database may always be qualified by the name of the
schema to which they belong. The schema name is separated from the object name by a
period, with the general syntax: schema.object.
If a qualified object name is specified when an object is created, it will be created in the
named schema. If an object name is unqualified, a schema name with the same name as
the current ident is assumed.
It is recommended that object names are always qualified with the schema name in SQL
statements, to avoid confusion if the same program is run by different Mimer SQL idents.
When the name of a column is expressed in its unqualified form it is syntactically referred
to as a column-name.
When the name of a column must be expressed unambiguously it is generally expressed
in its fully qualified form, i.e. schema.table.column or table.column, and this is
syntactically referred to as a column-reference.
It is possible for a column-reference to be the unqualified name of a column in
contexts where this is sufficient to unambiguously identify the column.

U&"M\00FCnchen" Unicode delimited identifier for München.

Valid Invalid Explanation

40 Chapter 6 SQL Syntax Elements
Identifiers

When the name of a column is used to indicate the column itself, e.g. in CREATE TABLE
statements, a column-name must be used, i.e. the name of the column cannot be
qualified.
The exception to this is in the COMMENT ON COLUMN statement where a column-
reference is required because the name of the column must be qualified by the name
of the table or view to which it belongs.
The contexts where the name of a column refers to the values stored in the column are:
• in expressions
• in set functions
• in search conditions
• in GROUP BY clauses.
In these contexts a column-reference must be used to identify the column.
The column name qualifiers which may be used in a particular SQL statement are
determined by the way the table is identified in the FROM clause of the SELECT statement.
Alternative names (correlation names) may be introduced in the FROM clause, and the
table reference used to qualify column names must conform to the following rules:

• If no correlation names are introduced:
The column name qualifier is the table name exactly as it appears in the FROM
clause.
For example:
SELECT BOOKADM.HOTEL.NAME, ROOMS.ROOMNO
FROM BOOKADM.HOTEL JOIN ROOMS ...

but not
SELECT BOOKADM.HOTEL.NAME, ROOMS.ROOMNO
FROM HOTEL JOIN BOOKADM.ROOMS ...

• If a correlation name is introduced:
The correlation name and not the original table reference, may be used to qualify a
column name. The correlation name may not itself be qualified.
For example:
SELECT H.NAME, ROOMS.ROOMNO
FROM HOTEL H JOIN ROOMS ...

but not
SELECT HOTEL.NAME, ROOMS.ROOMNO
FROM HOTEL H JOIN ROOMS ...

Outer References
In some constructions where subqueries are used in search conditions, see Chapter 11,
The SELECT Expression, it may be necessary to refer in the lower level subquery to a
value in the current row of a table addressed at the higher level.

Mimer SQL Version 11.0 41
SQL Reference Manual

A reference to a column of a table identified at a higher level is called an outer reference.
The following example shows the outer reference in bold type:

SELECT NAME
FROM HOTEL
WHERE EXISTS (SELECT * FROM
 FROM BOOK_GUEST
 WHERE HOTELCODE = HOTEL.HOTELCODE)

The lower-level subquery is evaluated for every row in the higher level result table. The
example selects the name of every hotel with at least one entry in the BOOK_GUEST
table.
A qualified column name is an outer reference if, and only if, the following conditions are
met:
• The qualified column name is used in a search condition of a subquery.
• The qualifying name is not introduced in the FROM clause of that subquery.
• The qualifying name is introduced at some higher level.
• The qualified column name is valid everywhere in a subquery.

Parameter Markers and Host Identifiers
Parameter markers and host identifiers are used when passing input or output data. The
concepts are very similar, the major difference is that parameter markers are used in
dynamic SQL, where the parameter marker data type is decided at PREPARE time, while
a host identifier is declared and has a defined data type.

Parameter Markers
A parameter marker is put in the location of an input or output expression in a prepared
SQL statement.
Parameter markers are assigned data types appropriate to their usage. See the Mimer SQL
Programmer’s Manual, Chapter 4, Dynamic SQL, for a discussion of dynamic SQL. For
parameter markers used to represent data assigned to columns, the data type is in
accordance with the column definition.
Mimer SQL supports different styles of parameter markers:

• Question mark parameter marker
A question mark parameter marker (?) will be NOT NULL or NULL depending on
the input or output expression.

• Colon notation parameter marker
A colon notation parameter marker is specified as a colon followed by a parameter
name, e.g. :lastname. A null indicator should be provided if the input or output
expression is nullable, e.g. :lastname:indic.
If the same parameter marker name is used several times in an SQL statement, it is
considered to be one parameter marker. A parameter marker name can only be used
several times if the implied data types of the parameter markers are compatible.
(The data type with highest precision/length will be chosen.)
Parameter markers are usually referenced in order by appearance, from left to right.
However, if numbers are specified as parameter marker names, these numbers will
decide the parameter order.

42 Chapter 6 SQL Syntax Elements
Identifiers

Examples
UPDATE persons
SET last_name = :plastname
WHERE id = :pid;

DELETE FROM persons WHERE id = ?;

SELECT LastName as Name, Address
FROM staff
WHERE City = :cityname
UNION ALL
SELECT companyName, Address
FROM companies
WHERE City = :cityname;

UPDATE persons
SET last_name = :2
WHERE id = :1;

CREATE TABLE tc (x REAL, y DOUBLE PRECISION);
INSERT INTO tc VALUES (:cval, :cval); -- :cval data type is DOUBLE PRECISION

CREATE TABLE persons (first_name VARCHAR(10), last_name VARCHAR(15));
INSERT INTO persons VALUES (:name, :name); -- :name data type VARCHAR(15)

Host Identifiers
Host identifiers are used in SQL statements to identify objects associated with the host
language such as variables, declared areas and program statement labels.
Host identifiers are formed in accordance with the rules for forming variable names in the
particular host language, see the Mimer SQL Programmer’s Manual, Appendix A, Host
Language Dependent Aspects.
Host identifiers are never enclosed in delimiters and may coincide with SQL reserved
words.
The length of host identifiers used in SQL statements may not exceed 128 characters,
even if the host language accepts longer names.
Whenever the term host-variable appears in the syntax diagrams, one of the three
following constructions must be used:

:host-identifier1

or
:host-identifier1 :host-identifier2

or
:host-identifier1 INDICATOR :host-identifier2

Host-identifier1 is the name of the main host variable.
Host-identifier2 is the name of the indicator variable, used to signal the assignment
of a null value to the host variable. See the Mimer SQL Programmer’s Manual,
Chapter 4, Indicator Variables, for a description of the use of indicator variables.
The colon preceding the host identifier serves to identify the variable to the SQL compiler
and is not part of the variable name in the host language.

Mimer SQL Version 11.0 43
SQL Reference Manual

Target Variables
A target variable is an item that may be specified as the object receiving the result of an
assignment or a SELECT INTO. The objects that may be specified where a target variable
is expected differ depending on whether the context is Procedural usage or Embedded
usage. For more information, see Usage Modes on page 195.
In the syntax diagrams, replace the term target-variable, with the following
construction:

where routine-variable is:

For more information, see: DECLARE VARIABLE on page 315, CREATE FUNCTION on
page 258 and CREATE PROCEDURE on page 271.
Note: A routine-variable may only be specified in a procedural usage context.

Reserved Words
Appendix A Reserved Words gives a list of keywords reserved in SQL statements. These
words must be enclosed in double quotation marks, "", if they are used as SQL
identifiers.

Example
SELECT "MODULE" FROM ...

Standard Compliance
This section summarizes standard compliance concerning identifiers.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F391, “Long identifiers”.
Feature F392, “Unicode escapes in identifiers”.

Mimer SQL
extension

The use of the special characters $ and # in
identifiers is a Mimer SQL extension.
Parameter marker as a colon followed by an integer
literal is a Mimer SQL extension.

44 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

Data Types in SQL Statements
Mimer SQL supports the following data type categories:
• Character strings, see Character Strings on page 44
• National character strings, see National Character Strings on page 46
• Binary, see Binary on page 50
• Numerical, see Numerical on page 52
• Datetime, see Datetime on page 53
• Interval, see Interval on page 54
• Boolean, see Boolean on page 57
• Spatial, see Spatial Data Types on page 58.
• Universally unique identifier (UUID), see Universally Unique Identifier (UUID)

on page 58
In SQL statements, you make explicit data type references when creating tables and
domains and altering tables. You also use data types in CAST and stored procedure
variable declarations.
In addition, there is also a ROW type that can be used in stored procedures only, for more
information see ROW Data Type on page 59.

Character Strings
The character string data types store sequences of bytes that represent alphanumeric data,
according to ISO 8859-1.
The character string data type category contains the following data types:

Data Type Abbreviations Description Range

CHARACTER(n) CHAR(n) Character
string, fixed
length n.

1 <= n <= 15 000

CHARACTER
VARYING(n)

CHAR VARYING(n)

VARCHAR(n)

Variable length
character
string,
maximum
length n.

1 <= n <= 15 000

CHARACTER
LARGE OBJECT
(n[K|M|G])

CHAR LARGE
OBJECT
(n[K|M|G])

CLOB
(n[K|M|G])

Variable length
character string
measured in
characters.

For information
on the object
length, see
Specifying the
CLOB Length on
page 45.

Mimer SQL Version 11.0 45
SQL Reference Manual

CHARACTER or CHAR
The CHARACTER (CHAR) data type stores string values of fixed length in a column.
You specify the length of the CHAR data type as the length of the column when you create
a table. You can specify the length to be any value between 1 and 15 000.
When Mimer SQL stores values in a column defined as CHAR, it right-pads the values
with spaces to conform with the specified column length.
Note: If you define a data type as CHARACTER or CHAR, that is, without specifying a

length, the length of the data type is 1.

CHARACTER VARYING or CHAR VARYING or VARCHAR
The CHARACTER VARYING, abbreviated CHAR VARYING or VARCHAR, data type stores
strings of varying length.
You specify the maximum length of the VARCHAR data type as the length of the column
when you create a table. You can specify the length to be between 1 and 15 000.

CHARACTER LARGE OBJECT or CLOB
The CHARACTER LARGE OBJECT (CLOB) data type stores character string values of
varying length up to the maximum specified as the large object length (n[K|M|G]).
The large object length is n, optionally multiplied by K|M|G.
You can specify the maximum length of the CLOB data type as the length of the column
when you create the table.

Specifying the CLOB Length
If you specify <n>K (kilo), the length (in characters) is <n> multiplied by 1 024.
If you specify <n>M (mega), the length is <n> multiplied by 1 048 576.
If you specify <n>G (giga), the length is <n> multiplied by 1 073 741 824.
If you do not specify large object length, Mimer SQL assumes that the length of the data
type is 1M.

Maximum CLOB Length
The maximum length of a CLOB is determined by the amount of disk space available for
its storage.

Using CLOBs
You can work with CLOBs as follows:
• Retrieving CLOBs with simple column references in the SELECT clause of a

SELECT statement
• Assigning CLOBs using INSERT statements with a VALUES clause
• Assigning CLOBs using UPDATE statements
• Adding CLOB columns using CREATE TABLE or ALTER TABLE
• Dropping CLOB columns using ALTER TABLE
• Altering CLOB column data types using ALTER TABLE
There are some restrictions associated with using CLOBs. The only comparisons
supported for CLOB values are using the NULL predicate and using the LIKE predicate.

46 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

The only scalar functions which can be used on CLOB columns are SUBSTRING,
CHAR_LENGTH and OCTET_LENGTH.
A CLOB column may not be part of any primary key constraint, index, or unique
constraint.
The comparison restrictions also prevent CLOB columns from being used in DISTINCT,
GROUP BY and ORDER BY clauses, and UNION, INTERSECT and EXCEPT operations.
When defining a stored procedure or trigger it is not allowed to use a CLOB type for a
parameter or a variable. It is allowed to create triggers for tables with CLOB columns with
one exception, in an instead of trigger it is not possible to reference CLOB columns in the
new table.

Collations
All character strings have a collation attribute. A collation determines the order for
ordering and comparisons, see the Mimer SQL User’s Manual, Chapter 4, Collations, for
a detailed description of collations.

National Character Strings
Mimer SQL implements Unicode using the data type NCHAR (i.e. NATIONAL CHARACTER
data type). The NCHAR data type is logically UTF-32, however, it is stored in a
compressed form. Application host variables may use any of the three encoding forms
UTF-8, UTF-16, or UTF-32 when storing NCHAR data in the database. The encoding
forms are fully transparent; you may e.g. use UTF-16 to store data, and you can use UTF-
8 for fetching data.
The CHAR data type is based on ISO 8859-1 (Latin1), which is a true subset of Unicode,
and therefore CHAR and NCHAR are fully compatible.

Normalization
A Unicode character can have several equivalent representations. There are precomposed
characters and there are combining characters that can be used together with base
characters to form a specific character. Consider the letter E with circumflex and dot
below, a letter that occurs in Vietnamese. This letter has five possible representations in
Unicode:
• U+0045 LATIN CAPITAL LETTER E

U+0302 COMBINING CIRCUMFLEX ACCENT
U+0323 COMBINING DOT BELOW

• U+0045 LATIN CAPITAL LETTER E
U+0323 COMBINING DOT BELOW
U+0302 COMBINING CIRCUMFLEX ACCENT

• U+00CA LATIN CAPITAL LETTER E WITH CIRCUMFLEX
U+0323 COMBINING DOT BELOW

• U+1EB8 LATIN CAPITAL LETTER E WITH DOT BELOW
U+0302 COMBINING CIRCUMFLEX ACCENT

• U+1EC6 LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND DOT BELOW

Any two of these sequences should compare equal. The Normalization Form C (NFC) of
all five sequences is U+1EC6.

Mimer SQL Version 11.0 47
SQL Reference Manual

In Mimer SQL, Unicode data (NCHAR) is automatically transformed to NFC. When
needed, literals and variables are implicitly normalized. The result of a concatenation will
always be normalized, and string functions, like UPPER and LOWER, will always return a
normalized result string. This will assert that all Unicode data will be in NFC, thus giving
the expected result in search operations.

Example
SQL>create table t(c nchar(1));
SQL>insert into t values(u&'E\0302\0323');
SQL>insert into t values(u&'E\0323\0302');
SQL>insert into t values(u&'\00CA\0323');
SQL>insert into t values(u&'\1EB8\0302');
SQL>insert into t values(u&'\1EC6');
SQL>select count(c) as equal from t where c = u&'\1EC6';

EQUAL
=====
 5

The normalization forms are fully described in the Unicode standard annex #15, Unicode
Normalization Forms (https://www.unicode.org/reports/tr15).

Case Folding
When converting between upper and lower case most Unicode characters follow a one-
to-one case mapping. However, a few characters expand to two or three characters in
folding operations.
Folding operations do not always preserve normalization form. In a few instances, the
casing operators must normalize after performing their core function.
Consider the following NFC string:

U+01F0 LATIN SMALL LETTER J WITH CARON,
U+0323 COMBINING DOT BELOW

Its upper case form is:
U+004A LATIN CAPITAL LETTER J,
U+030C COMBINING CARON,
U+0323 COMBINING DOT BELOW

However, the upper case normalized form (NFC) is:
U+004A LATIN CAPITAL LETTER J,
U+0323 COMBINING DOT BELOW,
U+030C COMBINING CARON

The Unicode definitions for one-to-one mappings are found here
https://www.unicode.org/Public/6.1.0/ucd/UnicodeData.txt, and the expanding definitions are found
here https://www.unicode.org/Public/6.1.0/ucd/SpecialCasing.txt.

https://www.unicode.org/reports/tr15
https://www.unicode.org/Public/6.1.0/ucd/UnicodeData.txt
https://www.unicode.org/Public/6.1.0/ucd/SpecialCasing.txt
https://www.unicode.org/Public/6.1.0/ucd/SpecialCasing.txt

48 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

National Character Data Types
The national character string data type category contains the following data types:

NATIONAL CHARACTER or NATIONAL CHAR or NCHAR
The NATIONAL CHARACTER (NCHAR) data type stores string values of fixed length in a
column. You specify the length of the NATIONAL CHARACTER data type as the length of
the column when you create a table. You can specify the length to be any value between
1 and 5 000.
When Mimer SQL stores values in a column defined as NATIONAL CHARACTER, it right-
pads the values with spaces to conform with the specified column length.
Note: If you define a data type as NATIONAL CHARACTER or NCHAR, that is, without

specifying a length, the length of the data type is 1.

NATIONAL CHARACTER VARYING or NATIONAL CHAR VARYING or
NCHAR VARYING or NVARCHAR

The NATIONAL CHARACTER VARYING, abbreviated NVARCHAR, NATIONAL CHAR
VARYING or NCHAR VARYING, data type stores strings of varying length.
You specify the maximum length of the NATIONAL CHARACTER VARYING data type as
the length of the column when you create a table. You can specify the length to be
between 1 and 5 000.

NATIONAL CHARACTER LARGE OBJECT or NCLOB
The NATIONAL CHARACTER LARGE OBJECT (NCLOB) data type stores national
character string values of varying length up to the maximum specified as the large object
length (n[K|M|G]).
The large object length is n, optionally multiplied by K|M|G.
You can specify the maximum length of the NCLOB data type as the length of the column
when you create the table.

Data Type Abbreviations Description Range

NATIONAL
CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

National
character string,
fixed length n.

1 <= n <= 5 000

NATIONAL
CHARACTER
VARYING(n)

NATIONAL CHAR
VARYING(n)

NCHAR VARYING(n)

NVARCHAR(n)

Variable length,
national
character string,
maximum
length n.

1 <= n <= 5 000

NATIONAL
CHARACTER
LARGE
OBJECT(n[K|M
|G])

NATIONAL CHAR LARGE
OBJECT(n[K|M|G])

NCHAR LARGE
OBJECT(n[K|M|G])

NCLOB(n[K|M|G])

Variable length
national
character string
measured in
characters.

For information
on the object
length, see
Specifying the
NCLOB Length
on page 49.

Mimer SQL Version 11.0 49
SQL Reference Manual

Specifying the NCLOB Length
If you specify <n>K (kilo), the length (in characters) is <n> multiplied by 1 024.
If you specify <n>M (mega), the length is <n> multiplied by 1 048 576.
If you specify <n>G (giga), the length is <n> multiplied by 1 073 741 824.
If you do not specify large object length, Mimer SQL assumes that the length of the data
type is 1M.

Maximum NCLOB Length
The maximum length of an NCLOB is determined by the amount of disk space available
for its storage.

Using NCLOBs
You can work with NCLOBs as follows:
• Retrieving NCLOBs with simple column references in the SELECT clause of a

SELECT statement
• Assigning NCLOBs using INSERT statements with a VALUES clause
• Assigning NCLOBs using UPDATE statements
• Adding NCLOB columns using CREATE TABLE or ALTER TABLE
• Dropping NCLOB columns using ALTER TABLE
• Altering NCLOB column data types using ALTER TABLE
There are some restrictions associated with using NCLOBs. The only comparison
supported for NCLOB values are using the NULL predicate and using the LIKE predicate.

The only scalar functions which can be used on NCLOB columns are SUBSTRING,
CHAR_LENGTH and OCTET_LENGTH.

An NCLOB column may not be part of any primary key constraint, index, or unique
constraint.
The comparison restrictions also prevent NCLOB columns from being used in DISTINCT,
GROUP BY and ORDER BY clauses, and UNION, EXCEPT and INTERSECT operations.
When defining a stored procedure or trigger it is not allowed to use a NCLOB type for a
parameter or a variable. It is allowed to create triggers for tables with NCLOB columns
with one exception, in an instead of trigger it is not possible to reference NCLOB columns
in the new table.

Collations
All national character strings have a collation attribute. A collation determines the order
for ordering and comparisons, see Mimer SQL User’s Manual, Chapter 4, Collations for
a detailed description of collations.

50 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

Binary
The binary data type stores a sequence of bytes.
The binary data type category contains the following data types:

Note: How binary data is displayed depends on the SQL tool used. For example,
Mimer BSQL displays binary data as its hexadecimal value.

BINARY LARGE OBJECT or BLOB
The BINARY LARGE OBJECT or BLOB data type stores binary string values of varying
length up to the maximum specified as the large object length (n[K|M|G]).
The large object length is n, optionally multiplied by K|M|G.
Data stored in BLOB’s may only be stored in the database and retrieved again, it cannot be
used in arithmetical operations.

Specifying the BLOB Length
If you specify <n>K, the length is <n> multiplied by 1 024.
If you specify <n>M, the length is <n> multiplied by 1 048 576.
If you specify <n>G, the length is <n> multiplied by 1 073 741 824.
If you do not specify large object length, Mimer SQL assumes that the length of the data
type is 1M.

Maximum BLOB Length
The maximum length of a BLOB is determined by the amount of disk space available for
its storage.

Using BLOBs
You can work with BLOB’s as follows:
• Retrieving BLOB’s with simple column references in the SELECT clause of a

SELECT statement
• Assigning BLOB’s using INSERT statements with a VALUES clause
• Assigning BLOB’s using UPDATE statements

Data Type Abbreviation Description Range

BINARY(n) N/A Fixed length
binary string,
maximum
length n.

1 <= n <= 15 000

BINARY
VARYING(n)

VARBINARY(n) Variable length
binary string,
maximum
length n.

1 <= n <= 15 000

BINARY LARGE
OBJECT(n[K|M|G])

BLOB(n[K|M|G]) Variable length
binary string
measured in
octets.

For information on
the object length, see
Specifying the BLOB
Length on page 50.

Mimer SQL Version 11.0 51
SQL Reference Manual

• Adding BLOB columns using CREATE TABLE or ALTER TABLE
• Dropping BLOB columns using ALTER TABLE
• Altering BLOB column data types using ALTER TABLE
There are some restrictions associated with using BLOB’s. The only comparison supported
for BLOB values is using the NULL predicate and using the LIKE predicate.

The only scalar functions which can be used on BLOB columns are SUBSTRING,
CHAR_LENGTH and OCTET_LENGTH.

A BLOB column may not be part of any primary key constraint, index, or unique
constraint.
The comparison restrictions also prevent BLOB columns from being used in DISTINCT,
GROUP BY and ORDER BY clauses and UNION, EXCEPT and INTERSECT statements.
When defining a stored procedure or trigger it is not allowed to use a BLOB type for a
parameter or a variable. It is allowed to create triggers for tables with BLOB columns with
one exception, in an instead of trigger it is not possible to reference BLOB columns in the
new table.

52 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

Numerical
The numerical data type category contains the following data types:

All numerical data may be signed.

Data type Abbreviati
on

Description Range

SMALLINT N/A Integer numerical,
precision 5.

-32 768 through 32 767
Corresponds to a 2 bytes,
signed int.

INTEGER INT Integer numerical,
precision 10.

-2 147 483 648 through
2 147 483 647
Corresponds to a 4 bytes,
signed int.

BIGINT N/A Integer numerical,
precision 19.

-9 223 372 036 854 775 808
through
9 223 372 036 854 775 807
Corresponds to an 8 bytes,
signed int.

INTEGER(p) INT(p) Integer numerical,
precision p.

1 <= p <= 45

DECIMAL(p,s) DEC(p,s) Exact numerical,
precision p, scale s.

1 <= p <= 45
0 <= s <= p

REAL N/A Floating point
value with 24-bit
binary mantissa.

Zero or absolute value from
1.40129846-45 to
3.40282347+38

Corresponds to single
precision float.

DOUBLE
PRECISION

N/A Floating point
value with 53-bit
binary mantissa.

Zero or absolute value from
4.9406564584124654-324 to
1.7976931348623157+308

Corresponds to double
precision float.

FLOAT N/A Floating point
value with 53-bit
binary mantissa.

Zero or absolute value from
4.9406564584124654-324 to
1.7976931348623157+308

Corresponds to double
precision float.
Same as DOUBLE
PRECISION.

FLOAT(p) N/A Floating point
value with p digits
in the decimal
mantissa.

1 <= p <= 45
Zero or absolute value
10-999 to 10+999

Mimer SQL Version 11.0 53
SQL Reference Manual

For all numerical data, the precision p indicates the maximum number of decimal digits
the number may contain, excluding any sign or decimal point.
For decimal data, the scale s indicates the fixed number of digits following the decimal
point.
Note: The decimal data with scale zero DECIMAL(p,0) is not the same as integer

INTEGER(p).
For FLOAT(p), floating point (approximate numerical) data is stored in exponential form.
The precision is specified for the mantissa only. The permissible range of the exponent is
-999 to +999.

Specifying Data Type Precision and Scale
In the following cases, the omission of scale, or the omission of both precision and scale,
is allowed (scale may not be specified without precision):

Note: The data type INTEGER is distinct from INTEGER(10). (INTEGER(10) may
store values between -9 999 999 999 and 9 999 999 999, but INTEGER may
only store values between -2 147 483 648 and 2 147 483 647.)

Datetime
DATETIME is a term used to collectively refer to the data types DATE, TIME(s) and
TIMESTAMP(s).

DATE
DATE describes a date using the fields YEAR, MONTH and DAY in the format YYYY-MM-DD.
It represents an absolute position on the timeline.

TIME(s)
TIME(s) describes a time in an unspecified day, with seconds precision s, using the fields
HOUR, MINUTE and SECOND in the format HH:MM:SS[.sF] where F is the fractional part
of the SECOND value. It represents an absolute time of day.

TIMESTAMP(s)
TIMESTAMP(s) describes both a date and time, with seconds precision s, using the fields
YEAR, MONTH, DAY, HOUR, MINUTE and SECOND in the format YYYY-MM-DD
HH:MM:SS[.sF] where F is the fractional part of the SECOND value. It represents an
absolute position on the timeline.

Data Type Abbreviation

DECIMAL DEC is equivalent to DECIMAL(15,0)

DECIMAL(5) DEC(5) is equivalent to DECIMAL(5,0)

Data type Description

DATE

TIME(s)

TIMESTAMP(s)

Composed of a number of integer fields, represents an absolute
point in time, depending on sub-type.
Default s value is 0 for TIME and 6 for TIMESTAMP.

54 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

DATETIME Significance
A DATETIME contains some or all of the fields YEAR, MONTH, DAY, HOUR, MINUTE and
SECOND. These fields always occur in the order listed, which is from the most significant
to least significant. Year is the most significant.
Each of the fields is an integer value, except that the SECOND field may have an additional
integer component to represent the fractional seconds.
For a DATETIME value with a SECOND component, it is possible to specify an optional
seconds precision which is the number of significant digits in the fractional part of the
SECOND value. This must be a value between 0 and 9. If a SECOND’s precision is not
specified, the default is 0 for TIME and 6 for TIMESTAMP.

Calendar and Clock
DATE values are represented according to the Gregorian calendar. TIME values are
represented according to the 24 hour clock.

Inclusive Value Limits for DATETIME
The inclusive value limits for the DATETIME fields are as follows:

Interval
An INTERVAL is a period of time, such as: 3 years, 90 days or 5 minutes and 45 seconds.

There are effectively two kinds of INTERVAL:

• YEAR-MONTH
containing one or both of the fields YEAR and MONTH. (Also known as long interval.)

• DAY-TIME
containing one or more consecutive fields from the set DAY, HOUR, MINUTE and
SECOND. (Also known as short interval.)

The distinction is made between the two interval types in order to avoid the ambiguity
that would arise if a MONTH value was combined with a field of lower significance, e.g.
DAY, given that different months contain differing numbers of days.

Field Inclusive value limit

YEAR 0001 to 9999

MONTH 01 to 12

DAY 01 to 31 (upper limit further constrained by MONTH and YEAR)

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59.999999999

Data Type Description

INTERVAL Composed of a number of integer fields, represents a period of
time, depending on the type of interval.

Mimer SQL Version 11.0 55
SQL Reference Manual

For example, the hypothetical interval 2 months and 10 days could vary between 69 and
72 days in length, depending on the months involved. Therefore, to avoid unwanted
variations in the downstream arithmetic etc. the variable length MONTH component may
only exist at the lowest significance level in an INTERVAL.
The SECOND field may also only exist at the lowest significance level in an INTERVAL,
simply because it is the least significant of all the fields.
An INTERVAL data type is a signed numeric quantity (i.e. negative INTERVALs are
allowed) comprising a specific set of fields. The list of fields in an INTERVAL is called
the interval precision.
The fields in an INTERVAL are exactly the same as those previously described for
DATETIME except that the value constraints imposed on the most significant field are
determined by the leading precision (p in Interval Qualifiers on page 55) for the
INTERVAL type and not by the Gregorian calendar and 24 hour clock.
A leading precision value between 1 and the maximum allowed for the field type may be
specified for an INTERVAL. If none is specified, the default is 2.

Value Constraints for Fields in an Interval
The table below shows the maximum permitted leading precision values for each field
type in an INTERVAL:

The value of a MONTH field, which is not in the leading field position, is constrained
between 0 and 11, inclusive, in an INTERVAL (and not between 1 and 12 as in a
DATETIME).
Where the SECOND field is involved, seconds precision (s in Interval Qualifiers on
page 55) can be specified for it in the same way as for DATETIME.
Note that in the INTERVAL consisting only of a SECOND field (INTERVAL SECOND), the
SECOND field will have both a leading precision and a seconds precision, specified
together.
A seconds precision value between 0 and 9 may be specified for an INTERVAL. If the
seconds precision is not specified, a default value of 6 is implied.

Interval Qualifiers
A syntactic element, the interval qualifier, is used to specify the interval precision,
leading precision and (where appropriate) the seconds precision.
The interval qualifier follows the keyword INTERVAL when specifying an INTERVAL
data type.

Field Maximum leading precision

YEAR 7

MONTH 7

DAY 7

HOUR 8

MINUTE 10

SECOND 12

56 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

The following table lists the valid interval qualifiers for YEAR-MONTH intervals:

The following table lists the valid interval qualifiers for DAY-TIME intervals:

Interval Qualifier Range Description

YEAR(p) 1 <= p <= 7 An interval class describing a number of
years, with a leading precision p. It contains a
YEAR field in the format: pY.
Default precision is 2.

MONTH(p) 1 <= p <= 7 An interval class describing a number of
months, with leading precision p. It contains a
MONTH field in the format: pM.
Default precision is 2.

YEAR(p) TO MONTH 1 <= p <= 7 An interval class describing a number of years
and months, with leading precision p. The
format is: pY-MM.
Default precision is 2.

Interval Qualifier Range Description

DAY(p) 1 <= p <= 7 An interval class describing a number of
days, with a leading precision p.
It contains a DAY field in the format: pD.
Default precision is 2.

HOUR(p) 1 <= p <= 8 An interval class describing a number of
hours, with leading precision p.
It contains an HOUR field in the format: pH.
Default precision is 2.

MINUTE(p) 1 <= p <= 10 An interval class describing a number of
minutes, with leading precision p.
It contains a MINUTE field in the format: pM.
Default precision is 2.

SECOND(p,s),
SECOND(p)

1 <= p <= 12,
0 <= s <= 9

An interval class describing a number of
seconds, with leading precision p and seconds
precision s.
It contains a SECOND field in the format:
pS[.sF].
(F is the fractional part of the seconds value.)
Default precision is 2, default scale is 6.

DAY(p) TO HOUR 1 <= p <= 7 An interval class describing a number of days
and hours, with leading precision p.
The format is: pD HH.
Default precision is 2.

Mimer SQL Version 11.0 57
SQL Reference Manual

Length of an Interval Data Type
The length of an INTERVAL data type is the same as the number of characters required to
represent it as a string and is determined by the interval precision, leading precision and
the seconds precision (where it applies).
The maximum length of an INTERVAL data type can be computed according to the
following rules:
• The length of the most significant field is the leading precision value (p).
• Allow a length of 2 for each field following the most significant field.
• Allow a length of 1 for each separator between fields. Separators occur between

YEAR and MONTH, DAY and HOUR, HOUR and MINUTE, and MINUTE and SECOND.
• If seconds precision applies, and is non-zero, allow a length equal to the seconds

precision value, plus 1 for the decimal point preceding the fractional part of the
seconds value.

Boolean
BOOLEAN describes a truth value. It can have the values TRUE or FALSE.

DAY(p) TO MINUTE 1 <= p <= 7 An interval class describing a number of
days, hours and minutes, with leading
precision p.
The format is: pD HH:MM.
Default precision is 2.

DAY(p) TO
SECOND(s)

1 <= p <= 7 An interval class describing a number of
days, hours, minutes and seconds, with
leading precision p.
The format is: pD HH:MM:SS[.sF].
Default precision is 2, default scale is 6.

HOUR(p) TO
MINUTE

1 <= p <= 8 An interval class describing a number of
hours and minutes, with leading precision p.
The format is: pH:MM.
Default precision is 2.

HOUR(p) TO
SECOND(s)

1 <= p <= 8,
0 <= s <= 9

An interval class describing a number of
hours, minutes and seconds, with leading
precision p and seconds precision s.
The format is: pH:MM:SS[.sF].
Default precision is 2, default scale is 6.

MINUTE(p) TO
SECOND(s)

1 <= p <= 10,
0 <= s <= 9

An interval class describing a number of
minutes and seconds, with leading precision p
and seconds precision s.
The format is: pM:SS[.sF].
Default precision is 2, default scale is 6.

Interval Qualifier Range Description

58 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

Spatial Data Types
The spatial data types can be used for geographical data (longitude, latitude and location),
and for coordinate system data (x, y, coordinate).
The following user-defined types are used to store spatial data:

See Mimer SQL Programmer’s Manual, Appendix 14, Spatial Data for a description of
the GIS (Geographic information system) functionality.

Universally Unique Identifier (UUID)
The following type can be used for storing universally unique identifier (UUID) data:

See Mimer SQL Programmer’s Manual, Appendix 15, Universally Unique Identifier -
UUID for more information.

Type SQL type Description

BUILTIN.GIS_LATITUDE BINARY(4) A distinct user-defined type that
stores latitude values.
See Mimer SQL Programmer’s
Manual, Appendix 14,
BUILTIN.GIS_LATITUDE.

BUILTIN.GIS_LONGITUDE BINARY(4) A distinct user-defined type that
stores longitude values.
See Mimer SQL Programmer’s
Manual, Appendix 14,
BUILTIN.GIS_LONGITUDE.

BUILTIN.GIS_LOCATION BINARY(8) A distinct user-defined type that is
used to store a location on Earth. It
has a latitude and a longitude
component.
See Mimer SQL Programmer’s
Manual, Appendix 14,
BUILTIN.GIS_LOCATION.

BUILTIN.GIS_COORDINATE BINARY(8) This type has an x and a y component
in a flat coordinate system.
See Mimer SQL Programmer’s
Manual, Appendix 14,
BUILTIN.GIS_COORDINATE.

Type SQL type Description

BUILTIN.UUID BINARY(16) A distinct user-defined type for storing
uuid values.

Mimer SQL Version 11.0 59
SQL Reference Manual

ROW Data Type
There is an additional data type supported by Mimer SQL, called the ROW data type, which
is used in stored procedures only.
A variable which is declared as having the ROW data type implicitly defines a row value,
which is a single construct that has a value which effectively represents a table row.
A row value is composed of a number of named values, each of which has its own data
type and represents a column value in the overall row value.
A ROW data type can be defined either by explicitly specifying a number of field-
name/data-type pairs or by specifying a number of table columns from which the
unqualified names and data types are inherited.
A ROW data type definition can be specified where one of the above data types would
normally be used in a variable declaration in a compound statement, see the Mimer SQL
Programmer’s Manual, Chapter 11, The ROW Data Type, for details.

ROW Data Type Syntax
The syntax for defining a ROW data type is:

The following points apply to the specification of a ROW data type:
• The value specified for data-type can be a ROW data type specification.
• Two fields in the same ROW data type specification must not have the same name

(this restriction applies equally to fields named by specifying a field-name value
and those named by inheriting the unqualified name of a table column).

• If table-name is specified without a list of column names, all the columns in the
table are used to define fields in the ROW data type.

Note: If a row specification uses the AS clause, any check constraints for the table
will not be validated. If a field is declared as using a domain, the same
behavior as for a single variable will occur.

The Null Value
Columns which contain an undefined value are assigned a null value.
Depending on the context, this is represented in SQL statements either by the keyword
NULL or by a host variable associated with an indicator variable whose value is minus one,
see the Mimer SQL Programmer’s Manual, Chapter 4, Indicator Variables.
The null value is generally never equal to any value, not even to itself. All comparisons
involving null evaluate to unknown, see Comparisons on page 80.
Note: Null values are treated as equal to each other for the purposes of DISTINCT,

GROUP BY, ORDER BY, UNION, INTERSECT, EXCEPT and IS [NOT]
DISTINCT FROM.

60 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

Null values are sorted at the end of ascending sequences and at the beginning of
descending sequences.

Data Type Compatibility
Assignment and comparison operations generally require that the data types of the items
involved (literals, variables or column values) are compatible but not necessarily exactly
equivalent.
Any exceptions to this rule are specified in the detailed syntax descriptions in Chapter 12,
SQL Statements.
All character data is compatible with all other character data.
Numerical data is compatible with other numerical data regardless of specific data type
(integer, decimal or float). Rules for operations involving mixed numerical data types are
described in Comparisons on page 80.
Datetime and interval data types can be combined in arithmetic operations, for details, see
Datetime and Interval Arithmetic on page 60.
Values stored in host variables (but not literals or column values) may be converted
between character and numerical data types if required by the operation using the
variable. The declared type of the variable itself is not altered.
Similarly, character columns may be assigned to numerical variables and vice versa. The
rules for data type conversion are given below.
Variables may be converted between different data types by using the CAST function.

Datetime and Interval Arithmetic
The following table lists the arithmetic operations that are permitted involving DATE,
TIME, TIMESTAMP (DATETIME) or INTERVAL values:

Operands can not be combined arithmetically unless their data types are comparable, see
Comparisons on page 80. If either operand is the null value, then the result will always be
the null value.
If an arithmetic operation involves two DATETIME or INTERVAL values with a defined
scale, the scale of the result will be the larger of the scales of the two operands.
When an INTERVAL value is multiplied by a numeric value, the scale of the result is equal
to that of the INTERVAL and the precision of the result is the leading precision of the
INTERVAL increased by 1. In the case of division, the same is true except that the
precision of the result is equal to the leading precision of the INTERVAL (i.e. it is not
increased by 1).

Operand 1 Operator Operand 2 Result Type

DATETIME - DATETIME (See discussion below)

DATETIME + or - INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + or - INTERVAL INTERVAL

INTERVAL * or / NUMERIC INTERVAL

NUMERIC * INTERVAL INTERVAL

Mimer SQL Version 11.0 61
SQL Reference Manual

When two INTERVAL values are added or subtracted, the scale (s) and precision (p) of the
result are described by the following rule:

p = min(MLP, max(p'-s', p"-s") + max(s', s") + 1)
s = max(s', s")

where MLP is the maximum permitted leading precision for the INTERVAL type of the
result, refer to the table in Interval on page 54 for these values.
The interval precision of the result is the combined interval precision of the two operands,
e.g.

DAY TO HOUR + MINUTE TO SECOND

will produce a DAY TO SECOND result.
One DATETIME value may be subtracted from another to produce an INTERVAL that is
the signed difference between the stated dates or times.
The application must, however, specify an INTERVAL date type for the result by using an
interval-qualifier.
Thus, the syntax is:

(DATETIME1 - DATETIME2) interval-qualifier

Example:
(DATE '2016-01-09' - DATE '2016-01-01') DAY

This, therefore, evaluates to INTERVAL '8' DAY.

Host Variable Data Type Conversion
When a host variable is used in assignments, comparisons or expressions where the data
type of the variable is different from the data type of literals or column declarations, an
attempt is made internally to convert the value of the variable to the appropriate type.

Character and Character
Conversion between a character variable and a character value is always allowed. The
conversion follows these rules:
• When assigning a character value to a character variable, where the variable is

longer than the character value, the variable is padded with trailing blanks.
• When assigning a character value to a character variable, where the value is longer

than the variable, the value is truncated and a warning status is returned. If only
blanks are truncated, no warning is returned.

• When assigning a variable length character, i.e. a VARCHAR or NCHAR VARYING,
column from a character variable, the column is padded with blanks up to the
length of the character variable if the column is longer than the variable.

• When assigning a variable length character column from a character variable,
where the column is shorter than the variable (except for trailing spaces), the
assignment will fail and an error message is returned.

62 Chapter 6 SQL Syntax Elements
Data Types in SQL Statements

National Character and Character
• When assigning a national character column to a character variable, characters

outside the Latin1 character set may occur.
• When assigning a character column to a wide character variable, all characters will

be converted to the wide character format.
• When assigning a character column a national character value where characters

outside the Latin1 character set occur, the assignment will fail and an error
message is returned.

• When assigning a character value to a national character column, the value will be
converted to the national character data type.

Numerical and Character
Numerical values may always be converted to character strings, provided that the
character string variable is sufficiently long enough. The resulting string format is
illustrated below, using n to represent the appropriate number of digits and s to represent
the sign position (a minus sign for negative values).
Two digits are always used for the exponent derived from REAL numbers, and three
digits are used for all other floating point numbers, regardless of the value of the
exponent. The sign of the exponent is always given explicitly (+ or -).

Note: Decimal values with scale 0 are converted to strings with the format 'sn.'.
Decimal values where the scale is equal to the precision result in strings with
the format 's.n'.

Examples of Assignment Results

Only numerical character strings can be converted to numerical data.

Numerical data String length String format

Integer numerical precision p p+1 'sn'

Exact numerical precision p, scale s p+2 'sn.n'

REAL 15 'sn.nnnnnnnnEsnn'

DOUBLE PRECISION 24 'sn.nnnnnnnnnnnnnnnnEsnnn'

FLOAT 24 'sn.nnnnnnnnnnnnnnnnEsnnn'

FLOAT(p) p+7 'sn.nEsnnn'

Value Type Character value

1342 INTEGER '1342'

-15 INTEGER '-15'

13.42 DECIMAL(6,4) '13.4200'

-13. DECIMAL(5,0) '-13.'

.13 DECIMAL(2,2) '.13'

-1.3E56 DOUBLE PRECISION '-1.30000000000000E+056'

Mimer SQL Version 11.0 63
SQL Reference Manual

Numerical strings are defined as follows:

• Integer
One optional sign character (+ or -) followed by at least one digit (0-9). Leading and
trailing blanks are ignored. No other character is allowed.

• Decimal
As integer, but with one decimal point (.) placed immediately before or after a digit.

• Float
As decimal, but followed directly by an uppercase or lowercase letter E and an
exponent written as an integer (optionally signed).

The precision and scale of a number derived from a numerical character string follows the
format of the string.
Leading and trailing zeros are significant for assigning precision.
Thus:

Standard Compliance
This section summarizes standard compliance concerning data types.

Numerical value Type

3 INTEGER(1)

003 INTEGER(3)

0.3 DECIMAL(2,1)

00.30 DECIMAL(4,2)

.3 DECIMAL(1,1)

-33 INTEGER(2)

-33. DECIMAL(2,0)

003.3E14 FLOAT(4)

Standard Compliance Comments

SQL-2016 Core Fully compliant.

64 Chapter 6 SQL Syntax Elements
Literals

Literals
Literal, i.e. fixed data, values may be given for any of the data types supported in SQL
statements, wherever the term literal appears in the syntax diagrams.

String Literals
A string literal may be represented as a character-string-literal, a national-
character-string-literal, or a unicode-character-string-literal.

• Character-string-literal
A character-string-literal consists of a sequence of characters enclosed in
string delimiters. The standard string delimiter is the single quotation mark: '. Two
consecutive single quotation marks within a string are interpreted as a single
quotation mark.
If characters outside the ISO 8859-1 character set (Latin1) is included in a
character-string-literal, the literal will be considered as a national-
character-string-literal.
Note: An empty string (i.e. '') is a defined value. (It is not a null value.)

• National-character-string-literal
A national-character-string-literal consists of a sequence of Unicode
characters enclosed in string delimiters and preceded by the optional letter N. (I.e. if
the N letter is missing, and the string literal still contains non Latin1 characters, the
literal is a national-character-string-literal.)

SQL-2016 Features
outside core

Feature F052, “Intervals and datetime arithmetic”
support for interval data type.
Feature F421, “National character” support for national
character data type NCHAR and NCHAR VARYING.
Feature F555, “Enhanced seconds precision” support
for time and timestamps with fraction of seconds.
Feature T021, “BINARY and VARBINARY data
types”.
Feature T031, “Boolean data type”
Feature T041, “Basic LOB data type support”
Feature T071, “Bigint data type”

Mimer SQL
extension

Conversion between character and numeric when
storing values from or retrieving values into host
variables is a Mimer SQL extension.
Support for the abbreviation NVARCHAR is a Mimer
SQL extension.
Specifying a precision for INTEGER is a Mimer SQL
extension.

Standard Compliance Comments

Mimer SQL Version 11.0 65
SQL Reference Manual

The standard string delimiter is the single quotation mark: '. Two consecutive
single quotation marks within a string are interpreted as a single quotation mark.
The case of the preceding N is irrelevant.
Note: An empty string (i.e. N'') is a defined value. (It is not a null value.)

• Unicode-string-literal
A unicode-string-literal is used in order to facilitate the specification of
Unicode characters in an ASCII environment. It consists of a sequence of Unicode
characters enclosed in string delimiters and preceded by the letter U and an
ampersand, i.e. U&. The standard string delimiter is the single quotation mark: '.
Two consecutive single quotation marks within a string are interpreted as a single
quotation mark. Unicode characters are given by four hexadecimal digits preceded
by a backslash character (\) or, by six hexadecimal digits preceded with a backslash
character and a plus character. Two consecutive backslash characters within a string
are interpreted as a single backslash character. The case of the preceding U is
irrelevant.
Note: An empty string (i.e. U&'') is a defined value. (It is not a null value.)

Character Separators
For character, national-character, unicode and hexadecimal-string-literals, you can use a
separator within the literal to join two or more substrings. Separators are described in
Special Characters on page 37.
This is particularly useful when a string literal extends over more than one physical line,
or when control codes are to be combined with character sequences.

Examples
ASCII codes are used for the hexadecimal literals:

Note: Since a hexadecimal-string is of type binary, an explicit CAST is required when
using a hexadecimal-string as character data. For CAST information, see
Assignments on page 77.

Numerical Integer Literals
A numerical integer literal is a signed or unsigned number that does not include a decimal
point. The sign is a plus (+) or minus (-) sign preceding the first digit.
In determining the precision of an integer literal, leading zeros are significant (i.e. the
literal 007 has precision 3).

String Value

'ABCD' ABCD

'Mimer''s' Mimer's

'data'<LF>'base' database

X'0D0A09' <CR><LF><TAB>

X'0D0A'<LF>'09' <CR><LF><TAB>

U&'Malm\00F6' Malmö

66 Chapter 6 SQL Syntax Elements
Literals

Examples:
 47
 -125
 +006
 0

Numerical Decimal Literals
A numerical decimal literal is a signed or unsigned number containing exactly one
decimal point.
In determining the precision and scale of a decimal literal, both leading and trailing zeros
are significant (i.e. the literal 003.1400 has precision 7, scale 4).

Examples:
 4.7
 -3.
 +012.067
 0.0
 .370

Numerical Floating Point Literals
Floating point literals are represented in exponential notation, with a signed or unsigned
integer or decimal mantissa, followed by an letter E, followed in turn by a signed or
unsigned integer exponent.
The base for the exponent is always 10. The exponent zero may be used. The case of the
letter E is irrelevant.
In determining the precision of a floating point literal, leading zeros in the mantissa are
significant (i.e. the literal 007E4 has precision 3).

Examples:
1.3E5 means 130000
-4e-2 means -0.04
+03.3E2 means 330
0E+45 means 0
1.53E00 means 1.53

REAL, DOUBLE PRECISION and FLOAT Literals
There is no syntax for specifying a REAL, DOUBLE PRECISION or FLOAT literal
directly.
Instead use a numerical literal specifying an integer, decimal or floating point value. This
value can be cast explicitly to REAL, DOUBLE PRECISION or FLOAT by using a CAST
construct. If the literal is used in a position where a REAL, DOUBLE PRECISION or
FLOAT value is expected, an implicit CAST is used.

Examples:
INSERT INTO TAB(REALCOL) VALUES (20000001); -- Implicit cast
SET ? = CAST(0.1 as DOUBLE PRECISION); -- Explicit cast

Mimer SQL Version 11.0 67
SQL Reference Manual

Note that values of type REAL, DOUBLE PRECISION or FLOAT have a binary
mantissa. It is not always possible to store the exact decimal value in those types. In such
cases the nearest value will be used. In both cases above, the literal value will be silently
rounded.

DATE, TIME and TIMESTAMP Literals
A literal that represents a DATE, TIME or TIMESTAMP value consists of the corresponding
keyword shown below, followed by text enclosed in single quotes ('').
The following formats are allowed:

DATE 'date-value'

TIME 'time-value'

TIMESTAMP 'date-value <space> time-value'
A date-value has the following format:

year-value – month-value – day-value

A time-value has the following format:
hour-value : minute-value : second-value

where second-value has the following format:
whole-seconds-value [. fractional-seconds-value]

The year-value, month-value, day-value, hour-value, minute-value,
whole-seconds-value and fractional-seconds-value are all unsigned integers.
A year-value contains exactly 4 digits, a fractional-seconds-value may contain
up to 9 digits and all the other components each contain exactly 2 digits.

Examples:
DATE '2017-02-19'

TIME '10:59:23'

TIMESTAMP '2018-11-05 19:20:23.4567'

TIMESTAMP '2021-12-31 23:59:30'

Interval Literals
An interval literal represents an interval value and consists of the keyword INTERVAL
followed by text enclosed in single quotes, in the following format:

INTERVAL '[+|-]interval-value' interval-qualifier

The interval-value text must be a valid representation of a value compatible with the
INTERVAL data type specified by the interval-qualifier, see Interval Qualifiers on
page 55.
• If the interval precision includes the YEAR and MONTH fields, the values of these

fields should be separated by a minus sign.
• If the interval precision includes the DAY and HOUR fields, the values of these fields

should be separated by a space.

68 Chapter 6 SQL Syntax Elements
Literals

• If the interval precision includes the HOUR fields and another field of lower
significance (MINUTE and/or SECOND), the values of these fields should be
separated by a colon.

• All fields may contain up to 2 digits except that:
• The number of digits in the most significant field must not exceed the leading

precision explicitly defined by the interval-qualifier. If a leading
precision is not explicitly specified in the interval-qualifier, the default
(2) applies.

• The SECOND field may have a fractional part, whose maximum length is defined
by the interval-qualifier.

Examples:
INTERVAL '1:30' HOUR TO MINUTE

INTERVAL '1-6' YEAR TO MONTH

INTERVAL '1000 10:20:30.123' DAY(4) TO SECOND(3)

INTERVAL '-199' YEAR(3) **evaluates to -199
INTERVAL '199' YEAR(2) **Invalid : leading precision is 2
INTERVAL '5.555' SECOND(1,2) **evaluates to 5.55
INTERVAL '-5.555' SECOND(1,2) **evaluates to -5.55
INTERVAL '19 23' DAY TO MINUTE **Invalid : no minutes in literal

Binary Literals
A binary literal represents an binary value, and is specified as a hexadecimal string.

• Hexadecimal-string-literal
A hexadecimal-string-literal is a string specified as a sequence of
hexadecimal values, enclosed in single quotation marks and preceded by the letter
X. The sequence of values must contain an even number of positions (every
character in the string literal is represented by a two-position value), and may not
contain any characters other than the digits 0-9 and the letters A-F. The case of
letters (and of the preceding X) is irrelevant. The code values for characters are those
which apply in the host system.

Examples:
X'5A65794B697A'

x'f66c'

Boolean literals
A boolean literal represents a truth value. There are two boolean literals, TRUE and
FALSE.
Boolean literals can be used when assigning values and making comparisons, e.g.

UPDATE methods SET isConstructor = TRUE WHERE methodName = 'PERSON'

DECLARE v_amountPaid,v_amountDue DECIMAL(10,2);
DECLARE v_isPaid BOOLEAN DEFAULT FALSE;

Mimer SQL Version 11.0 69
SQL Reference Manual

SET v_isPaid = v_amountPaid >= v_amountDue;
IF v_isPaid IS TRUE THEN

In the last example the comparison with TRUE is not needed. The statement can be written
as:

IF v_isPaid THEN

Note: Do not enclose boolean literals in string delimiters. 'TRUE' is a string literal,
not a boolean literal.

Spatial literals
The spatial data types are implemented as user-defined types, with functions to create
instances, and methods to return the values in different formats. For more information,
see Mimer SQL Programmer’s Manual, Appendix 14, Spatial Data.

Standard Compliance
This section summarizes standard compliance concerning literals.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core
SQL

Feature T021, “BINARY and VARBINARY data
types”.
Feature T031, “BOOLEAN data type”.

Mimer SQL
extension

The presence of a newline character (<LF>) between
substrings in a character- or hexadecimal-string-literal
is not mandatory in Mimer SQL.

70 Chapter 6 SQL Syntax Elements
Literals

Mimer SQL Version 11.0 71
SQL Reference Manual

Chapter 7

Operators and
Values

This chapter discusses operators, value specifications and default values in Mimer SQL.
It also discusses assignments, comparisons and result data types.

Operators
Operators manipulate individual data items (operands) and return a result. Mimer SQL
uses the following operators:
• Set Operators on page 71
• Arithmetical Operators on page 72
• Comparison Operators on page 73
• Logical Operators on page 74.

Set Operators

UNION or UNION ALL
Derives a final result set by combining two other result sets.
If you specify UNION ALL, the result consists of all rows in both results sets.
If you only specify UNION, the final result set is the set of all rows in both of the result
sets, with duplicate rows removed.
See The UNION Operator on page 184 for more information.

EXCEPT or EXCEPT ALL
The except operator is used to combine two result sets to one where the combined result
set is all records from the first result which is not present in the second result set. If except
is specified without the ALL quantifier, duplicates are removed from the combined result
set. If ALL is specified, duplicates are not removed.
See The EXCEPT Operator on page 185 for more information.

72 Chapter 7 Operators and Values
Operators

INTERSECT or INTERSECT ALL
The intersect operator is used to combine two result sets to one where the combined result
set is the records that are present in both result sets. If intersect is specified without the
ALL quantifier, duplicates are removed from the combined result set. If ALL is specified,
duplicates are not removed.
See The INTERSECT Operator on page 185 for more information.

Arithmetical Operators
Arithmetical operators are used in forming expressions, see Expressions on page 141.

The operators are:
• unary arithmetical (i.e. one argument operators)
• binary arithmetical (i.e. two argument operators)

Unary Arithmetical

Binary Arithmetical

String Operators
String operators are used in forming expressions, see Expressions on page 141.

String

Bit Operators
Bit operations:

+ leaves operand unchanged

- changes sign of operand

+ addition

- subtraction

* multiplication

/ division

% modulo

|| concatenation

& bitwise AND operation

| bitwise OR operation

^ bitwise XOR operation

~ bitwise complement

Mimer SQL Version 11.0 73
SQL Reference Manual

Bit operations are supported on integer data types, i.e. the operations are performed on the
integer bit representation. When right shift is performed a so called arithmetic shift is
performed. This means that the sign bit will be used to replace the bits as the shift to the
right is made.

Examples

Comparison Operators
Comparison operators are used tocompare operands in basic and quantified predicates.
(Relational operators are used to compare operands in all other predicates, see Predicates
on page 153.)
Both comparison and relational operators perform essentially similar functions.
However, comparison operators are common to most programming languages, while the
relational operators are more or less specific to SQL.

Comparison Operators

<< left shift

>> right shift

Expression Result

set ? = 9 | 3 11

set ? = cast(x'0f23' as int) &
cast(x'fff0' as int)

3872

set ? = cast(cast(x'0f23' as int) &
cast(x'fff0' as int) as binary(4))

X'00000F20'

select cast(~(1 << 7) as binary(8))
from information_schema.ext_onerow

X'FFFFFFFFFFFFFF7F'

Comparison operator Explanation

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

74 Chapter 7 Operators and Values
Operators

Quantifiers

Logical Operators

The operators AND and OR are used to combine several predicates to form search
conditions, see Search Conditions on page 165.

The operator NOT may be used to reverse the truth value of a predicate in forming search
conditions. This operator is also available in predicate constructions to reverse the
function of a relational operator, see Search Conditions on page 165.

Operator Precedence

Quantifier

ALL

SOME

ANY

Logical operator

AND

OR

NOT

Category SQL

Postfix (,)

Unary, complement +, -, ~

Multiplicative *, /, %

Additive, concatenation +, -, ||

Shift <<, >>

Bitwise AND &

Bitwise OR |

Comparison operators
Boolean test
Predicates

=, <>, <, <=, >, >=
IS [NOT] FALSE/TRUE/UNKNOWN
BETWEEN, LIKE, IS [NOT] NULL, DISTINCT
FROM, OVERLAPS, ALL, ANY, SOME, IN, EXISTS,
UNIQUE

Negation NOT

Boolean AND AND

Boolean OR OR

Assignment =

Mimer SQL Version 11.0 75
SQL Reference Manual

Operators with the same precedence are evaluated from left to right.

Examples

Please note that the precedence of operators vary between different database vendors. Use
parenthesis to make sure the operations are executed as intended.

Standard Compliance
This section summarizes standard compliance concerning operators.

Value Specifications
Specifying fixed values in expressions.
Value specifications are values which are fixed within the context of one SQL statement.
Value specifications are different to values derived from column contents, which can
change as different rows or sets of rows are addressed.
The value specifications which may be used in expressions are:
• literals, see Literals on page 64
• parameter markers and host variables, see Parameter Markers and Host Identifiers

on page 41, and Mimer SQL Programmer’s Manual, Chapter 4, Using Host
Variables respectively.

• the keyword CURRENT_USER, SESSION_USER or USER, representing the name of
a current ident (a national character varying string with maximum length 128). See
SESSION_USER on page 124 and CURRENT_USER on page 99 respectively.

Expression Parenthesized execution order

not false = true not (false = true)

a | b & c | d = 110 (a | (b & c) | d) = 110

~10 + 5 * 8 (~10) + (5 * 8)

1 / 2 * 10 (1 / 2) * 10

1 + 3 * 15 % 2 * 4 1 + ((3 * 15) % 2) * 4

Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL
extension

Support for % modulo operator is a Mimer SQL
extension.
Support for bit operators is a Mimer SQL extension.

76 Chapter 7 Operators and Values
Default Values

In the syntax diagrams, the term value-specification may be replaced by the
following construction:

Standard Compliance
This section summarizes standard compliance for value specifications.

Default Values
There are various places in the Mimer SQL syntax where a default value can be specified.
The value resulting from a default value specification must always be assignment-
compatible with the data type of the context to which it will be applied.
In the syntax diagrams, the term default-value may be replaced by the following
construction:

For more information about what can be specified for literal, see Literals on page 64.

Standard Compliance
This section summarizes standard compliance concerning the specification of default
values.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Feature
outside core

Feature F561, “Full value expressions”.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 77
SQL Reference Manual

Assignments
The following sections explain the rules that apply when values are assigned in SQL
statements to database columns or to host variables.

String Assignments
If a string value assigned to a fixed-length or variable-length character column is longer
than the defined length of the column (except for trailing spaces), the assignment will fail
and an error is returned.
If a string value assigned to a fixed-length character column is shorter than the defined
length of the column, the content of the column is padded to the right with blanks after
the assignment.
If a string value assigned to a variable-length character column is shorter than the defined
maximum length of the column, no blank padding occurs.
Character (both fixed length and variable length) column values assigned to fixed-length
host variables in SQL statements are padded with blanks to the right if necessary. Column
values assigned to host variables are truncated if they are longer than the declared length
of the variable, and a warning is issued.
The following table summarizes the rules for character string assignment:

Numerical Assignments
Numbers assigned to columns or host variables assume the data type of the item to which
they are assigned, regardless of the data type of the source.
Integral parts of INTEGER, DECIMAL or FLOAT values are never truncated. Fractional
parts of DECIMAL and FLOAT numbers may be truncated if required. No precision is
lost when converting INTEGER values to DECIMAL, but this may happen when
converting INTEGER values to FLOAT.

SQL-2016 Features
outside core

Feature F555, “Enhanced seconds precision”.
Localtime and Localtimestamp functions with fractions
of seconds.
Feature T176, “Sequence generator support”

Mimer SQL
extension

Current value for sequences is a Mimer SQL extension.

Standard Compliance Comments

Assignment Source too long Source too short

To column Error if non-blank
character would be
truncated.

Pad right with blanks for fixed-length
columns. No blank padding for
variable length columns.

To variable Truncate and warn. Pad right with blanks for fixed-length
variables. No blank padding for
variable length variables.

78 Chapter 7 Operators and Values
Assignments

When DECIMAL or FLOAT values are converted to INTEGER, the fractional part of the
number is truncated (not rounded). Note that the range of numbers represented by
DECIMAL and INTEGER is smaller than the range represented by FLOAT. Assignment
of a FLOAT number to an INTEGER or DECIMAL produces an overflow error if the
source number is too large.
In assigning DECIMAL values to DECIMAL targets, the length of the integer part of the
source (i.e. the difference between the precision and scale) may not exceed the precision
of the target. The necessary number of leading zeros is appended or eliminated, and
trailing zeros are added to or digits truncated from the fractional part as required.
Note: Truncation effects can be avoided by explicitly using the ROUND function,

see ROUND on page 123.
In converting DECIMAL values to FLOAT, the mantissa of the target is treated as a
decimal number with the same precision as the source (for example, 1234.56 becomes
1.23456E3).
In converting FLOAT values to DECIMAL, digits are truncated from the fractional part
of the result as required by the scale of the target. An overflow error occurs if the precision
of the target cannot accommodate the integral part of the result.
When converting INTEGER, DECIMAL or FLOAT numbers to REAL or DOUBLE
PRECISION, a rounding operation is often required. The number will be rounded to the
nearest binary floating point representation (rounding to even if there is a tie). Note that
such rounding is necessary for simple decimal numbers such as 0.1 which cannot be
represented exactly as a binary floating point number.
When converting a REAL or DOUBLE PRECISION number to INTEGER, DECIMAL
or FLOAT, the value will be rounded to the nearest number that is possible to represent
in the target.
The following table illustrates the main features of numerical assignments:

Leading zeros are shown where appropriate to indicate the maximum number of digits
available. Leading zeros in numerical data are not normally displayed on output.

Source:
Target:
INTEGER SMALLINT DECIMAL(9,2) FLOAT(8) REAL

INTEGER(6):
987654 987654 Overflow 987654.00 9.8765400E5 9.87654000E5

DECIMAL(6,3):
987.654 987 987 987.65 9.8765400E2 9.87654000E5

FLOAT(6):
9.87654E5 987654 Overflow 987654.00 9.8765400E5 9.87654000E5

FLOAT(6):
9.87654E49 Overflow Overflow Overflow 9.8765400E49 Overflow

FLOAT(6):
9.87654E-49 0 0 0.00 9.8765400E-49 0.0E0

REAL:
0.3E0 0 0 0.30 3.0000001E-001 3.00000012E-01

Mimer SQL Version 11.0 79
SQL Reference Manual

Datetime Assignment Rules
The following compatibility rules apply when assigning DATETIME values to one
another:
• If the value to be assigned is a DATE, the target must also be a DATE.
• If the value to be assigned is a TIME, the target must also be a TIME.
• If the value to be assigned is a TIMESTAMP, the target must also be a TIMESTAMP.
• The CAST function can be used in order to cross-assign.

Interval Assignment Rules
The following compatibility rules apply when assigning INTERVAL values to one
another:
• When assigning a non-null value to an INTERVAL column, the leading precision of

the target must be sufficient to represent the value.
• All YEAR-MONTH INTERVAL values are compatible with one another.
• All DAY-TIME INTERVAL values are compatible with one another.

Binary Assignment Rules
A binary value assigned to a fixed-length binary column must have the same length as the
defined length of the column, otherwise the assignment will fail and an error is returned.
If a binary value assigned to a variable-length binary column is shorter than the defined
maximum length of the column, current length is set for the column.
If a binary value assigned to a variable-length binary column is longer than the defined
maximum length of the column, the assignment will fail and an error is returned.
Binary (both fixed length and variable length) column values assigned to fixed-length
host variables in SQL statements are padded with null values to the right if necessary.
Column values assigned to host variables are truncated if they are longer than the declared
length of the variable, and a warning is issued.
The following table summarizes the rules for binary string assignment:

Boolean Assignment Rules
The BOOLEAN type can be assigned boolean values, i.e. TRUE and FALSE.
Note: Do not enclose boolean literals in string delimiters. 'TRUE' is a string literal,

not a boolean literal.

Assignment Source too long Source too short

To column Error. Error for fixed-length columns.
Current length set for variable length
columns.

To variable Truncate and warn. Pad right with null values for fixed-
length variables. No null value
padding for variable length variables.

80 Chapter 7 Operators and Values
Comparisons

Standard Compliance
This section summarizes standard compliance concerning assignments.

Comparisons
Values to be compared must be of compatible data types. If values with incompatible data
types are compared, an error occurs.

Character String Comparisons
Both fixed-length and variable-length character strings are compared character by
character from left to right.
If the strings are of different length, the shorter string is conceptually padded to the right
with blanks before the comparison is made, that is, character differences take precedence
over length differences.
For example, the variable-length column with the value 'town ', one trailing blank, is
equal to the variable-length column with the value 'town ', two trailing blanks.
When comparing a character string to a national character string, the character string is
implicitly converted to a national character string, before the comparison is performed.

Collations
A collation determines whether a character string is less than, equal to, or greater than
another when sorting or comparing data.
SQL only permits compatible character strings to be compared. That is, you can compare
character strings only if the source and target strings belong to the same collation or are
coerced into having the same collation.
A character string that is defined with a named collation can only be compared to a
character string that is either defined with the same named collation or is defined without
a collation.
In the case where one of the strings is not associated with a named collation then it will
be implicitly coerced to the same collation as the other string.
A collation specified in the column-definition will take precedence over a domain
collation.
For more information on character sets, see Appendix B Character Sets.
For more information on collations, see Mimer SQL User’s Manual, Chapter 4,
Collations.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 81
SQL Reference Manual

Numerical Comparisons
INTEGER, DECIMAL and FLOAT values are always compared according to their
algebraic values.
INTEGER values compared with DECIMAL or FLOAT values are treated as DECIMAL
or FLOAT respectively. When DECIMAL values are compared with DECIMAL, the
lower precision value is conceptually padded with leading and trailing zeros as necessary.
DECIMAL values compared with FLOAT values are treated as FLOAT.
Thus all the following comparisons evaluate to TRUE:

1 = 1.0
2 < 2.3E0
35.3 = 035.300
35.3 > 3.5E1

A REAL, DOUBLE PRECISION or FLOAT value (A) compared with an INTEGER,
DECIMAL or FLOAT value (B) is handled in the following manner:

A’ = CAST(A AS type-of-B);
Q = (A = CAST(A' AS type-of-A));

If Q is TRUE then A’ is a close approximation of A in he type of B. Comparisons are
made between A’ and B in the type B.
If Q is FALSE then A’ is NOT a close approximation of A in the type of B. A is
considered to be unequal to any value in type B. However A’ and B can be compared for
magnitude (> or <).
Thus all the following comparisons evaluate to TRUE:

CAST(1 AS REAL) = 1
CAST(1.1 AS REAL) <> 1
CAST(1.1 AS REAL) = 1.1
CAST(1.1 AS REAL) <> 1.10000000
CAST(1.1 AS REAL) = 1.10000002

Datetime and Interval Comparisons
Two DATETIME values may be compared if they are assignment-compatible, as defined
in Datetime Assignment Rules on page 79.
DATETIME comparisons are performed in accordance with chronological ordering.
When two TIME or two TIMESTAMP values are compared, the seconds precision of the
value with the lowest seconds precision is extended by adding trailing zeros.
Two INTERVAL values may be compared if they are assignment-compatible, as defined
in Interval Assignment Rules on page 79.
INTERVAL comparisons are performed in accordance with their sign and magnitude.
It is not possible to compare YEAR-MONTH intervals with DAY-TIME intervals.
Comparable INTERVAL types with different interval precisions are conceptually
converted to the same interval precision, prior to any comparison, by adding fields as
required.

Binary Comparisons
Binary values are compared bytewise. If the two binary values have different lengths they
are not equal.

82 Chapter 7 Operators and Values
Comparisons

Boolean Comparisons
Boolean values are compared to TRUE or FALSE. When comparing truth values FALSE is
less than TRUE.
When equals true is to be evaluated it is unnecessary to write the = TRUE part. I.e.

WHERE boolcol = TRUE

is typically written as
WHERE boolcol

Similarly, = FALSE is typically re-written using NOT. I.e.
WHERE boolcol = FALSE

is usually expressed as
WHERE NOT boolcol

The BOOLEAN TEST syntax is supported for truth value tests, i.e.:
boolean-primary IS TRUE
boolean-primary IS FALSE
boolean-primary IS UNKNOWN
boolean-primary IS NOT TRUE
boolean-primary IS NOT FALSE
boolean-primary IS NOT UNKNOWN

Null Comparisons
All comparisons involving a null value on either side of the comparison operator evaluate
to unknown. Null is never equal to, greater than or less than anything else.
SQL provides a special NULL predicate to test for the presence or absence of null value in
a column, see The NULL Predicate on page 159.
The DISTINCT predicate provides a comparison mechanism that treats two null values as
the same, see The DISTINCT Predicate on page 161.
Considerable care is required in writing search conditions involving columns which may
contain null values. It is often very easy to overlook the effect of null comparisons, with
the result that rows which should be included in the result table are omitted or vice versa.
See the Mimer SQL User’s Manual, Chapter 3, Handling Null Values, for further
discussion of this point.

Truth Tables
The following truth tables summarize the outcome of conditional expressions where
comparisons are negated by NOT or joined by AND or OR.
A question mark (?) represents the truth value unknown, T represents the value TRUE and
F represents the value FALSE.

Mimer SQL Version 11.0 83
SQL Reference Manual

NOT

AND

OR

IS

Standard Compliance
This section summarizes standard compliance concerning comparisons.

NOT

T F

F T

? ?

AND T F ?

T T F ?

F F F F

? ? F ?

OR T F ?

T T T T

F T F ?

? T ? ?

IS T F ?

T T F F

F F T F

? F F T

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F571, “Truth value tests”
Feature T031, “BOOLEAN data type”

84 Chapter 7 Operators and Values
Result Data Types

Result Data Types
This section describes the syntax rules for, and the resulting data types of, UNION,
INTERSECT and EXCEPT operations specified in a query-expression (see SELECT)
and CASE expressions, see CASE Expression on page 145.
• The data type of all specified expressions must be comparable.
• If any of the specified expressions is a variable-length (national) character string,

then the data type of the result will be variable-length (national) character with
maximum length equal to the largest of the specified expressions.

• If all specified expressions are fixed-length (national) character strings, then the
data type of the result will be a fixed-length (national) character string with a
length equal to the maximum length of the largest of the specified fixed-length
character string values.

• If all specified expressions are boolean, then the data type of the result will be
boolean.

• If any of the specified expressions is variable-length binary, then the data type of
the result will be variable-length binary with maximum length equal to the
maximum length of the largest of the specified expressions.

• If all specified expressions are fixed-length binary, then the data type of the result
will be fixed-length binary with the same length.

• If all specified expressions are exact numeric, then the data type of the result will
be exact numeric with precision and scale equal to the maximum precision and
scale of the specified expressions.

• If any of the specified expressions is approximate numeric, then the data type of
the result will be approximate numeric with precision equal to the maximum
precision of the specified expressions.

• If two numeric data types are specified, the precision and scale of the result is
determined by the rules in the table below and which are described in the points
that follow:

• If either of the specified expressions is floating point, the result is floating point.
The precision of the result is the highest operand precision.
Thus:
DOUBLE PRECISION UNION REAL gives DOUBLE PRECISION
DOUBLE PRECISION UNION INTEGER gives DOUBLE PRECISION
REAL UNION SMALLINT gives REAL.

FLOAT(p") INTEGER(p") DECIMAL(p",s")

FLOAT(p') FLOAT(p) a

a. p = max(p',p")

FLOAT(p) a FLOAT(p) a

INTEGER(p') FLOAT(p) a INTEGER(p) a DECIMAL(p,s) b

b. p = min(45, max(p'-s',p"-s")+max(s',s"))
s = max(s',s")

DECIMAL(p',s') FLOAT(p) a DECIMAL(p,s) b DECIMAL(p,s) b

Mimer SQL Version 11.0 85
SQL Reference Manual

• If both the specified expressions are integer, the result is integer. The precision of
the result is the highest operand precision.
Thus:
INTEGER UNION SMALLINT gives INTEGER
INTEGER UNION BIGINT gives BIGINT.

• If both the specified expressions are decimal, or one is decimal and the other is
integer, the result is decimal. For expressions mixing decimal and integer operands,
INTEGER(p) is treated as DECIMAL(p,0).
The number of positions to the left of the decimal point (i.e. the difference between
precision and scale) in the result is the greatest number of positions in either
operand. The scale of the result is the greatest scale of the operands. The precision
may not exceed 45.
Thus:
SMALLINT UNION DECIMAL(10,4) gives DECIMAL(10,4)
INTEGER UNION DECIMAL(10,4) gives DECIMAL(14,4)
DECIMAL(9,2) UNION DECIMAL(6,4) gives DECIMAL(9,4).

• For INTERVAL operands, see Interval on page 54, the interval precision of the
result is the combined interval precision of the two operands, the scale (seconds
precision) is the greatest of the two operands and the leading precision of the result
is the greatest of the two operands, expressed in terms of the most significant field
of the result.
Thus:
DAY TO HOUR UNION MINUTE TO SECOND gives DAY TO SECOND
HOUR TO SECOND(2,2) UNION MINUTE TO SECOND(1,6)gives HOUR TO
SECOND(2,6)

DAY(2) TO HOUR UNION HOUR(6) TO MINUTE gives DAY(5) TO MINUTE.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

86 Chapter 7 Operators and Values
Result Data Types

Mimer SQL Version 11.0 87
SQL Reference Manual

Chapter 8

Functions
This chapter discusses scalar functions and set functions (see Set Functions on page 136.)

Scalar Functions
A scalar function takes zero or more parameters and returns a single value. A scalar
function can be used wherever an expression is allowed.

Scalar functions
ABS on page 89
ACOS on page 90
ASCII_CHAR on page 90
ASCII_CODE on page 91
ASIN on page 91
ATAN on page 92
ATAN2 on page 92
BEGINS on page 93
BUILTIN.BEGINS_WORD on page 93
BUILTIN.MATCH_WORD on page 94
BUILTIN.UTC_TIMESTAMP on page 95
CHARACTER_LENGTH on page 96
CEILING on page 96
COS on page 97
COSH on page 97
COT on page 98
CURRENT_DATE on page 98
CURRENT_PROGRAM on page 99
CURRENT_USER on page 99
CURRENT VALUE on page 100
DAY on page 100
DAYOFMONTH on page 101
DAYOFWEEK on page 101

88 Chapter 8 Functions
Scalar Functions

DAYOFYEAR on page 102
DEGREES on page 102
EXP on page 103
EXTRACT on page 103
FLOOR on page 104
HOUR on page 104
INDEX_CHAR on page 105
IRAND on page 105
LEFT on page 106
LN on page 106
LOCALTIME on page 107
LOCALTIMESTAMP on page 107
LOCATE on page 108
LOG10 on page 109
LOWER on page 109
MINUTE on page 110
MOD on page 110
MONTH on page 111
NEXT VALUE on page 111
OCTET_LENGTH on page 112
OVERLAY on page 113
PASTE on page 114
POSITION on page 115
POWER on page 115
QUARTER on page 116
RADIANS on page 116
REGEXP_MATCH on page 117
REPEAT on page 122
REPLACE on page 122
RIGHT on page 123
ROUND on page 123
SECOND on page 124
SESSION_USER on page 124
SIGN on page 125
SIN on page 125
SINH on page 126
SOUNDEX on page 126
SQRT on page 127

Mimer SQL Version 11.0 89
SQL Reference Manual

SUBSTRING on page 127
TAIL on page 128
TAN on page 129
TANH on page 129
TRIM on page 130
TRUNCATE on page 131
UNICODE_CHAR on page 131
UNICODE_CODE on page 132
UPPER on page 132
USER on page 132
WEEK on page 133
YEAR on page 133

The following sections describe Mimer SQL’s scalar functions.

ABS
Returns the absolute value of the given numeric expression.

Syntax
Syntax for the ABS function:

value is a numeric or an interval value expression.

Description
The function returns the absolute value of value.
If the value of value is null, then the result of the function is null.

Example
SET INT_VAL = ABS(-15); -- sets INT_VAL to 15

90 Chapter 8 Functions
Scalar Functions

ACOS
Returns the arccosine for a numeric expression.

Syntax
Syntax for the ACOS function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The functions returns the arccosine for the value expressed as radians. The data

type for the result is double precision. Valid input values are in the range -1 to 1.
• If the value of value is NULL, then the result of the function is NULL.

ASCII_CHAR
Returns the character that has the given ASCII code value. The given ASCII code value
should be in the range 0-255.

Syntax
Syntax for the ASCII_CHAR function:

code is a numeric expression representing an ASCII value.

Description
If the value of code is between 0 and 255, the function returns a single character value,
i.e. CHAR(1), otherwise the function returns null. (For code values above 255, use the
UNICODE_CHAR function instead. See UNICODE_CHAR on page 131.)
If the value of code is null, then the result of the function is null.

Example
SET CHR_VAL = ASCII_CHAR(65); -- sets CHR_VAL to 'A'

Mimer SQL Version 11.0 91
SQL Reference Manual

ASCII_CODE
Returns the ASCII code value of the leftmost character in the given string expression, as
an integer.

Syntax
Syntax for the ASCII_CODE function:

source-string is a character or binary string expression.

Description
A single INTEGER value is returned, representing an ASCII code.
If the source-string contains more than one character, the ASCII code of the left-most
octet is returned.
If the length of source-string is zero, then the result of the function is null.
If the value of source-string is null, then the result of the function is null.

Example
SET INT_VAL = ASCII_CODE('A'); -- sets INT_VAL to 65

ASIN
Returns the arcsine for a numeric expression.

Syntax
Syntax for the ASIN function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The functions returns the arcsine for the value expressed as radians. The data type

for the result is double precision. Valid input values are in the range -1 to 1.
• If the value of value is NULL, then the result of the function is NULL.

92 Chapter 8 Functions
Scalar Functions

ATAN
Returns the arctangent for a numeric expression.

Syntax
Syntax for the ATAN function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The functions returns the arctangent for the value expressed as radians. The data

type for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

ATAN2
Returns the arctangent for the tangent between 2 numeric expressions.

Syntax
Syntax for the ATAN2 function:

y and x are numeric value expressions. The function handles values that are within the
range of a double precision expression.
The ATAN2 function calculates the arctangent of the two parameters y and x. It is similar
to calculating the arctangent of y / x, except that the signs of both arguments are used to
determine the quadrant of the result. Effectively, this means that ATAN2(y, x) finds the
counterclockwise angle in radians between the x-axis and the vector <x, y> in
2-dimensional Euclidean space.

Rules
• Returns the angle, in radians, between the x-axis and the vector <x, y>. The data

type for the result is double precision.
• If the value of y or x is NULL, then the result of the function is NULL.
• ATAN2(0.0, 0.0) raises an error, because a null vector is a point and does not

have an angle.

Mimer SQL Version 11.0 93
SQL Reference Manual

BEGINS
Perform a “begins with” comparison.

Syntax
Syntax for the BEGINS function:

Description
LIKE predicates, addressing the “begins with” functionality, are very common.
However, when a parameter marker is used for the LIKE pattern, the SQL compiler can
not determine the LIKE pattern characteristics, and possible optimizations will not be
applied. The built-in function BEGINS will overcome this issue.

Examples

BUILTIN.BEGINS_WORD
Returns a boolean denoting if there is a word in the search-string argument that
begins with the word-part argument.

Syntax
Syntax for the BUILTIN.BEGINS_WORD function:

Description
The search-string and the word-part arguments must both be character expressions
(i.e. either CHARACTER/VARCHAR or NATIONAL CHARACTER/NVARCHAR.)
For this type of searches, the database will consider using a WORD_SEARCH index if
appropriate. (See CREATE INDEX on page 264.)
If any of the arguments to the function is null the function returns null. The function will
return true if there is a word in the search-string argument that begins with the
characters in the word-part argument and false otherwise.
Trailing space characters in the <word-part> string are trimmed before the search
operation. The <word-part> string may only contain characters that have the Unicode
property "ID_Continue". For a detailed description, see https://www.unicode.org/reports/tr31.

BEGINS function Is equivalent to

BEGINS(col,'AB') col LIKE 'AB%'

BEGINS(col,?),
where ? contains 'XYZ'

col LIKE 'XYZ%'

https://www.unicode.org/reports/tr31

94 Chapter 8 Functions
Scalar Functions

Examples
SQL>set ? = builtin.begins_word('The quick brown fox jumps over', 'bro');
?
=====
TRUE

The following comparison will not match since the case of the word-part does not
match.

SQL>set ? = builtin.begins_word('The quick brown fox jumps over','Bro');
?
=====
FALSE

It is possible to use collations for the arguments, for example to do a case insensitive
search:

SQL>set ? = builtin.begins_word('The quick brown fox jumps',
SQL&'Bro' collate english_1);
?
====
TRUE

BUILTIN.MATCH_WORD
Returns a boolean denoting if there is a word in the search-string that matches the
word argument.

Syntax
Syntax for the BUILTIN.MATCH_WORD function:

Description
The search-string and the word arguments must both be character expressions, either
character or national character.
For this type of searches, the database will consider using a WORD_SEARCH index if
appropriate. (See CREATE INDEX on page 264.)
If any of the arguments to the function is null the function returns null. The function will
return true if there is a word in the search-string argument that matches the word
argument completely, and false otherwise.
Trailing space characters in the <word> string are trimmed before the match operation.
The <word> string may only contain characters that have the Unicode property
"ID_Continue". For a detailed description, see https://www.unicode.org/reports/tr31.

https://www.unicode.org/reports/tr31

Mimer SQL Version 11.0 95
SQL Reference Manual

Examples
SQL>set ? = builtin.match_word('The quick brown fox jumped', 'bro');
?
=====
FALSE

SQL>set ? = builtin.match_word('The quick brown fox jumped', 'brown');
?
=====
TRUE

SQL>create index docind on ducuments (content for word_search);
SQL>select * from documents where builtin.match_word(content, 'Mimer');

BUILTIN.UTC_TIMESTAMP
Returns a timestamp denoting the current Coordinated Universal Time.

Syntax
Syntax for the BUILTIN.UTC_TIMESTAMP function:

Description
The result is the current Coordinated Universal Time as a timestamp value.
All references to BUILTIN.UTC_TIMESTAMP are effectively evaluated simultaneously
from a single reading of the server clock. Thus the conditional expression
BUILTIN.UTC_TIMESTAMP() = BUILTIN.UTC_TIMESTAMP() is guaranteed to
always evaluate to true.

Examples
SQL>SELECT BUILTIN.UTC_TIMESTAMP() AS utcts FROM system.onerow;

utcts
=====
2012-10-30 14:55:22.643082

One row found

CREATE TABLE EVENTS(ID INTEGER PRIMARY KEY,
 UTCTS TIMESTAMP);
INSERT INTO EVENTS(ID) VALUES (1, BUILTIN.UTC_TIMESTAMP());
UPDATE EVENTS
SET ID = ID + 5, UTCTS = BUILTIN.UTC_TIMESTAMP()
WHERE ID = 10;

96 Chapter 8 Functions
Scalar Functions

CHARACTER_LENGTH
Returns the length of a string.

Syntax
Syntax for the CHARACTER_LENGTH (or CHAR_LENGTH) function:

source-string is a character or binary string expression.

Description
CHAR_LENGTH returns an INTEGER value.
If the data type of source-string is variable-length character or variable-length binary,
then the result of CHAR_LENGTH is the same as the actual length of source-string.
If the data type of source-string is fixed-length character or fixed-length binary, then
the result of CHAR_LENGTH is the same as the fixed-length of source-string.
If the value of source-string is null, then the result of the function is null.

Example
SET INT_VAL = CHAR_LENGTH('TEST STRING'); -- sets INT_VAL to 11

CEILING
Returns the smallest integer greater than or equal to a numeric expression.

Syntax
Syntax for the CEILING function:

value is a numeric value expression.

Description
The function returns the nearest integer value that is equal or higher to value.
If the value of value is null, then the result of the function is null.
The return data type is based on the input data type. For DECIMAL input, the return data
type is integer.

Example
SET ? = CEILING(3.57); -- returns 4
SET ? = CEILING(-3.57); -- returns -3
SET ? = CEILING(1.2345e3); -- returns 1.235000000E+003

Mimer SQL Version 11.0 97
SQL Reference Manual

COS
Returns the cosine for a numeric expression.

Syntax
Syntax for the COS function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The functions returns the cosine for the values expressed as radians. The data type

for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

COSH
Returns the for hyperbolic cosine a numeric expression.

Syntax
Syntax for the COSH function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The functions returns the hyperbolic cosine for the values expressed as radians.

The data type for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

98 Chapter 8 Functions
Scalar Functions

COT
Returns the cotangent for a numeric expression.

Syntax
Syntax for the COT function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the cotangent for the value, expressed as radians. The data

type for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

CURRENT_DATE
Returns a DATE value denoting the current date (i.e. today).

Syntax
Syntax for the CURRENT_DATE function:

Description
The result is the current date (i.e. today) as a DATE value.
All references to CURRENT_DATE are effectively evaluated simultaneously from a single
reading of the server clock. Thus the conditional expression CURRENT_DATE =
CURRENT_DATE is guaranteed to always evaluate to true.
The value of CURRENT_DATE will always be equal to the DATE portion of
LOCALTIMESTAMP.

Example
UPDATE sometable SET usercnt = 13, updated = CURRENT_DATE;

Mimer SQL Version 11.0 99
SQL Reference Manual

CURRENT_PROGRAM
Returns the name of an entered program.

Syntax
Syntax for the CURRENT_PROGRAM function:

Description
The function returns the value of the most recently entered program as nchar varying
value with a maximum length of 128, with the collation SQL_IDENTIFIER.
If no program has been entered the result of the function is null.

Example
The following example returns the PROGRAM ident if entered, otherwise the session ident:

SET CHR_STR = COALESCE(CURRENT_PROGRAM(), SESSION_USER);

CURRENT_USER
Returns the name of the currently connected USER ident or the PROGRAM ident that is
currently entered.
When used in a routine or trigger, it returns the name of the creator of the schema to which
the routine or trigger belongs.

Syntax
Syntax for the CURRENT_USER function:

Description
When used in a routine or trigger, the result is the name of the creator of the schema to
which the routine or trigger belongs, otherwise the value is the name of the connected
ident or the program that was entered.
The data type of the returned value is nchar varying with a maximum length of 128, with
the collation SQL_IDENTIFIER.

Example
CREATE DOMAIN NAME AS NCHAR VARYING(128) collate SQL_IDENTIFIER DEFAULT
CURRENT_USER;

100 Chapter 8 Functions
Scalar Functions

CURRENT VALUE
Returns the current value of a sequence.

Syntax
Syntax for the CURRENT VALUE function:

Description
The result is the current value of the sequence specified in sequence-name. This is the
value that was returned when the NEXT VALUE function was used for this sequence in this
session.
This function can not be used until the initial value has been established for the sequence
by using NEXT VALUE (i.e. using it immediately after the sequence has been created will
raise an error).
The function can be used where a value-expression would normally be used. It can also
be used after the DEFAULT clause in the CREATE DOMAIN, CREATE TABLE and ALTER
TABLE statements.
USAGE privilege must be held on the sequence in order to use it.

Example
CREATE DOMAIN CHARGE_PERIOD_VALUE AS INTEGER
DEFAULT CURRENT VALUE FOR CHARGE_PERIOD_NO_SEQUENCE;

DAY
Returns the day of the month for the given date expression, expressed as an integer value
in the range 1-31.

Syntax
Syntax for the DAY function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 31.
If the value of date-or-timestamp is null, then the result of the function is null.

Mimer SQL Version 11.0 101
SQL Reference Manual

DAYOFMONTH
Returns the day of the month for the given date expression, expressed as an integer value
in the range 1-31.

Syntax
Syntax for the DAYOFMONTH function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 31.
If the value of date-or-timestamp is null, then the result of the function is null.

DAYOFWEEK
Returns the day of the week for the given date expression, expressed as an integer in the
range 1-7.

Syntax
Syntax for the DAYOFWEEK function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 7, where 1 = Monday.
If the value of date-or-timestamp is null, then the result of the function is null.

Example
SET INT_VAL = DAYOFWEEK(CURRENT_DATE); -- sets INT_VAL to the

-- day number of the current week

SET INT_VAL = DAYOFWEEK(DATE'2024-12-03'); -- sets INT_VAL to 2, for Tuesday

102 Chapter 8 Functions
Scalar Functions

DAYOFYEAR
Returns the day of the year for the given date expression, expressed as an integer in the
range 1-366.

Syntax
Syntax for the DAYOFYEAR function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 366, where 1 = January 1.
The value for a day after February 28 depends on whether the year is a leap year or not.
If the value of date-or-timestamp is null, then the result of the function is null.

Example
SET INT_VAL = DAYOFYEAR(CURRENT_DATE); -- sets INT_VAL to the

-- day number of the current year

SET INT_VAL = DAYOFYEAR(DATE'2016-11-10'); -- sets INT_VAL to 315
SET INT_VAL = DAYOFYEAR(DATE'2017-11-10'); -- sets INT_VAL to 314

DEGREES
Returns an angle expressed in radians as degrees.

Syntax
Syntax for the DEGREES function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function converts a numeric expression in radians to the corresponding values

expressed in degrees. The data type for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

Mimer SQL Version 11.0 103
SQL Reference Manual

EXP
Returns the exponential value for a numeric expression.

Syntax
Syntax for the EXP function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns exponential value for the value expression. The data type for

the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

EXTRACT
Extracts a single field from a DATETIME or INTERVAL value.

Syntax
Syntax for the EXTRACT function:

Description
field-name is one of: YEAR, MONTH, DAY, HOUR, MINUTE or SECOND.
value must be of type DATETIME or INTERVAL and it must contain the field specified
by field-name, otherwise an error is raised.
The data type of the result is integer.
The exception is when field-name is SECOND, in which case the result type is decimal
where the precision is equal to the sum of the leading precision and the seconds precision
of value, with a scale equal to the seconds precision.
When value is a negative INTERVAL, the result is a negative value. In all other cases the
result is a positive value.
If the value of value is null, then the result of the function is null.

Example
SELECT CASE EXTRACT (MONTH FROM ARRIVE)

WHEN 1 THEN 'JANUARY'
WHEN 2 THEN 'FEBRUARY'
....

END
FROM TRAVELS

104 Chapter 8 Functions
Scalar Functions

FLOOR
Returns the largest integer less than or equal to a numeric expression.

Syntax
Syntax for the FLOOR function:

value is a numeric value expression.

Description
The function returns the nearest integer value that is equal or lower to value.
If the value of value is null, then the result of the function is null.
The return data type is based on the input data type. For DECIMAL input, the return data
type is integer.

Example
SET ? = FLOOR(13.13); -- returns 13
SET ? = FLOOR(-13.13); -- returns -14
SET ? = FLOOR(-12.34E1); -- returns -1.240000000E+002

HOUR
Returns the hour for the given time or timestamp expression, expressed as an integer
value in the range 0-23.

Syntax
Syntax for the HOUR function:

time-or-timestamp is a time or timestamp value expression.

Description
The result is an integer value, 0 through 23, representing the hour.
If the value of time-or-timestamp is null, then the result of the function is null.

Example
SET H = HOUR(LOCALTIME); -- sets H to the current hour number

Mimer SQL Version 11.0 105
SQL Reference Manual

INDEX_CHAR
Returns the index character for a string.

Syntax
Syntax for the INDEX_CHAR function:

value is a character value expression

Description
The result is a character value.
If the value of value is null, then the result of the function is null.
The INDEX_CHAR function takes a character string as argument and returns the index
character for the string related to its collation. The default behavior is to return the first
letter of the string, decomposed (accents removed) and capitalized (upper case).
However, many languages include accented letters, digraphs, and sometimes trigraphs as
basic alphabetical characters. These combinations are properly handled by the
INDEX_CHAR function.

Examples
SELECT INDEX_CHAR('östra aros' COLLATE english_1) FROM... -- will return 'O'
SELECT INDEX_CHAR('östra aros' COLLATE swedish_1) FROM... -- will return 'Ö'

IRAND
Returns a random integer number.

Syntax
Syntax for the IRAND function:

seed is an integer value expression

Description
The result is a random integer value, in the range 0 to 2 147 483 647.
If a seed is given, this value is used to calculate the random value. If no seed is given,
the value is calculated from the previous value. It is thus possible to generate the same
random sequence by using the same seed.

Example
SET INT_VAL = MOD(IRAND(), 5); -- sets INT_VAL to a random

-- value between 0 and 4

106 Chapter 8 Functions
Scalar Functions

LEFT
Returns the specified number of leftmost characters in a given character string.

Syntax
Syntax for the LEFT function:

source-string is a character or binary string expression.
string-length is an integer value expressions.

Description
The leftmost string-length characters of source-string are returned.
If count is zero, an empty string is returned.
If count is less than zero, then the result of the function is null.
If the value of either operand is null, then the result of the function is null.

Example
SET CHR_STR = LEFT('TEST STRING', 3); -- sets CHR_STR to 'TES'

LN
Returns the natural logarithm for a numeric expression.

Syntax
Syntax for the LN function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the natural logarithm for the value expression. The data type

for the result is double precision. Valid input values are > 0.
• If the value of value is NULL, then the result of the function is NULL.

Mimer SQL Version 11.0 107
SQL Reference Manual

LOCALTIME
Returns a TIME value denoting the current time (i.e. now).

Syntax
Syntax for the LOCALTIME function:

seconds-precision is an unsigned integer value denoting the seconds precision for
the returned TIME value.

Description
The result is the current time (i.e. now) as a TIME value.
The value of seconds-precision must be between 0 and 9.
If seconds-precision is not specified, the default value of 0 is assumed.
All references to LOCALTIME are effectively evaluated simultaneously from a single
reading of the server clock. Thus the conditional expression LOCALTIME = LOCALTIME
is guaranteed to always evaluate to true.
The value of LOCALTIME will always be equal to the TIME portion of LOCALTIMESTAMP.

Example
UPDATE EVENTS SET ADJUSTED = LOCALTIME -- sets ADJUSTED to current time
WHERE ID = 81; -- (e.g. 15:45:02)

LOCALTIMESTAMP
Returns a TIMESTAMP denoting the current date and time.

Syntax
Syntax for the LOCALTIMESTAMP function:

seconds-precision is an unsigned integer value denoting the seconds precision for
the returned TIMESTAMP value.

Description
The result is the current date and time as a TIMESTAMP value.
The value of seconds-precision must be between 0 and 9.
If seconds-precision is not specified, the default value of 6 is assumed.
All references to LOCALTIMESTAMP are effectively evaluated simultaneously from a
single reading of the server clock. Thus the conditional expression LOCALTIMESTAMP =
LOCALTIMESTAMP is guaranteed to always evaluate to true.
The value of LOCALTIMESTAMP will always be equal to the combined value of
CURRENT_DATE and LOCALTIME.

108 Chapter 8 Functions
Scalar Functions

Example
CREATE TABLE EVENTS(ID INTEGER PRIMARY KEY,
 TS TIMESTAMP DEFAULT LOCALTIMESTAMP);
INSERT INTO EVENTS(ID) VALUES (1); -- default value for TS inserted

-- (e.g. 2019-09-27 16:14:07.230000)
UPDATE EVENTS
SET TS = LOCALTIMESTAMP
WHERE ID <= 10;

LOCATE
Returns the starting position of the first occurrence of a specified string expression in a
given character string, starting from an optional start position, or the left of the character
string.

Syntax
Syntax for the LOCATE function:

sub-string and source-string are character or binary string expressions.
start-position is an integer value expression.

Description
The position of the first occurrence of sub-string in source-string is returned,
starting from the position specified by start-position if given, otherwise from
position 1, in source-string (the left-most position).
If sub-string does not occur in source-string, the functions returns zero.
If the length of source-string is zero, the function returns zero.
If the length of source-string is less than start-position, the function returns
zero.
If the length of sub-string is zero, the function returns 1.
If the value of any operand is null, then the result of the function is null.

Example
SET INT_VAL = LOCATE('NA', 'BANANA', 4); -- sets INT_VAL to 5

Mimer SQL Version 11.0 109
SQL Reference Manual

LOG10
Returns the base-10 logarithm for a numeric expression.

Syntax
Syntax for the LOG10 function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the base-10 logarithm for the value expression. The data type

for the result is double precision. Valid input values are > 0.
• If the value of value is NULL, then the result of the function is NULL.

LOWER
Converts all uppercase letters in a character string to lowercase.

Syntax
Syntax for the LOWER function:

source-string is a character string expression.

Description
The data type of the result is the same as the data type of source-string.
source-string is either in character or national character (i.e. Unicode) format.
If the value of source-string is null, then the result of the function is null.
Note: The length of the result may be longer or shorter than the input value. This

means that using LOWER (or UPPER) on a column may cause data truncation.

Example
SELECT CHAR_LENGTH(TRIM(DESCRIPTION)), LOWER(TRIM(DESCRIPTION))
FROM CHARGES;

110 Chapter 8 Functions
Scalar Functions

MINUTE
Returns the minute for the given time or timestamp expression, expressed as an integer
value in the range 0-59.

Syntax
Syntax for the MINUTE function:

time-or-timestamp is a time or timestamp value expression.

Description
The result is an integer value, 0 through 59, representing the minute.
If the value of time-or-timestamp is null, then the result of the function is null.

Example
SET M = MINUTE(LOCALTIME); -- sets M to the current minute number

MOD
Returns the remainder (modulus) of a specified integer expression divided by a second
specified integer expression.

Syntax
Syntax for the MOD function:

integer-expression-1 and integer-expression-2 are integer value
expressions.

Description
The result is the remainder of integer-expression-1 divided by
integer-expression-2.
If the value of integer-expression-2 is zero, a divide-by-zero error will be raised.
The sign of the result is the same as the sign of integer-expression-1.
If the value of either operand is null, then the result of the function is null.
Note: Mimer SQL also supports the non-standard % modulo operator.

Example
SET INT_VAL = MOD(IRAND(), 5); -- sets INT_VAL to a random

-- value between 0 and 4
SET INT_VAL = IRAND() % 5; -- sets INT_VAL to a random

-- value between 0 and 4

Mimer SQL Version 11.0 111
SQL Reference Manual

MONTH
Returns the month for the given date or timestamp expression, expressed as an integer
value in the range 1-12.

Syntax
Syntax for the MONTH function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 12, representing the month.
If the value of date-or-timestamp is null, then the result of the function is null.

Example
SET M = MONTH(CURRENT_DATE); -- sets M to the current month number

NEXT VALUE
Returns the next value in the series of values defined by a sequence, provided that the last
value in that series has not already been reached.

Syntax
Syntax for the NEXT VALUE function:

Description
The result will be the next value in the series of the values defined by the sequence
specified in sequence-name (this value will then become the session’ current value for
the sequence).
If the sequence is unique (i.e. NO CYCLE option) and the current value of the sequence
specified in sequence-name is already equal to the last value in the series of the values
defined by it an error will be raised and the current value of the sequence will remain
unchanged.
If the sequence is non-unique, the function will always succeed. If the current value of the
sequence specified in sequence-name is equal to the last value in the series of values
generated by the sequence, the initial value of the sequence will be returned.
The function can be used where a value-expression would normally be used. It can also
be used after the DEFAULT clause in the CREATE DOMAIN, CREATE TABLE and ALTER
TABLE statements.

112 Chapter 8 Functions
Scalar Functions

This function is used to establish the initial value of the sequence after it has been created
using the CREATE SEQUENCE statement.
USAGE privilege must be held on the sequence in order to use it.
Note: If the NEXT VALUE function is used in a select clause the sequence will be

incremented for each row returned by the query.

Example
SET Z = NEXT VALUE FOR Z_SEQUENCE;

OCTET_LENGTH
Returns the octet (byte) length of a string. For single-octet character sets this is the same
as CHARACTER_LENGTH.

Syntax
Syntax for the OCTET_LENGTH function:

source-string is a character or binary string expression.

Description
OCTET_LENGTH returns an INTEGER value.
If the data type of source-string is variable-length character or variable length binary,
then the result of OCTET_LENGTH is the same as the actual length of source-string in
octets.
If the data type of source-string is fixed-length character or fixed-length binary, then
the result of OCTET_LENGTH is the same as the fixed-length of source-string.
If the data type of source-string is variable-length national character, then the result
of OCTET_LENGTH is the same as the actual length of source-string in octets, i.e. 4
times the actual number of characters.
If the data type of source-string is fixed-length national character, then the result of
OCTET_LENGTH is the same as 4 times the fixed-length of source-string.
If the value of source-string is null, then the result of the function is null.

Example
SET INT_VAL = OCTET_LENGTH(X'4142'); -- sets INT_VAL to 2
SET INT_VAL = OCTET_LENGTH('ABC'); -- sets INT_VAL to 3
SET INT_VAL = OCTET_LENGTH(n'ABC'); -- sets INT_VAL to 12

Mimer SQL Version 11.0 113
SQL Reference Manual

OVERLAY
Returns a character string where a number of characters, beginning at a given position,
have been deleted from a character string and replaced with a given string expression.

Syntax
Syntax for the OVERLAY function:

string-1 and string-2 are character or binary string expressions.
string-1 and string-2 must be of the same type, i.e. either both character or both
binary.
start-position and string-length are integer value expressions.

Description
The string-length number of characters in string-1, starting from position start-
position are deleted from string-1. Then string-2 is inserted into string-1, at
the ‘point of deletion’. The resulting character or binary string is returned.
If the value of string-length is positive, the string-length number of characters
to the right of start-position are deleted. If the value of string-length is
negative, the string-length number of characters to the left of start-position are
deleted.
The point-of-deletion is where the cursor would be if you had just used a text editor to
select the characters, as described, and performed an edit-cut operation.
A value for start-position of less than 1 (zero or negative) specifies a position to the
left of the beginning of string-1.
It is possible that the specified deletion may not actually affect any of the characters of
string-1, in which case the OVERLAY operation produces the effect of a prepend.
If the value of any operand is null, then the result of the function is null.
string-2 must not contain Unicode characters outside the Latin1 repertoire if string-
1 is of character type.

Example
OVERLAY('ABCDEF' PLACING 'ab' FROM 2 FOR 3); -- returns 'AabEF'
OVERLAY('ABCDEF' PLACING 'ab' FROM 2); -- returns 'AabDEF'

114 Chapter 8 Functions
Scalar Functions

PASTE
Returns a character string where a specified number of characters, beginning at a given
position, have been deleted from a character string and replaced with a given string
expression.

Syntax
Syntax for the PASTE function:

string-1 and string-2 are character or binary string expressions.
string-1 and string-2 must be of the same type, i.e. either both character or both
binary.
start-position and string-length are integer value expressions.

Description
The string-length number of characters in string-1, starting from position start-
position are deleted from string-1. Then string-2 is inserted into string-1, at
the ‘point of deletion’. The resulting character or binary string is returned.
If the value of string-length is positive, the string-length number of characters
to the right of start-position are deleted. If the value of string-length is
negative, the string-length number of characters to the left of start-position are
deleted.
The point-of-deletion is where the cursor would be if you had just used a text editor to
select the characters, as described, and performed an edit-cut operation.
A value for start-position of less than 1 (zero or negative) specifies a position to the
left of the beginning of string-1.
It is possible that the specified deletion may not actually affect any of the characters of
string-1, in which case the PASTE operation produces the effect of a prepend.
If the value of any operand is null, then the result of the function is null.
string-2 must not contain Unicode characters outside the Latin1 repertoire if string-
1 is of character type.

Example
SET CHR_STR = PASTE('TEST STRING', 6, 3, 'P'); -- sets CHR_STR to 'TEST PING'

Mimer SQL Version 11.0 115
SQL Reference Manual

POSITION
Returns the starting position of the first occurrence of a specified string expression in a
given character string, starting from the left of the character string.

Syntax
Syntax for the POSITION function:

sub-string and source-string are character or binary string expressions.
sub-string and source-string must be of the same type, i.e. either both character
or both binary.

Description
The position of the first occurrence of sub-string in source-string is returned,
starting from position 1 in source-string (the left-most position).
If sub-string does not occur in source-string, the functions returns zero.
If the length of source-string is zero, the function returns zero.
If the length of sub-string is zero, the function returns 1.
If the value of either operand is null, then the result of the function is null.

Example
SET INT_VAL = POSITION('STR' IN 'TEST STRING'); -- sets INT_VAL to 6

POWER
Returns the specified numeric expression, raised to the power of the given value.

Syntax
Syntax for the POWER function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the value of the first argument raised to the power of the

second argument. The data type for the result is double precision.
• If the value of value-1 or value-2 is NULL, then the result of the function is

NULL.

116 Chapter 8 Functions
Scalar Functions

QUARTER
Returns the quarter for the given date or timestamp expression, expressed as an integer
value in the range 1-4.

Syntax
Syntax for the QUARTER function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 4, representing the quarter.
If the value of date-or-timestamp is null, then the result of the function is null.

Example
SET Q = QUARTER(CURRENT_DATE); -- sets Q to the current quarter number

RADIANS
Returns an angle expressed in degrees as radians.

Syntax
Syntax for the RADIANS function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function converts a value expressed in degrees to the corresponding value

expressed as radians. The data type for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

Mimer SQL Version 11.0 117
SQL Reference Manual

REGEXP_MATCH
Performs a regular expression comparison.

Syntax
Syntax for the REGEXP_MATCH function:

Description
The REGEXP_MATCH function compares the value in a string expression with a character
string pattern which may contain different meta-characters.
Compared to LIKE, the regular expression provides a much more flexible way to match
strings of text, such as complex patterns of characters.

Regular expression constructs
Characters

x The character x

\ Escape for meta characters: $ & () * + , - . ? [] ^ { | }

\\ The backslash character

\t The tab character

\n The newline character

\v The vertical tab character

\f The form feed character

\r The carriage return character

\x{h...h} The character with hex value 0xh...h (<= 0x10FFFF)

Character classes

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[[a-d][m-p]] a through d, or m through p (union)

[[a-z]&&[def]] d, e, or f (intersect)

[[a-z]--[bc]] a through z, except for b and c (minus)

118 Chapter 8 Functions
Scalar Functions

Predefined
character classes

. Any character

\d A digit character

\D Not a digit character ([^\d])

\s A whitespace character

\S Not a whitespace character ([^\s])

\w A word character

\W Not a word character ([^\w])

Boundary
matchers

^ The beginning of string

$ The end of string

Quantifiers

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

X{n,} X, at least n times

X{n,m} X, at least n but not more than m times

Logical operators

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

Classes for
Unicode
categories

\p{L} Letter

\p{Ll} Lowercase_Letter

\p{Lu} Uppercase_Letter

\p{Lt} Titlecase_Letter

\p{Lm} Modifier_Letter

Mimer SQL Version 11.0 119
SQL Reference Manual

\p{Lo} Other_Letter

\p{N} Number

\p{Nd} Decimal_Digit_Number

\p{Nl} Letter_Number

\p{No} Other_Number

\p{M} Mark

\p{Mn} Non_Spacing_Mark

\p{Mc} Spacing_Combining_Mark

\p{Me} Enclosing_Mark

\p{P} Punctuation

\p{Pd} Dash_Punctuation

\p{Ps} Open_Punctuation

\p{Pe} Close_Punctuation

\p{Pi} Initial_Punctuation

\p{Pf} Final_Punctuation

\p{Pc} Connector_Punctuation

\p{Po} Other_Punctuation

\p{S} Symbol

\p{Sm} Math_Symbol

\p{Sc} Currency_Symbol

\p{Sk} Modifier_Symbol

\p{So} Other_Symbol

\p{Z} Separator

\p{Zs} Space_Separator

\p{Zl} Line_Separator

Classes for
Unicode
categories

120 Chapter 8 Functions
Scalar Functions

Examples
regexp_match(search_string,'abc')

The regexp_match function will return TRUE if the search_string anywhere has
the sequence abc. Note the difference with the like predicate where the same criteria
would need to be expressed as

search_string like '%abc%'

\p{Zp} Paragraph_Separator

\p{C} Other

\p{Cc} Control

\p{Cf} Format

\p{Co} Private_Use

\p{Cn} Unassigned

Classes for Unicode scripts

\p{Arabic} \p{Kannada}

\p{Armenian} \p{Katakana}

\p{Bengali} \p{Khmer}

\p{Bopomofo} \p{Lao}

\p{Cherokee} \p{Latin}

\p{Common} \p{Malayalam}

\p{Cyrillic} \p{Mongolian}

\p{Devanagari} \p{Myanmar}

\p{Ethiopic} \p{Oriya}

\p{Georgian} \p{Sinhala}

\p{Greek} \p{Syriac}

\p{Gujarati} \p{Tamil}

\p{Gurmukhi} \p{Telugu}

\p{Han} \p{Thaana}

\p{Hangul} \p{Thai}

\p{Hebrew} \p{Tibetan}

\p{Hiragana} \p{Yi}

Classes for
Unicode
categories

Mimer SQL Version 11.0 121
SQL Reference Manual

Escape of meta characters are done using a backslash character:
regexp_match(search_string,'\[abc\]')

would be true if search_string anywhere contains the string [abc], (including the
square brackets).
By using the boundary characters ^ and $ it is possible to specify that a search string
should start with or end with some specific characters. E.g.

regexp_match(search_string,'^Mimer')

would return true if the search_string started with the letters Mimer. For this type of
searches, the database will consider using an index if appropriate.
The regexp_match function is collation aware. Thus

regexp_match('AAlborg' collate danish_1,'ålborg')

is true while
regexp_match('AAlborg' collate danish_2,'ålborg')

is false since a collation for danish will match AA to Å, but the level 1 collation is case
insensitive which the level 2 collation is not.
This far, all of the examples given, can also be expressed with the like predicate. The
following examples will deal with ranges and quantifiers which can be used to specify
more complex search patterns.
To search for non-printable characters the regular expression

'[\x{0}-\x{1B}]'

could be used.
To find strings beginning with An or A, regardless of case, followed by a space and one
or more arbitrary characters the pattern would be

'^(A|an)|A|n .+'

The pattern
'[a-zA-Z]{3}.[0-9]{3}'

would match a string containing three occurrences of a letter between a and z or A and Z,
followed by an arbitrary character and three consecutive digits.
General information about the different classes for Unicode categories can be found at
https://www.unicode.org/reports/tr18/ and https://www.unicode.org/reports/tr44/. Please note that these
documents cover lots of functionality not supported by Mimer SQL.

https://www.unicode.org/reports/tr18/
https://www.unicode.org/reports/tr44/

122 Chapter 8 Functions
Scalar Functions

REPEAT
Returns a character string composed of a specified string expression repeated a given
number of times.

Syntax
Syntax for the REPEAT function:

sub-string is a character or binary string expression.
repeat-count is an integer expression.

Description
The result is a character or binary string consisting of sub-string repeated
repeat-count times.
If the value of repeat-count is zero, then the result of the function is a character or
binary string of length zero.
If the value of repeat-count is less than zero, then the result of the function is null.
If the value of either operand is null, then the result of the function is null.

Example
SET CHR_STR = REPEAT('ABC', 3); -- sets CHR_STR to 'ABCABCABC'

REPLACE
Replaces all occurrences of a given string expression with another string expression in a
character string.

Syntax
Syntax for the REPLACE function:

source-string, string-1 and string-2 are character or binary string expressions.
source-string, string-1 and string-2 must be of equal type, i.e. either all are
character or all are binary.

Description
All occurrences of string-1 found in source-string are replaced with string-2,
the resulting character or binary string is returned.
If the value of any of the operands is null, then the result of the function is null.
string-2 must not contain Unicode characters outside the Latin1 repertoire if source-
string is of character type.

Example
SET CHR_STR = REPLACE('TEST STRING', 'ST', 'NOR'); -- sets CHR_STR to

-- 'TENOR NORRING'

Mimer SQL Version 11.0 123
SQL Reference Manual

RIGHT
Returns the specified number of rightmost characters in a given character string.

Syntax
Syntax for the RIGHT function:

source-string is a character or binary string expression.
string-length is an integer value expressions.

Description
The rightmost string-length characters of source-string are returned.
If count is zero, an empty string is returned.
If count is less than zero, then the result of the function is null.
If the value of either operand is null, then the result of the function is null.

Example
SET CHR_STR = RIGHT('TEST STRING', 3); -- sets CHR_STR to 'ING'

ROUND
Rounds a numeric value.

Syntax
Syntax for the ROUND function:

numeric-value is an integer or a float value expression.
integer-value is an integer value expression.

Description
If integer-value is positive, the value describes the number of digits permitted in
numeric-value, after rounding, to the right of the decimal point, if it is negative it
describes the number of digits allowed to the left of the decimal point.
The value returned depends on the data type of numeric-value.
If the value of either operand is null, then the result of the function is null.
Returns the given numeric expression rounded to the number of places to the right of the
decimal point specified by a given integer expression.
If the integer expression is negative, the numeric expression is rounded to a number of
places to the left of the decimal point specified by the absolute value of the integer
expression.

124 Chapter 8 Functions
Scalar Functions

Examples
SET :NUM_VAL = ROUND(762.847, 2); -- sets NUM_VAL to 762.850
SET :NUM_VAL = ROUND(762.847, 1); -- sets NUM_VAL to 762.800
SET :NUM_VAL = ROUND(762.847, 0); -- sets NUM_VAL to 763.000
SET :NUM_VAL = ROUND(762.847, -1); -- sets NUM_VAL to 760.000
SET :NUM_VAL = ROUND(762.847, -2); -- sets NUM_VAL to 800.000
SET :NUM_VAL = ROUND(7654, -2); -- sets NUM_VAL to 7700

SECOND
Returns the second for the given time or timestamp expression, expressed as an integer
value in the range 0-59.

Syntax
Syntax for the SECOND function:

time-or-timestamp is a time or timestamp value expression.

Description
The result is an integer value, 0 through 59, representing the second.
If the value of time-or-timestamp is null, then the result of the function is null.

Example
SET INT_VAL = SECOND(LOCALTIMESTAMP); -- sets INT_VAL to the second number

SESSION_USER
Returns the name of the currently connected ident.

Syntax
Syntax for the SESSION_USER function:

Description
The result is the name of the current ident (i.e. the ident who established the current
database connection).
The data type of the returned value is nchar varying with a maximum length of 128, with
the collation SQL_IDENTIFIER.

Example
The following example returns the Program ident if entered, otherwise the session ident:

SET CHR_STR = COALESCE(CURRENT_PROGRAM(), SESSION_USER);

Mimer SQL Version 11.0 125
SQL Reference Manual

SIGN
Returns an indicator of the sign of the given numeric expression.
If the numeric expression is less than zero, -1 is returned. If the numeric expression is
equal to zero, 0 is returned. If the numeric expression is greater than zero, 1 is returned.

Syntax
Syntax for the SIGN function:

numeric-value is an integer or a float value expression.

Description
The function returns an indicator of the sign of numeric-value. If numeric-value is
less than zero, -1 is returned. If numeric-value equals zero, 0 is returned. If
numeric-value is greater than zero, 1 is returned.
If the value of numeric-value is null, then the result of the function is null.

Examples
SET INT_VAL = SIGN(-12); -- sets INT_VAL to -1
SET INT_VAL = SIGN(0); -- sets INT_VAL to 0
SET INT_VAL = SIGN(12); -- sets INT_VAL to 1

SIN
Returns the sine for a numeric expression.

Syntax
Syntax for the SIN function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the sine for the value expressed as radians. The data type for

the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

126 Chapter 8 Functions
Scalar Functions

SINH
Returns the hyperbolic sine for a numeric expression.

Syntax
Syntax for the SINH function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the hyperbolic sine for the value expressed as radians. The

data type for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

SOUNDEX
Returns a character string value containing six digits that represent an encoding of the
sound of the given string expression.

Syntax
Syntax for the SOUNDEX function:

source-string is a character string expression.

Description
The function returns a character string value containing six digits that represent an
encoding of the sound of source-string.
If source-string contains two or more words, they are effectively concatenated into a
single word by ignoring the separating space characters.
If the SOUNDEX values for two strings compare to be equal then they sound the same.
If the value of source-string is null, then the result of the function is null.

Mimer SQL Version 11.0 127
SQL Reference Manual

SQRT
Returns the square root of a numeric expression.

Syntax
Syntax for the SQRT function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the square root of the value. The data type for the result is

double precision. Valid input values are greater than or equal to 0.
• If the value of value is NULL, then the result of the function is NULL.

SUBSTRING
Extracts a substring from a given string, according to specified start position and length
of the substring.

Syntax
Syntax for the SUBSTRING function:

source-string is a character or binary string expression.
start-position and string-length are integer value expressions.

Alternative, comma separated syntax

Description
SUBSTRING returns a character or binary string containing string-length characters
of source-string, starting at the character specified by start-position, and in the
same sequence as they appear in source-string.
If any of these positions are before the start or after the end of source-string, then no
character is returned for that position. If all positions are outside the source string, an
empty string is returned.
The first character in source-string has position 1.

128 Chapter 8 Functions
Scalar Functions

If the data type of source-string is variable-length character, then the result of the
SUBSTRING function is a variable-length character with maximum string length equal to
the maximum length of source-string. If the data type of source-string is fixed-
length character, then the result of the SUBSTRING function is a variable-length character
with maximum string length equal to the fixed length of source-string.
If the data type of source-string is variable-length binary, then the result of the
SUBSTRING function is a variable-length binary with maximum string length equal to the
maximum length of source-string. If the data type of source-string is fixed-
length binary, then the result of the SUBSTRING function is a variable-length binary with
maximum string length equal to the fixed length of source-string.
If string-length is negative, or if start-position is greater than the number of
characters in source-string, the function fails and an error is returned.
If string-length is omitted then it is assumed to be:

CHAR_LENGTH(source-string) + 1 - start-position

i.e. the remainder of source-string, starting at start-position, is returned.
If the value of any operand is null, then the result of the function is null.
Character strings returned from a SUBSTRING function, inherit the collation from the
source string.

Example
SET CHR_STR = SUBSTRING('Whatever' FROM 3 FOR 3); -- sets CHR_STR to 'ate'

TAIL
Returns the specified number of rightmost characters in a given character string.

Syntax
Syntax for the TAIL function:

source-string is a character or binary string expression.
count is an integer value expression.

Description
The rightmost count characters of source-string are returned.
If count is zero, an empty string is returned.
If count is less than zero, then the result of the function is null.
If the value of either operand is null, then the result of the function is null.

Example
SET CHR_STR = TAIL('TEST STRING', 3); -- sets CHR_STR to 'ING'

Mimer SQL Version 11.0 129
SQL Reference Manual

TAN
Returns the tangent for a numeric expression.

Syntax
Syntax for the TAN function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the tangent for the value expressed as radians. The data type

for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

TANH
Returns the hyperbolic tangent for a numeric expression.

Syntax
Syntax for the TANH function:

value is a numeric value expression. The function handles values that are within the
range of a double precision expression.

Rules
• The function returns the hyperbolic tangent for the value expressed as radians. The

data type for the result is double precision.
• If the value of value is NULL, then the result of the function is NULL.

130 Chapter 8 Functions
Scalar Functions

TRIM
Removes leading and/or trailing instances of a specified character from a string.

Syntax
Syntax for the TRIM function:

trim-character is a character or binary string expression of length 1.
source-string is a character or binary string expression.
source-string and trim-character must be of equal type, i.e. either must both be
character or both binary.
Note: LEADING, TRAILING or BOTH is referred to as the trim-specification

below.

Description
If trim-character is not specified, ' ' (space) is implicit for character data, and x'00'
is implicit for binary data.
If trim-specification is not specified, BOTH is implicit.
If the data type of source-string is variable-length character, then the result of the
TRIM function is a variable-length character with maximum string length equal to the
maximum length of source-string. If the data type of source-string is fixed-
length character, then the result of the TRIM function is a variable-length character with
maximum string length equal to the length of source-string.
If the data type of source-string is variable-length binary, then the result of the TRIM
function is a variable-length binary with maximum string length equal to the maximum
length of source-string. If the data type of source-string is fixed-length binary,
then the result of the TRIM function is a variable-length binary with maximum string
length equal to the length of source-string.
If the length of trim-character is not 1, an error is returned.
If the value of either operand is null, then the result of the function is null.
Character strings returned from a TRIM function, inherit the collation from the source
string.

Examples
SET CHR_STR = TRIM(' TEST '); -- sets CHR_STR to 'TEST'
SET CHR_STR = TRIM('T' FROM 'TEST'); -- sets CHR_STR to 'ES'
SET CHR_STR = TRIM(LEADING 'T' FROM 'TEST'); -- sets CHR_STR to 'EST'
SET CHR_STR = TRIM(TRAILING 'T' FROM 'TEST'); -- sets CHR_STR to 'TES'

Mimer SQL Version 11.0 131
SQL Reference Manual

TRUNCATE
Returns the given numeric expression truncated to a number of places to the right of the
decimal point specified by a given integer expression.
If the integer expression is negative, the numeric expression is truncated to a number of
places to the left of the decimal point specified by the absolute value of the integer
expression.

Syntax
Syntax for the TRUNCATE function:

numeric-value is an integer or a float value expression.
integer-value is an integer value expression.

Description
If integer-value is positive, the value describes the number of digits permitted in
numeric-value, after truncation, to the right of the decimal point.
If it is negative, it describes the number of digits allowed to the left of the decimal point.
The value returned depends on the data type of numeric-value.
If the value of either operand is null, then the result of the function is null.

Examples
SET NUM_VAL = TRUNCATE(25.89, 1); -- sets NUM_VAL to 25.80
SET NUM_VAL = TRUNCATE(25.89, -1); -- sets NUM_VAL to 20.00

UNICODE_CHAR
Returns the character that has the given Unicode scalar value.

Syntax
Syntax for the UNICODE_CHAR function:

code is a numeric expression representing a Unicode scalar value.

Description
If the value of code represents a valid Unicode character, the function returns a single
national character value, i.e. NCHAR(1), otherwise an error is raised.
If the value of code is null, then the result of the function is null.

Example
SET NCHR_VAL = UNICODE_CHAR(65); -- sets NCHR_VAL to 'A'

132 Chapter 8 Functions
Scalar Functions

UNICODE_CODE
Returns the Unicode scalar value of the leftmost character in the given string expression,
as an integer.

Syntax
Syntax for the UNICODE_CODE function:

source-string is a character or binary string expression.

Description
A single INTEGER value is returned, representing a Unicode scalar value.
If the source-string contains more than one character, the Unicode scalar value of the
left-most character is returned.
If the length of source-string is zero, then the result of the function is null.
If the value of source-string is null, then the result of the function is null.

Example
SET INT_VAL = UNICODE_CODE(n'A'); -- sets INT_VAL to 65

UPPER
Converts all lowercase letters in a character string to uppercase.

Syntax
Syntax for the UPPER function:

source-string is a character string expression.

Description
The data type of the result is the same as the data type of source-string.
source-string is either in character or national character (i.e. Unicode) format.
If the value of source-string is null, then the result of the function is null.
Note: The length of a result may be longer or shorter than the input value. This

means that using UPPER on a column may cause data truncation.

USER
Returns the same value as CURRENT_USER. We recommend that you use
CURRENT_USER, see CURRENT_USER on page 99.

Mimer SQL Version 11.0 133
SQL Reference Manual

WEEK
Returns the week of the year for the given date or timestamp expression, expressed as an
integer value in the range 1-53.

Syntax
Syntax for the WEEK function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 53, representing the week number in the year,
calculated in accordance with the ISO 8601 standard. (The year’s first week with 4 or
more days is week 1.)
If the value of date-or-timestamp is null, then the result of the function is null.

Example
SET INT_VAL = WEEK(CURRENT_DATE); -- sets INT_VAL to the week number

-- of the current year

YEAR
Returns the year for the given date or timestamp expression, expressed as an integer value
in the range 1-9999.

Syntax
Syntax for the YEAR function:

date-or-timestamp is a date or timestamp value expression.

Description
The result is an integer value, 1 through 9999, representing the year.
If the value of date-or-timestamp is null, then the result of the function is null.

Example
SET INT_VAL = YEAR(CURRENT_DATE); -- sets INT_VAL to the year number

-- of the current year

Standard Compliance
This section summarizes standard compliance for scalar functions.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

134 Chapter 8 Functions
Scalar Functions

SQL-2016 Features
outside core

Feature F052, “Intervals and datetime arithmetic”.
Feature F555, “Enhanced seconds precision”
LOCALTIME and LOCALTIMESTAMP functions
with fractions of seconds.
Feature T176, “Sequence generator support”.
Feature T312, “OVERLAY function”.
Feature T441, “Support for ABS and MOD functions”.
Feature T621, “Enhanced numeric functions”.
Feature T622, “Trigonometric functions”.
Feature T624, “Common logarithm functions”.

Standard Compliance Comments

Mimer SQL Version 11.0 135
SQL Reference Manual

Mimer SQL
extension

Support for:
ASCII_CHAR
ASCII_CODE
ATAN2
BEGINS
BUILTIN.BEGINS_WORD
BUILTIN.MATCH_WORD
BUILTIN.UTC_TIMESTAMP
COT
CURRENT_PROGRAM
CURRENT VALUE
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
DEGREES
HOUR
INDEX_CHAR
IRAND
LEFT
LOCATE
MONTH
PASTE
QUARTER
RADIANS
REGEXP_MATCH
REPEAT
REPLACE
ROUND
SECOND
SIGN
SOUNDEX
TAIL
TRUNCATE
UNICODE_CHAR
UNICODE_CODE
WEEK
YEAR
is a Mimer SQL extension.

Standard Compliance Comments

136 Chapter 8 Functions
Set Functions

Set Functions
Set functions are pre-defined functions used in select specifications. They operate on the
set of values in one column of the result of the SELECT statement, or on the subset in a
group if the statement includes a GROUP BY clause.
The result of a set function is a single value for each operand set.

Syntax for Set Functions
The general syntax for a set function is:

AVG
Returns the average of the values in the set.
Note: AVG can only be applied to numerical and interval values.

COUNT
Returns the number of values in the set.

MAX
Returns the largest value in the set.

MIN
Returns the smallest value in the set.

SUM
Returns the sum of the values in the set.
Note: SUM can only be applied to numerical and interval values.

Examples
SELECT MIN(PRICE) AS INEXPENSIVE, MAX(PRICE) AS EXPENSIVE
FROM ROOM_PRICES WHERE HOTELCODE = 'LAP';

SELECT HOTELCODE, AVG(PRICE) AS AVERAGE_PRICE
FROM ROOM_PRICES
GROUP BY HOTELCODE;

SELECT COUNT(*) FROM SOME_TABLE;

Mimer SQL Version 11.0 137
SQL Reference Manual

Operational Mode
The operational mode of a set function is determined by the use of the keywords ALL and
DISTINCT.

When ALL is specified or no keyword is used:
• Any duplicate values in the operand set are retained.

When DISTINCT is specified:
• Redundant duplicate values are eliminated from the operand set before the function

is applied.
• The result of the set function must not be combined with other terms using binary

arithmetic operators.
• For the set functions MAX and MIN, the DISTINCT keyword makes no difference to

the result. (The same value will be returned with or without DISTINCT.)

Null Values
For all set functions except COUNT(*), any null values in the operand set are eliminated
before the set function is applied, regardless of whether DISTINCT is specified or not.
The special form COUNT(*) returns the number of rows in the result table, including any
null values. The keywords ALL and DISTINCT may not be used with this form of COUNT.
If the operand set is empty, the COUNT function returns the value zero. All other functions
return null for an empty operand set.
The COUNT function returns an INTEGER. The MAX and MIN functions return a value with
the same type and precision as the operand. The precision of the result returned by SUM
and AVG is considered below.

Restrictions
Column references in the argument of a set function may not address view columns which
are themselves derived from set functions.
The argument of a set function must contain at least one column reference and cannot
contain any set function references. If the column is an outer reference, then the
expression should not include any operators.
If a set function contains a column that is an outer reference, then the set function must
be contained in a subquery of a HAVING clause.

Results of Set Functions
When the argument of a set function is a numerical value, the precision and scale of the
set function result is evaluated in accordance with the rules given below. If the argument
is an expression, the expression is first evaluated as described in Expressions on page 141
before the set function is applied.

138 Chapter 8 Functions
Set Functions

Evaluating Set Functions

The following examples show how some set functions are evaluated.
AVG(SMALLINT) gives SMALLINT
AVG(INTEGER) gives INTEGER
AVG(DECIMAL(38,10)) gives DECIMAL(45,17)
AVG(DECIMAL(4,2)) gives DECIMAL(14,12)
AVG(INTERVAL YEAR(2) TO MONTH) gives INTERVAL YEAR(2) TO MONTH
SUM(SMALLINT) gives INTEGER(15)
SUM(INTEGER) gives INTEGER(20)
SUM(DECIMAL(38,10)) gives DECIMAL(45,10)
SUM(DECIMAL(4,2)) gives DECIMAL(14,2)
SUM(INTERVAL YEAR(2) TO MONTH) gives INTERVAL YEAR(2) TO MONTH

Note: Often, the average of a series of integers is required as a decimal rather than an
integer. This may be achieved by casting the value to a decimal using the CAST
function.
For example, if the values in the integer column COL are 1, 3 and 6, then
AVG(COL) returns 3 but AVG(CAST(COL as decimal(14,4))) returns
3.33333333333333.
Alternatively, multiply the AVG argument by 1.0, i.e. AVG(COL * 1.0).

Standard Compliance
This section summarizes standard compliance for set functions.

FLOAT(p') INTEGER(p') DECIMAL(p',s')

SUM FLOAT(p)a

a. p=max(15, p’)

INTEGER(p)b

b. p=min(45, 10+p’)

DECIMAL(p,s)c

c. p=min(45, 10+p') s=s'

AVG FLOAT(p)a INTEGER(p)d

d. p=p’

DECIMAL(p,s)e

e. p=min(45, 10+p') s=p-(p'-s')

MAX, MIN FLOAT(p)d INTEGER(p)d DECIMAL(p,s)f

f. p=p' s=s'

COUNT INTEGER(10) INTEGER(10) INTEGER(10)

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F441, “Extended set function support”.
Feature F561, “Full value expressions” use of
DISTINCT expression in set function, where expression
is not a column.

Mimer SQL Version 11.0 139
SQL Reference Manual

140 Chapter 8 Functions
Set Functions

Mimer SQL Version 11.0 141
SQL Reference Manual

Chapter 9

Expressions and
Predicates

This chapter discusses general value specifications, known as expressions; and
conditional statements, known as predicates.

Expressions
Expressions are used in a variety of contexts within SQL statements, particularly in
search condition predicates and the SET clause in UPDATE statements respectively.
An expression always evaluates to a single value.

Syntax
The syntax of an expression is:

142 Chapter 9 Expressions and Predicates
Expressions

where a value-expression is as follows:

Note: A user-defined-function is created by using the CREATE FUNCTION
statement.

Note: In this position, the COLLATE clause’s purpose is to specify the result’s
collation. E.g. MIN(col_swe) collate english_1 will evaluate MIN
according to col_swe’s collation, then the result will have an english_1
collation attribute.

Unary Operators
A unary operator operates on only one operand.
The prefix operator + (unary plus) does not change its operand.
The prefix operator - (unary minus) reverses the sign of its operand.

Binary Operators
A binary operator operates on two operands.
The binary operators specify addition (+), subtraction (-), multiplication (*) and division
(/) for numerical operands, and concatenation (||) for string operands.

Operands
When a column name is used as an operand, it represents the single value contained in the
column for the row currently addressed when the expression is evaluated.
The column name may be qualified by the name of the table or view, see Identifiers on
page 38.

Mimer SQL Version 11.0 143
SQL Reference Manual

Evaluating Arithmetical Expressions
Expressions within parentheses are evaluated first. When the order of evaluation is not
specified by parentheses, the customary arithmetical rules apply, i.e. multiplication and
division are performed before addition and subtraction and operators with the same
precedence are applied from left to right.
If any operand in an expression is null, the whole expression evaluates to null. No other
expressions evaluate to null. Division by zero results in a run-time error.
Arithmetical expressions with mixed numerical and character data are illegal.
Note: Where host variables are used in expressions, type conversion may result in

apparently incompatible data types being accepted, see Data Types in SQL
Statements on page 44.

The type and precision of the result of an arithmetical expression is determined in
accordance with the rules described below. If there are more than two operands in an
expression, the type and precision of the result is derived in accordance with the sequence
in which the component binary operations are performed.

Result Data Types
In descriptive terms, the rules are as follows:

• If any of the operands is a DOUBLE PRECISION, the result is DOUBLE
PRECISION.
For all arithmetic expressions, the result is always a DOUBLE PRECISION, no
matter what other data types are involved.

• Otherwise, if any of the operands is a REAL, the result is REAL.
For all arithmetic expressions, the result is always a REAL, except for if the other
operand is DOUBLE PRECISION, then the result is DOUBLE PRECISION.

• Otherwise, if any of the operands is FLOAT(p), the result is FLOAT(p).
For all arithmetic expressions, the precision of the result is the highest operand
precision. However, the precision of a FLOAT(p) result is never less than 16.

• Otherwise, if all the operands are integer, the result is integer.
The integer data types SMALLINT, INTEGER and BIGINT are used whenever
possible (when the result fits).
For addition, subtraction and multiplication with both operands of type SMALLINT,
INTEGER or BIGINT, the result data type is the data type of the highest operand,
except for operations on two SMALLINT’s, where the result is an INTEGER. For
division of SMALLINT, INTEGER or BIGINT, the result data type is the data type of
the dividend.
For addition, subtraction and multiplication with at least one operand that is
INTEGER(p), where the precision is less than 19, the result data type is an INTEGER
or BIGINT, the highest operand decides.
For addition, subtraction and multiplication with at least one operand that is
INTEGER(p) where the precision is greater than 18, the result data type is an
INTEGER(p). For addition and subtraction, the precision of the result is the
precision of the highest operand + 1. For multiplication, the precision of the result
is the sum of the precision of the operands. However, the precision may never
exceed 45 for the result of any operation.

144 Chapter 9 Expressions and Predicates
Expressions

For division, the result data type is mainly the data type of the dividend. If the
dividend is an INTEGER(p < 19), the result data type is a SMALLINT when p < 5,
INTEGER when p < 10 or BIGINT when p < 19. If the dividend is an
INTEGER(p > 18), the result data type is an INTEGER(p), where the precision is
the same as of the dividend.

• Otherwise, if all the operands are decimal, or decimal and integer operands
are mixed, the result is decimal.
For expressions mixing decimal and integer operands, the integer operand is treated
like a decimal with scale set to 0. INTEGER(p) is treated as DECIMAL(p,0),
SMALLINT is treated as DECIMAL(5,0), INTEGER is treated as DECIMAL(10,0)
and BIGINT is treated as DECIMAL(19,0).
For addition and subtraction, the number of positions to the left of the decimal point
(i.e. the difference between precision and scale) in the result is the greatest number
of positions in any operand plus 1. The scale of the result is the greatest scale of any
of the operands. The precision may not exceed 45.
For multiplication, the precision of the result is the sum of the precisions of the
operands.
The scale of the result is the sum of the scales of the operands. Neither the precision
nor the scale may exceed 45. If the value of the result does not fit into the precision
and scale, overflow occurs.
For division, the precision of the result is the sum of the precisions of the operands.
The precision is however never less than 15 and may not exceed 45.
The scale of the result is calculated as the precision of the result, minus the number
of positions to the left of the decimal point in the dividend, minus the scale of the
divisor.

Evaluating String Expressions
The result of a string concatenation expression is a string containing the first operand
string directly followed by the second.
The following rules apply:
• If string literals or fixed-length host variables are concatenated, any trailing blanks

in the operands are retained.
• If a fixed-length character column value is directly concatenated with another

string, any trailing blanks in the column value up to the defined fixed length of the
column are retained.

• If a variable-length character column value is directly concatenated with another
string, any trailing blanks in the column value up to the actual length of the column
value are retained.

• If two character values are concatenated, the result will be a variable-length
character value.

• If a character value and a national character value are concatenated, the result will
be a variable-length national character value.

• If either of the operands in a concatenation expression is null, the result of the
expression is null.

Mimer SQL Version 11.0 145
SQL Reference Manual

• When concatenating string expressions, the resulting string’s collation depends on
whether and where a collation has been specified:
• If no collation(s) have been specified for the column-definition, in a domain or

explicitly in the concatenation statement, then the resulting string has the Mimer
SQL default collation. See Appendix B Character Sets.

• If one string has a specific collation and the other(s) do not then they are coerced
into having the specific collation.

• If the strings have specific but differing collations, an error will be raised.
For more information, see the Mimer SQL User’s Manual, Chapter 4, Collations.

Select Specification
A select specification can be used as an expression. This is commonly known as scalar
subqueries. A scalar subquery may not return more than one value. The result of an empty
subquery is null.

Examples
SET total = (SELECT COUNT(*) FROM categories)

SELECT c.surname, c.forename,
(SELECT COUNT(*) FROM orders
WHERE customer_id = c.customer_id) AS orders

FROM customers AS c

The last example shows a correlated subquery i.e. a subquery with a reference to a column
in a table not present in the subquery itself.

CASE Expression
With a CASE expression, it is possible to specify a conditional value. Depending on the
result of one or more conditional expressions, the CASE expression can return different
values.
A CASE expression can be in one of the following two forms.

CASE Expression First Form

Rules
The following rules apply to CASE expressions:
• If one or more search-conditions are true, then the result of the CASE

expression is the result of the first (left-most) WHEN clause which has a
search-condition that is true.

146 Chapter 9 Expressions and Predicates
CASE Expression

• If none of the search-conditions are true, then the result of the CASE
expression is the result of the explicit or implicit ELSE clause.

• If no ELSE clause is specified then ELSE NULL is implicit.
• At least one result in a CASE expression must express a value different from null.
See Result Data Types on page 84 for a description of how the data type of the result of
the CASE expression is determined.

Example
CASE WHEN col1 < 10 THEN 1

WHEN col1 < 100 THEN 2
ELSE 3

END

CASE Expression Second Form

Rules
The following rules apply to CASE expressions:
• If no ELSE clause is specified then ELSE NULL is implicit.
• A case expression using the second form will do an equality comparison between

the expression preceding the first when clause and each expression in the when
clauses, going from left to right, until one comparison evaluates to true in which
case the expression in the THEN part of the when clause is returned. If no
comparison evaluates to true, the expression in the else clause is returned.

• At least one result in a CASE expression must express a value different from null.
• The expression proceeding the first WHEN clause and all expressions in the WHEN

clauses must be comparable.
• All expressions in the THEN and ELSE clauses must be comparable or be NULL.
See Result Data Types on page 84 for a description of how the data type of the result of
the CASE expression is determined.

Example
CASE col1 WHEN 0 THEN NULL

WHEN -1 THEN -999
ELSE col1

END

Mimer SQL Version 11.0 147
SQL Reference Manual

Short Forms for CASE
There are two short forms for special CASE expressions: COALESCE and NULLIF.

COALESCE

where:
COALESCE(x1,x2)

is equivalent to:
CASE WHEN x1 IS NOT NULL THEN x1 ELSE x2
END

and:
COALESCE(x1,x2,...,xn)

is equivalent to:
CASE WHEN x1 IS NOT NULL THEN x1
ELSE COALESCE(x2,...,xn) END

I.e. the COALESCE expression returns the value of the first non-null operand, found by
working from left to right, or null if all the operands equal null.

NULLIF

where
NULLIF(x1, x2)

is equivalent to
CASE WHEN x1 = x2 THEN NULL ELSE x1 END

I.e. if the operands are equal, the NULLIF expression has the value null, otherwise it has
the value of the first operand.

148 Chapter 9 Expressions and Predicates
CAST Specification

CAST Specification
With the CAST specification it is possible to specify a data type conversion. CAST
converts the value of an expression to a specified data type.

Rules
The following rules apply to CAST:
• data-type can be any (cast compatible) SQL data type supported by Mimer SQL.

The table below lists cast compatibility.

Source data type Target data type

INTEGER
SMALLINT

BIGINT

INTEGER, BIGINT, SMALLINT
INTEGER(p)
DECIMAL/NUMERIC
REAL, DOUBLE PRECISION/FLOAT
FLOAT(p)
CHARACTER, VARCHAR
NCHAR, NVARCHAR
BINARY, VARBINARY
INTERVAL YEAR-MONTH
INTERVAL DAY-TIME

INTEGER(p)
DECIMAL/NUMERIC

INTEGER, BIGINT, SMALLINT
INTEGER(p)
DECIMAL/NUMERIC
REAL, DOUBLE PRECISION/FLOAT
FLOAT(p)
CHARACTER, VARCHAR
NCHAR, NVARCHAR
INTERVAL YEAR-MONTH
INTERVAL DAY-TIME

REAL
DOUBLE PRECISION/
FLOAT

FLOAT(p)

INTEGER, BIGINT, SMALLINT
INTEGER(p)
DECIMAL/NUMERIC
REAL, DOUBLE PRECISION/FLOAT
FLOAT(p)
CHARACTER, VARCHAR
NCHAR, NVARCHAR

Mimer SQL Version 11.0 149
SQL Reference Manual

CHARACTER
VARCHAR

INTEGER, BIGINT, SMALLINT
INTEGER(p)
DECIMAL/NUMERIC
REAL, DOUBLE PRECISION/FLOAT
FLOAT(p)
CHARACTER, VARCHAR
NCHAR, NVARCHAR
BOOLEAN
BINARY, VARBINARY
DATE
TIME
TIMESTAMP
INTERVAL YEAR-MONTH
INTERVAL DAY-TIME

CLOB CLOB

NCHAR

NVARCHAR

INTEGER, BIGINT, SMALLINT
INTEGER(p)
DECIMAL/NUMERIC
REAL, DOUBLE PRECISION/FLOAT
FLOAT(p)
CHARACTER, VARCHAR
NCHAR, NVARCHAR
BOOLEAN
DATE
TIME
TIMESTAMP
INTERVAL YEAR-MONTH
INTERVAL DAY-TIME

NCLOB NCLOB

DATE DATE
TIMESTAMP
CHARACTER, VARCHAR
NCHAR, NVARCHAR

TIME TIME
TIMESTAMP
CHARACTER, VARCHAR
NCHAR, NVARCHAR

TIMESTAMP DATE
TIME
TIMESTAMP
CHARACTER, VARCHAR
NCHAR, NVARCHAR

INTERVAL YEAR-MONTH INTERVAL YEAR-MONTH
INTEGER, BIGINT, SMALLINT
INTEGER(p)
DECIMAL/NUMERIC
CHARACTER, VARCHAR
NCHAR, NVARCHAR

150 Chapter 9 Expressions and Predicates
CAST Specification

• When converting a value to fixed-length character, the value of the source
expression is padded with trailing spaces, if the length of the converted value is
shorter than the length of the target data type.

• When converting a value to variable-length character, no trailing spaces are
padded.

• When converting a value to fixed-length binary, the value of the source expression
is padded with trailing 0’s, if the length of the converted value is shorter than the
length of the target data type.

• When converting a value to variable-length binary, no trailing 0’s are padded.
• A character value can be converted to a national character value.
• A national character value can be converted to a character value. If the national

character value contains non-Latin1 characters, an error is raised.
• Character values can be converted to a numeric data type if the character string

consists of a valid literal representation of the target data type.
• Character values can be converted to a DATETIME or INTERVAL data type if the

character string consists of a valid literal representation of the target data type.
• When a DATE value is converted to a TIMESTAMP, the HOUR, MINUTE and SECOND

fields of the target are set to zero. The other fields are set to the corresponding
values in the source expression.

• When a TIME value is converted to a TIMESTAMP, the respective values for the
YEAR, MONTH and DAY fields of the target are obtained by evaluating
CURRENT_DATE. The other fields are set to the corresponding values in the source
expression.

• When a TIMESTAMP value is converted to a DATE or TIME, the fields of the target
are set to the corresponding values in the source expression. Any values in the
source expression for which there are no corresponding fields in the target are
ignored.

• When converting from a INTERVAL to an exact numeric value, it must be possible
to represent the INTERVAL value as an exact numeric value without the loss of
leading significant digits.

• When converting from an exact numeric value to an INTERVAL, it must be possible
to represent the exact numeric as an INTERVAL value without the loss of leading
significant digits.

INTERVAL DAY-TIME INTERVAL DAY-TIME
INTEGER, BIGINT, SMALLINT
INTEGER(p)
DECIMAL/NUMERIC
CHARACTER, VARCHAR
NCHAR, NVARCHAR

BOOLEAN BOOLEAN
CHARACTER, VARCHAR
NCHAR, NVARCHAR

BINARY
VARBINARY

BINARY, VARBINARY
INTEGER, BIGINT, SMALLINT

BLOB BLOB

Mimer SQL Version 11.0 151
SQL Reference Manual

• If CAST is applied on NULL, or if expression results in null, then CAST returns
null.

• Character values can be converted to a BOOLEAN data type provided expression
contains the string TRUE or FALSE regardless of case.

• When converting a boolean value to character, the boolean value TRUE is converted
to the string TRUE and the boolean value FALSE is converted to the string FALSE.

Example
SELECT CAST(floatcol AS DECIMAL(15,3)),

CAST(charcol AS VARCHAR(10)),
CAST(intcol AS CHAR(15)),
CAST(decimcol AS DOUBLE PRECISION)

FROM types_tab;

User-Defined Function
The syntax to invoke a user-defined function is:

The function name may be qualified by a schema name in the normal manner.

Method Invocation
The syntax for a method-invocation is:

and static-method-invocation is:

and constructor-method-invocation is:

and arguments are:

The type name may be qualified by a schema name in the normal manner. A method name
however can not be qualified by a schema name in the context of a method invocation.

152 Chapter 9 Expressions and Predicates
Method Invocation

An instance method invocation requires that there is an instance of the user-defined type
on which the method is defined. An instance is created by using the initializer function if
it is distinct.
Note that if a method invocation returns a user-defined type, it is possible to use this result
as an instance for further invocations.

Standard Compliance
This section summarizes standard compliance for expressions.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F052, “Intervals and Datetime
arithmetic”.
Feature F251, “Domain support” use of
domain as target specification in cast
expressions.
Feature F690, “Collation support” support
for collate clause.
Feature P002, “Computational
completeness”.
Feature T031, “Boolean data type”.

Mimer SQL Version 11.0 153
SQL Reference Manual

Predicates
A predicate is a single conditional expression which evaluates to either true, false or
unknown. Predicates are used in constructing search conditions, see Search Conditions
on page 165.

Predicate Syntax
The general predicate syntax is shown below:

where row-expression is:

154 Chapter 9 Expressions and Predicates
Predicates

Each individual predicate construction is explained in more detail in the following
sections.

The Basic Predicate
A basic predicate compares a value with one and only one other value, and has the syntax:

The comparison operators, comp-operator, are described in Comparison Operators on
page 73.
The expressions on either side of the comparison operator must have compatible data
types, see Comparisons on page 80.
Within the context of a basic predicate, a select-expression must result in either an
empty set or a single value.
The result of the predicate is unknown if either of the expressions used evaluates to null,
or if the select-expression used results in an empty result set.
A comparison involving row expressions requires that the two row expressions have the
same number of elements, and that each element in the first row expression is comparable
with the corresponding element in the second row expression.
The comparison will be done from left to right and will continue until all elements have
been compared or the predicate is false.
As an example, consider this predicate

(a1,a2,a3) < (b1,b2,b3)

which is equivalent to
a1 < b1 or (a1 <= b1 and a2 < b2) or (a1 <= b1 and a2 <= b2 and a3 < b3)

For instance
(1,date '1956-04-23', false) < (1,date '1956-04-23', true)

would evaluate to TRUE since FALSE is less than TRUE.
Null values are handled analogously with comparisons with single values. Thus

(1,cast(null as int)) < (1,2)

would become null, but
(1,cast(null as int)) < (2,2)

would become true since the second elements are never compared in this case.

Row-expression examples
select * from tabA where (c1, c2) = (select k1, k2 from tabB fetch 1);

select * from tabA where (abs(c1), c2) > (c3, lower(c4));

Mimer SQL Version 11.0 155
SQL Reference Manual

The Quantified Predicate
A quantified predicate compares an expression with a set of values addressed by a
subquery (as opposed to a basic predicate which compares two single-valued
expressions).
The form of the quantified expression is:

The comparison operators, comp-operator, are described in Comparison Operators on
page 73.
Within the context of a quantified predicate, a select-expression must result in
either an empty set or a set of single values.

ALL
The result is true if the select-specification results in an empty set or if the comparison is
true for every value returned by the select-expression.
The result is false if the comparison is false for at least one value returned by the select-
expression.
The result is unknown if any of the values returned by the select-expression is null
and no value is false.

ANY or SOME
The keywords ANY and SOME are equivalent.
The result is true if the comparison is true for at least one value returned by the select-
expression.
The result is false if the select results in an empty set or if the comparison is false for every
value returned by the select-expression.
The result is unknown if any of the values returned by the select is null and no value is
true.
Quantified predicates may always be replaced by alternative formulations using EXISTS,
which can often clarify the meaning of the predicates.

156 Chapter 9 Expressions and Predicates
Predicates

The IN Predicate
The IN predicate tests whether a value is contained in a set of discrete values and has the
form:

If the set of values on the right hand side of the comparison is given as an explicit list, an
IN predicate may always be expressed in terms of a series of basic predicates linked by
one of the logical operators AND or OR:

If the set of values is given as a select-expression, an IN predicate is equivalent to
a quantified predicate:

The result of the IN predicate is unknown if the equivalent predicates give an unknown
result.
Note: NOT IN is undefined if the subquery result contains a null value. E.g. SELECT

* FROM tab WHERE 3 NOT IN (2, <null>, 4) will return an empty
result set.

The BETWEEN Predicate
A BETWEEN predicate tests whether or not a value is within a range of values (including
the given limits).
It has the form:

The BETWEEN predicate can always be expressed in terms of basic predicates.
If neither SYMMETRIC nor ASYMMETRIC is specified, then ASYMMETRIC is implicit.

IN predicate Equivalent basic predicates

x IN (a,b,c) x = a OR x = b OR x = c

x NOT IN (a,b,c) x <> a AND x <> b AND x <> c

IN predicate Equivalent quantified predicates

x IN (subquery) x = ANY (subquery)

x NOT IN (subquery) x <> ALL (subquery)

Mimer SQL Version 11.0 157
SQL Reference Manual

Thus:

Examples

All expressions in the predicate must have compatible data types.
The result of the predicate is unknown if the equivalent basic predicates give an unknown
result.

The LIKE Predicate
The LIKE predicate compares the value in a string expression with a character string
pattern which may contain wildcard characters (meta-characters).
It has the form:

The string-value on the left hand side of the LIKE operator must be a string
expression.
The character-pattern on the right hand side of the LIKE operator is a string
expression.
The escape character-value must be a string expression of length 1. To search for the
escape character itself it must appear twice in immediate succession in the like pattern.

Meta-characters/Wildcards
The following meta-characters (wildcards) may be used in the character-pattern:

_ stands for any single character
% stands for any sequence of zero or more characters.

Between predicate Equivalent basic predicates

x BETWEEN a AND b x >= a AND x <= b

x NOT BETWEEN a AND b x < a OR x > b

x BETWEEN SYMMETRIC a AND b (x >= a AND x <= b) OR (x >= b AND x <= a)

x NOT BETWEEN SYMMETRIC a AND b (x > a AND x > b) OR (x < a AND x < b)

Expression Result

2 BETWEEN 1 AND 3 TRUE

2 BETWEEN 3 AND 1 FALSE

2 BETWEEN SYMMETRIC 1 AND 3 TRUE

2 BETWEEN SYMMETRIC 3 AND 1 TRUE

(1,2) BETWEEN (1,1) AND (1,3) TRUE

(1,2) BETWEEN (1,1) AND (1,0) FALSE

158 Chapter 9 Expressions and Predicates
Predicates

Note: Wildcard characters are only used as such in LIKE predicates. In any other
context, the characters _ and % have their exact values.

Escape Characters
The optional escape character is used to allow matching of the special characters _ and %.
When the escape character prefixes _ and %, they are interpreted without any special
meaning.
An escape character used in a pattern string may only be followed by another escape
character or one of the wildcard characters, unless it is itself escaped (i.e. preceded by an
escape character).

Examples

A LIKE predicate where the pattern string does not contain any wildcard characters is
essentially equivalent to a basic predicate using the = operator.
The comparison strings in the LIKE predicate are not conceptually padded with blanks,
in contrast to the basic comparison.
Thus:

'artist ' = 'artist' is true
'artist ' LIKE 'artist ' is true
'artist ' LIKE 'artist%' is true

but
'artist ' LIKE 'artist' is false

Begins With
LIKE predicates, addressing the “begins with” functionality, are very common.
However, when a parameter marker is used for the LIKE pattern, the SQL compiler can
not determine the LIKE pattern characteristics, and possible optimizations will not be
applied. The built-in function BEGINS will overcome this issue. See BEGINS on page 93
for information.

Regular Expressions
Compared to LIKE, the regular expression provides a much more flexible way to match
strings of text, such as complex patterns of characters.
Use the REGEXP_MATCH function to do regular expression searches. See
REGEXP_MATCH on page 117 for information.

LIKE predicate Matches

LIKE 'A%' any string beginning with A

LIKE '_A%' any string, where the second character is A

LIKE '%A%' any string containing an A

LIKE '%\%%' ESCAPE '\' any string containing a %

LIKE '%A\%\\' ESCAPE '\' any string ending with A%\

LIKE '_ABC' any 4-character string ending in ABC

Mimer SQL Version 11.0 159
SQL Reference Manual

The NULL Predicate
The NULL predicate is used to test if the specified expression is the null value, and has the
form:

The result of the NULL predicate is never unknown.

Evaluation rules for the NULL predicate:

The use of composite expressions in NULL predicates provides a shorthand for testing
whether any of the operands is null.
Thus the predicate A=B IS NULL is an alternative to A IS NULL OR B IS NULL.
Note: The actual operator(s) used in expressions in NULL predicates is irrelevant

since all operations involving a null value evaluate to the null value.
The NULL predicate is the only way to test for the presence of the null value in a column,
since all other predicates where at least one of the operands is null evaluate to unknown.

The EXISTS Predicate
The EXISTS predicate tests whether the set of values addressed by a select-
specification is empty or not, and has the form:

The result of the EXISTS predicate is true if the select-expression does not result
in an empty set. Otherwise the result of the predicate is false. A set containing only null
values is not empty. The result is never unknown.
The EXISTS predicate is the only predicate which does not compare a value with one or
more other values. The columns selected in the select-expression of an EXISTS
predicate are irrelevant. Most commonly, the SELECT * shorthand is used.
The EXISTS predicate may be negated in the construction of search conditions.

x x IS NULL x IS NOT NULL NOT x IS NULL NOT x IS
NOT NULL

null True False False True

not null False True True False

(null, null) True False False True

(not null, null) False False True True

(not null, not null) False True True False

160 Chapter 9 Expressions and Predicates
Predicates

Examples
Consider the four following examples, and note particularly that the last example is true
if all guests have undefined names:

Example 1
EXISTS (SELECT * FROM BOOK_GUEST

WHERE GUEST = 'DATE')

requires that at least one guest is called DATE.

Example 2
NOT EXISTS (SELECT * FROM BOOK_GUEST

WHERE GUEST = 'DATE')

requires that no guest may be called DATE.

Example 3
EXISTS (SELECT * FROM BOOK_GUEST

WHERE NOT GUEST = 'DATE')

requires that at least one guest is not called DATE.

Example 4
NOT EXISTS (SELECT * FROM BOOK_GUEST

WHERE NOT GUEST = 'DATE')

requires that no guest may not be called DATE, i.e. every guest must be called
DATE (or be null).

The OVERLAPS Predicate
The OVERLAPS predicate tests whether two ‘events’ cover a common point in time or not,
and has the form:

Each of the two events specified on either side of the OVERLAPS keyword is a period of
time between two specified points on the time-line. The two points can be specified as a
pair of datetime values or as one datetime value and an INTERVAL offset.
The first column in each row value expression must be a DATE, TIME or TIMESTAMP and
the value in the first column of the first event must be comparable, see Datetime
Assignment Rules on page 79, to the value in the first column of the second event.
The second column in each row value expression may be either a DATE, TIME or
TIMESTAMP that is comparable with the value in the first column or an INTERVAL with a
precision that allows it to be added to the value in the first column.
The value in the first column of each row value expression defines one of the points on
the time-line for the event.
If the value in the second column of the row value expression is a datetime, it defines the
other point on the time-line for the event.

Mimer SQL Version 11.0 161
SQL Reference Manual

If the value in the second column of the row value expression is an INTERVAL, the other
point on the time-line for the event is defined by adding the values in the two column of
the row value to expression together.
Either of the two points may be the earlier point in time.
If the value in the first column of the row value expression is the null value, then this is
assumed to be the later point in time.
The result of (S1,T1) OVERLAPS (S2,T2) is the result of the following expression:

(S1 > S2 AND NOT (S1 >= T2 AND T1 >= T2))
OR
(S2 > S1 AND NOT (S2 >= T1 AND T2 >= T1))
OR
(S1 = S2 AND (T1 <> T2 OR T1 = T2))

The UNIQUE Predicate
The UNIQUE predicate tests whether all rows returned by a select-specification
are unique or not, and has the form:

The result of the UNIQUE predicate is true if the select-expression does not return
any duplicates. Otherwise the result of the predicate is false. The result is never unknown.
Null values are not considered equal to any values, including other null values.
The UNIQUE predicate may be negated in the construction of search conditions.

Examples
Return all artists that have only released one item:

SELECT A.*
FROM MIMER_STORE.ARTISTS A
WHERE UNIQUE (SELECT ARTIST_ID

FROM MIMER_STORE_MUSIC.TITLES T
WHERE T.ARTIST_ID = A.ARTIST_ID)

Return all artists that have released items on different formats:
SELECT A.*
FROM MIMER_STORE.ARTISTS A
WHERE NOT UNIQUE (SELECT FORMAT

FROM MIMER_STORE_MUSIC.DETAILS D
WHERE D.ARTIST_ID = A.ARTIST_ID)

The DISTINCT Predicate
The DISTINCT predicate tests whether two values are distinct from each other or not, and
has the form:

If both values are null, the result of the DISTINCT predicate is false. If only one of the
values is null, the result of the predicate is true. If none of the values is null, the result of
the predicate is true if the values are not the same.

162 Chapter 9 Expressions and Predicates
Predicates

This means that
x IS NOT DISTINCT FROM y

is equivalent to
x = y OR (x IS NULL AND y IS NULL)

And
x IS DISTINCT FROM y

is equivalent to
x <> y OR (x IS NULL AND y IS NOT NULL) OR (x IS NOT NULL AND y IS NULL)

Examples
The following examples are intended to show the difference between distinct from and
not equal to when it comes to null values.

Select currencies that have an exchange rate distinct from Sweden’s non-null
exchange rate:

SELECT C1.*
FROM MIMER_STORE.CURRENCIES C1
JOIN MIMER_STORE.CURRENCIES C2

ON C1.EXCHANGE_RATE IS DISTINCT FROM C2.EXCHANGE_RATE
WHERE C2.CODE = 'SEK'

The above query will return 161 rows. Countries having a null exchange rate are included.

Select currencies that have an exchange rate not equal to Sweden’s non-null
exchange rate:

SELECT c1.*
FROM MIMER_STORE.CURRENCIES C1
JOIN MIMER_STORE.CURRENCIES C2

ON C1.EXCHANGE_RATE <> C2.EXCHANGE_RATE
WHERE C2.CODE = 'SEK'

The above query will return 154 rows. Countries having a null exchange rate are
excluded.

Select currencies that have an exchange rate distinct from Saint Helena’s null
exchange rate:

SELECT C1.*
FROM MIMER_STORE.CURRENCIES C1
JOIN MIMER_STORE.CURRENCIES C2

ON C1.EXCHANGE_RATE IS DISTINCT FROM C2.EXCHANGE_RATE
WHERE C2.CODE = 'SHP'

The above query will return 151 rows. No countries having a null exchange rate are
included.

Mimer SQL Version 11.0 163
SQL Reference Manual

Select currencies that have an exchange rate not equal to Saint Helena’s null
exchange rate:

SELECT COUNT(*)
FROM MIMER_STORE.CURRENCIES C1
JOIN MIMER_STORE.CURRENCIES C2

ON C1.EXCHANGE_RATE <> C2.EXCHANGE_RATE
WHERE C2.CODE = 'SHP'

The above query will return 0 rows.

Standard Compliance
This section summarizes standard compliance concerning predicates.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F052, “Intervals and datetime arithmetic”
overlaps predicate.
Feature F053, “OVERLAPS predicate”.
Feature F281, “LIKE enhancements”. The
arguments for a LIKE predicate may be value
expressions.
Feature F291, “UNIQUE predicate”.
Feature F561, “Full value expression”.
Feature F641, “Row and table constructors”.
Feature T022, “Advanced support for BINARY
and VARBINARY data types”.
Feature T151, “DISTINCT predicate”.
Feature T152, “DISTINCT predicate with
negation”.
Feature T461, “Symmetric BETWEEN
predicate”.
Feature T501, “Enhanced EXISTS predicate”.

164 Chapter 9 Expressions and Predicates
Predicates

Mimer SQL Version 11.0 165
SQL Reference Manual

Chapter 10

Search Conditions
and Joins

This chapter discusses search conditions, that is, composite predicates defining row
subsets from tables; and joined tables and inner and outer join specifications.

Search Conditions
Search conditions are used in:
• WHERE and HAVING clauses to qualify the selection of rows and groups

respectively
• CHECK clauses to define sets of acceptable values
• CASE expressions to conditionally return different values
• CASE and IF statements to control conditional execution in a routine or trigger
• WHILE and REPEAT statements to control conditional iteration in a routine or

trigger
• the WHEN clause of a trigger to control conditional execution of the trigger action.
A search condition is built from one or more predicates linked by the logical operators
AND and OR and qualified if desired by the operator NOT.
A search condition is a boolean returning expression. (See Expressions on page 141.)

Rules
Search conditions enclosed in parentheses may be used as part of more complex search
condition constructions. A search condition is evaluated as follows:
• Conditions in parentheses are evaluated first.
• Within the same level of parentheses, NOT is applied before AND, AND is applied

before OR.
• Operators at the same precedence level are applied in an order determined by

internal optimization routines.
The result of a search condition is evaluated by combining the results of the component
predicates. Each predicate evaluates to true, false or unknown, truth tables are shown in
Truth Tables on page 82.

166 Chapter 10 Search Conditions and Joins
Search Conditions

WHERE and HAVING clauses select the set of values for which the search condition
evaluates to true. CHECK clauses define the set of values for which the search condition
does not evaluate to false, i.e. is either true or unknown.

Examples

Using WHERE
The WHERE condition determines which rows to select, for example:

SELECT *
FROM customer_details
WHERE country_code = 'SE'

Using HAVING
The HAVING clause restricts the selection of groups. A HAVING clause may contain set
functions in the search condition. See Mimer SQL User’s Manual, Chapter 3, Grouped
Set Functions – the GROUP BY Clause.

Standard Compliance
This section summarizes standard compliance concerning search conditions.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 167
SQL Reference Manual

Joined Tables
The JOIN syntax provides methods of combining information in tables.
INNER JOINs and OUTER JOINs are supported.
The different ways in which the various join options can be combined makes the overall
JOIN syntax quite convoluted, so to simplify the explanation, each variant will be
described on its own with an accompanying syntax diagram.
In order to understand the JOIN syntax generally, it is important to appreciate the
difference between an INNER JOIN and an OUTER JOIN. It is also important to be aware
of the difference between JOIN ON, JOIN USING and NATURAL JOIN.

INNER JOINs
An INNER JOIN produces a result table containing composite rows created by combining
rows from two tables where some pre-defined, or explicitly specified, join condition
evaluates to true.
Rows that do not satisfy the JOIN condition will not appear in the result table of an INNER
JOIN.
The INNER JOIN is the default JOIN type, and the INNER keyword is optional and may
be omitted.

JOIN ON
JOIN ON allows a join condition to be specified. The result table of this kind of join is
produced by applying the specified join condition to the Cartesian product of the two
tables. The result table will contain only those rows for which the join condition evaluates
to true.
The join condition cannot reference common columns unless they are qualified (e.g. by
table name).
A row in the result table contains the combined set of columns from each table. The
columns from table-reference-1 appear first followed by those from table-
reference-2. Common columns will therefore appear twice.

Syntax
The syntax for JOIN ON is:

Example
The ON condition is used to select the employees’ corresponding row(s) salaries, and the
WHERE condition is used to find those whose salaries are less than 10 000.

SELECT *
FROM epmloyees INNER JOIN salaries ON epmloyees.id = salaries.id
WHERE salaries.salary < 10000

168 Chapter 10 Search Conditions and Joins
INNER JOINs

JOIN USING
JOIN USING allows a list of common column names to be specified. The result contains
one row for each case where all the specified columns in the two tables contain values that
are equal. (This kind of join is conceptually the same as a NATURAL JOIN except that the
join is based on the specified columns rather than on all the common columns.)
Specifying the columns explicitly instead of using the entire set of common columns is
useful in situations where some of the common columns may not contain identical values
even though the respective rows are related (e.g. as in a REMARKS column).
The columns specified in the list must be common to both tables, they must be specified
in an unqualified manner and must have a data type that allows the values in the respective
tables to be compared.
A row in the result table contains the combined set of columns from each table, except
that the common columns appear only once. The columns specified in the list of column
names appear first (at the left of the table) followed by the remaining columns from
table-reference-1, followed by those from table-reference-2.

Syntax
The syntax for JOIN USING is:

Example
The construction below will make a join on the specified column id.

SELECT * FROM epmloyees JOIN salaries USING (id)

NATURAL JOIN
The result table of a NATURAL JOIN contains one row for each case where all the
common columns in the two tables contain values that are equal.
Common columns are those which have the same name in each table. The common
columns must have a data type that allows values in the respective tables to be compared.
A row in the result table contains the combined set of columns from each table, except
that the common columns appear only once. The common columns appear first (at the left
of the table) followed by the remaining columns from table-reference-1, followed
by those from table-reference-2.

Mimer SQL Version 11.0 169
SQL Reference Manual

Syntax
The syntax for a NATURAL JOIN is:

If there are no rows where all the common columns have equal values, the result table is
an empty table (i.e. it has a set of columns as just described, but the number of rows is
zero).
For example, two tables contain different sets of information on people, and each table
has a FIRST_NAME column and a SURNAME column to identify the person to whom the
information applies.
When both the FIRST_NAME column and the SURNAME column contain the same values
in a row in each table, it means those rows are related. A NATURAL JOIN between these
two tables would produce a result table with a single composite row for each person,
containing all the information held in both tables, with the SURNAME and FIRST_NAME
columns appearing once in the rows of the result.
Note: It is actually possible to perform a NATURAL JOIN between two tables which

have no common columns at all. In this case the result table is the Cartesian
product (sometimes called the CROSS JOIN) of the two tables.

Examples
The NATURAL INNER JOIN construction below will join the employees and salaries
tables on all columns which share the same name.

SELECT * FROM employees NATURAL JOIN salaries

Note: Use of NATURAL JOIN is discouraged in programs since subsequent
alterations in the table or view definitions may result in an additional join
condition (e.g. if a column with the same name as the new column already
exists in the other table), and cause the program to function incorrectly.

OUTER JOINs
A table resulting from an inner join, as just described, will only contain those rows that
satisfy the applicable join condition. This means that a row in either table which does not
match a row in the other table will be excluded from the result.
In an OUTER JOIN, however, a row that does not match a row in the other table is also
included in the result table. Such a row appears once in the result and the columns that
would normally contain information from the other table will contain the null value.
The join variants (JOIN ON, NATURAL JOIN and JOIN USING) can be applied as OUTER
JOINs as well.
The OUTER keyword is optional and may be omitted.

170 Chapter 10 Search Conditions and Joins
OUTER JOINs

LEFT OUTER JOIN
In addition to the INNER JOIN result, the LEFT OUTER JOIN also includes the rows
from table-reference-1 (the table on the left of the JOIN) which do not satisfy the
join condition.

Syntax
The syntax variants of the LEFT OUTER JOIN are as follows:

Example
The query below will return a result set containing all employees at least once even
though they might not have an entry in the SALARIES table.

SELECT *
FROM employees
LEFT JOIN salaries
 ON employees.id = salaries.id

RIGHT OUTER JOIN
In addition to the INNER JOIN result, the RIGHT OUTER JOIN also includes the rows
from table-reference-2 (the table on the right of the JOIN) which do not satisfy the
join condition.

Mimer SQL Version 11.0 171
SQL Reference Manual

Syntax
The syntax for the variants of the RIGHT OUTER JOIN is as follows:

Example
The query below counts the number of releases for each month during the year 1990,
using RIGHT OUTER JOIN to include months without any release.

select smr.c as month_no, count(i.item_id) as number_of_releases
from items i
right join system.manyrows smr
 on extract(month from i.release_date) = smr.c
 and extract(year from i.release_date) = 1990
where smr.c between 1 and 12
group by smr.c

FULL OUTER JOIN
A FULL OUTER JOIN combines the effect of both a LEFT JOIN and a RIGHT JOIN, i.e.
the FULL OUTER JOIN includes the rows from the left table which do not satisfy the join
condition, and the rows from the right table which do not satisfy the join condition.

Syntax
The syntax for the variants of the FULL OUTER JOIN is as follows:

172 Chapter 10 Search Conditions and Joins
CROSS JOIN

Example
A full outer join of the SELLERS table with the SUPPLIERS table on the CITY column:

SELECT sellers.seller_name, suppliers.supplier_name
FROM sellers
FULL OUTER JOIN suppliers
 ON sellers.city = suppliers.city

CROSS JOIN
A CROSS JOIN is basically an INNER JOIN between two tables without a join condition.
The result table is the Cartesian product of the two tables.

Syntax
The syntax for CROSS JOIN is as follows:

Example
SELECT * FROM
(SELECT COUNT(*) AS store_count FROM stores) s
CROSS JOIN
(SELECT COUNT(*) AS emp_count FROM employees) e

Standard Compliance
This section summarizes standard compliance concerning JOIN.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F401 “Extended joined table”, NATURAL
JOIN, FULL OUTER JOIN and CROSS JOIN.

Mimer SQL Version 11.0 173
SQL Reference Manual

Chapter 11

The SELECT
Expression

A select-expression defines a set of data (rows and columns) extracted from one or
more tables or views.
The select-expression syntax is:

where with-clause is:

174 Chapter 11 The SELECT Expression

and select-expression-body is:

where the select-specification syntax is:

Mimer SQL Version 11.0 175
SQL Reference Manual

and order-by-clause is:

and result-offset-clause is:

and fetch-first-clause is:

The different clauses in the specifications above are described in detail in the following
sections.

The SELECT Clause
The SELECT clause defines which values are to be selected. Values are specified by
column references or expressions; where columns are addressed, the value selected is the
content of the column.

SELECT *
This form of the SELECT clause specifies all columns from the FROM clause. The single
asterisk may not be combined with any other value specification.

Example
SELECT * FROM countries ...

176 Chapter 11 The SELECT Expression
The SELECT Clause

Note: Use of SELECT * is discouraged in programs (except in EXISTS predicates)
since the asterisk is expanded to a column list when the statement is compiled,
and any subsequent alterations in the table or view definitions may cause the
program to function incorrectly.

SELECT table.*
If a named table or view (table-name or correlation-name) is followed by an
asterisk in the SELECT clause, all columns are selected from that table or view.
This formulation may be used in a list of select specifications.
If a correlation-name is used, it must be defined in the associated FROM clause, see
The FROM Clause and Table-reference on page 177.
Note: Use of SELECT table.* is discouraged in programs since the asterisk is

expanded to a column list when the statement is compiled, and any subsequent
alterations in the table or view definitions may cause the program to function
incorrectly.

SELECT expression
Values to be selected may be specified as expressions (using column-references, set
functions and literals, see Expressions on page 141).
Column names used in expressions must refer to columns in the tables addressed in the
FROM clause, or be an outer reference.
A column name must be qualified if more than one column in the set of table references
addressed in the FROM clause has the same name.

SELECT … AS Column-label
A column-label may be added after each separate expression in the SELECT clause.
column-label is an SQL identifier which becomes the name of the column in the result
set.
If no name is given the original column name is used, unless the new column was created
by an expression, in which case the new column has no name.
For example, SELECT COLUMN_NAME would result in a column called COLUMN_NAME in
the result set, but SELECT COLUMN_NAME + 1 would result in a column in the result set
with no name.

The Keywords ALL and DISTINCT
If ALL is specified or if no keyword is given, duplicate rows are not eliminated from the
result of the select-specification.
If DISTINCT is specified, duplicate rows are eliminated. Null is considered to be equal to
null in this context.

Mimer SQL Version 11.0 177
SQL Reference Manual

The FROM Clause and Table-reference
The FROM clause defines an intermediate result set for the select-specification, and may
define correlation names for the table references used in the result set.

where table-reference is:

where correlation is:

and procedure-invocation is:

General Syntax
All source tables or views referenced in the SELECT clause and at the top level in the
WHERE clause (but not in any subquery used in the WHERE clause) must be named in the
FROM clause.

Intermediate Result Sets
If a single table or view is named in the FROM clause, the intermediate result set is identical
to the table or view.
If the FROM clause names more than one table or view, the intermediate result set may be
regarded as the complete Cartesian product of the named tables or views.
Note: The intermediate result set is a conceptual entity, introduced to aid in

understanding of the selection process. The complete result set does not have
any direct physical existence, so that the machine resources available do not
need to correspond to the (sometimes very large) Cartesian product tables
implied by multiple table references in a FROM clause.

Correlation Names
Correlation names introduced in the FROM clause redefine the form of the table name
which may be used to qualify column names, see Qualified Object Names on page 39.

178 Chapter 11 The SELECT Expression
The WHERE Clause

Correlation names may be used for several purposes:
• to shorten table names, which saves typing and makes statements easier to follow

and less error-prone.
• to relate a table to a logical copy of itself.
• to rename a column when a column with the same name exists in another of the

query’s tables.
A table or view name is exposed in the FROM clause if it does not have a correlation name.
The same table or view name cannot be exposed more than once in the same FROM clause.
The same correlation name may not be introduced more than once in the same FROM
clause, and it cannot be the same as an exposed table or view name.

The WHERE Clause
The WHERE clause selects a subset of the rows in the intermediate result set on the basis
of values in the columns. If no WHERE clause is specified, all rows of the intermediate
result set are selected.

All column references in the search-condition must uniquely identify a column in
the intermediate result set defined by the FROM clause or be an outer reference.
Column references must be qualified if more than one column in the intermediate result
set has the same name, or if the column is an outer reference.

The GROUP BY Clause
The GROUP BY clause determines grouping of the result table for the application of set
functions specified in the SELECT clause.
The GROUP BY clause has the following syntax:

If a GROUP BY clause is specified, each column reference in the SELECT list must either
identify a grouping column or be the argument of a set function.
The rows of the intermediate result set are (conceptually) arranged in groups, where all
values in the grouping column(s) are identical within each group.
Each group is reduced to a single row in the final result of the select-specification.
If a GROUP BY clause is not specified, the SELECT list must either be a list that does not
include any set functions or a list of set functions and optional literal expressions.

Mimer SQL Version 11.0 179
SQL Reference Manual

The COLLATE Clause
Collations determine the sort order of character data. If the COLLATE clause is specified,
the resulting data will be grouped according to the collation specified. For more
information, see the Mimer SQL User’s Manual, Chapter 4, Collations.
If no COLLATE clause is specified, the column’s implicit collation will be used.

The HAVING Clause
The HAVING clause restricts selection of groups in the same way that a WHERE clause
restricts selection of rows.
The HAVING clause has the following syntax:

The search condition in the HAVING clause defines restrictions on the values in the
elements of the SELECT list. Column references in the search condition of the HAVING
clause must identify a grouping column, or be used in set functions, or be outer references.
Most commonly, HAVING is used together with GROUP BY, in which case the search
conditions relate either values in grouping columns or results of set functions to
expressions.
If the HAVING clause is used without a GROUP BY clause, all rows in the result table are
treated as a single group. In this case, the HAVING clause must refer to a set function (since
there are no grouping columns).

The WITH Clause
A WITH clause provides a way to write named queries for use in a larger query. (Such a
named query is also known as a cte, common table expression.)
The WITH clause has the following syntax:

where with-query is:

180 Chapter 11 The SELECT Expression
The WITH Clause

where search-clause is:

where cycle-clause is:

The WITH clause contains one or more named select expressions that can be referenced
multiple times in the query following the WITH clause. These select expressions can be
seen as a temporary views, which are only defined within a query.
WITH clauses can be nested, i.e. a SELECT expression in a with element or a subquery may
also contain with clauses. These with elements are not in scope outside of the context in
which they are defined.
If the column names are omitted from a with element, the names from the outermost select
list will be used.

Example
WITH display_order (display_order, format) AS
(

SELECT CASE display_order
 WHEN 10 THEN 'FIRST'
 WHEN 20 THEN 'SECOND'
 WHEN 30 THEN 'THIRD'
 WHEN 40 THEN 'FOURTH'
 ELSE 'UNKNOWN'

END,
format

FROM formats
)
SELECT display_order,

format
FROM display_order
WHERE display_order IN ('SECOND', 'THIRD')

The usage of a WITH clause in the previous example can also be expressed by using a
derived table and thus this use of WITH does not add any new functionality. However, a
query written in this way can be found easier to construct and to read.

Mimer SQL Version 11.0 181
SQL Reference Manual

Example
WITH annualsalary AS
(

select staff_id, salyear, sum(payment) as salary
from (select staff_id, payment, extract(year from paymentdate) as salyear

from payments) p
group by staff_id, salyear

)
select emp.name as emp_name, esal.salary as emp_sal,

mngr.name as mngr_name, msal.salary as mngr_sal, esal.salyear
from staff emp
join annualsalary esal

on emp.id = esal.staff_id
left join staff mngr

on emp.manager_id = mngr.id
left join annualsalary msal

on mngr.id = msal.staff_id and esal.salyear = msal.salyear

The WITH clause above specifies the named query annualsalary, which is joined twice
in the main query. Writing this query only once makes coding more efficient, and future
changes will be simpler and safer.

Recursive Queries
A WITH clause query that refers to its own output is recursive. Recursive queries make it
possible to express things otherwise not possible using a single SQL statement.
The general form of a recursive WITH query is always a non-recursive term, the anchor
member, with a UNION (or UNION ALL), followed by a query, the recursive member,
which contains a reference to the with element (anchor member) itself.
A simple example is to generate the integer values from 1 to 50:

WITH RECURSIVE integer_list(n) as
(

VALUES (1) -- anchor member

UNION ALL

SELECT n + 1
FROM integer_list -- recursive member
WHERE n < 50 -- terminating condition

)
select n
from integer_list

Recursive queries are typically used to deal with hierarchical or tree-structured data, e.g.
solving the bill of materials problem (see https://en.wikipedia.org/wiki/Bill_of_materials.)
Another example is to show categories with sub-categories and where a sub-category may
have sub-categories by its own and so on indefinitely:

https://en.wikipedia.org/wiki/Bill_of_materials

182 Chapter 11 The SELECT Expression
The WITH Clause

with recursive tree (name, parent, level) as
(

select name, parent, 0
from categories
where parent is null
union all
select categories.name, categories.parent, level + 1
from tree

join categories on tree.name = categories.parent
)
select *
from tree
order by level

When working with recursive queries it is important to be sure that the recursive part of
the query has a terminating condition as the query otherwise will not terminate.

BREADTH FIRST and DEPTH FIRST
When a SEARCH clause is specified the ordering-column is added to the result set of the
WITH clause. It is set to a sequence of values that reflects BREADTH or DEPTH first
traversal of the recursive query. The traversal is done according the search columns
specified for each level in the tree. Even though search order is specified the rows may be
returned in any order, so if you want the rows actually returned in this order you must add
an ORDER BY ordering-column to your query.
A SEARCH clause may only be specified with a recursive WITH clause.

Mimer SQL Version 11.0 183
SQL Reference Manual

Example
Return combined values, using the different traversal methods.

create table t (c varchar(1));
insert into t values ('A');
insert into t values ('B');
insert into t values ('C');

SQL>WITH tr (grp, c) AS
SQL&(
SQL& SELECT cast(c as varchar(20)), c
SQL& FROM t
SQL&
SQL& UNION ALL
SQL&
SQL& SELECT c.grp || ', ' || t.c, t.c
SQL& FROM t
SQL& INNER JOIN tr c
SQL& ON c.c < t.c
SQL&) SEARCH BREADTH FIRST BY grp SET oc
SQL&SELECT grp FROM tr;
grp
==========================
A
B
C
A, B
A, C
B, C
A, B, C

 7 rows found

SQL>
SQL>WITH tr (grp, c) AS
SQL&(
SQL& SELECT cast(c as varchar(20)), c
SQL& FROM t
SQL&
SQL& UNION ALL
SQL&
SQL& SELECT c.grp || ', ' || t.c, t.c
SQL& FROM t
SQL& INNER JOIN tr c
SQL& ON c.c < t.c
SQL&) SEARCH DEPTH FIRST BY grp SET oc
SQL&SELECT grp FROM tr;
grp
==========================
A
A, B
A, B, C
A, C
B
B, C
C

 7 rows found

184 Chapter 11 The SELECT Expression
The VALUES Clause

Cycle detection
A CYCLE clause can be specified when the traversal may contain cycles. If there is no
cycle checking a result can return an infinite number of rows. If a cycle-column is
specified, it is added to the result set of the WITH clause. When a cycle is detected, the
row with the cycle is returned and the cycle-column is set to the cycle-literal. It will then
continue with the next row in the tree without following the cycle. If the cycle-check is
specified an error code (-12288) will be returned when a cycle is detected and execution
stops.
A CYCLE clause may only be specified with a recursive WITH clause.

The VALUES Clause
VALUES computes a row value specified by value expressions.
The VALUES clause has the following syntax:

To get multiple row values several VALUES clauses can be unioned together. It is most
commonly used to generate a "constant table" within a larger command, but it can be used
on its own.

Example
select *
from
(

values('A', 1)
union
values('B', 2)

) dt(x, y)

will return two rows with the columns named x and y.

The UNION Operator
If several SELECT statements are connected by UNION (or UNION DISTINCT), the result
is derived by first merging all result tables specified by the separate SELECT statements,
and then eliminating duplicate rows from the merged set. All columns in the result table
are significant for the purpose of eliminating duplicates.
The UNION ALL operator on the other hand retains all duplicates. The operator can be
viewed as a way to concatenate several queries.
The rules described below apply to both UNION and UNION ALL.
All separate result tables from SELECT statements connected by UNION must have the
same number of columns and the data types of columns to be merged must be compatible.
The columns in the result table are named in accordance with the columns in the first
SELECT statement of the UNION construction.
Separate SELECT statements may be enclosed in parentheses if desired. This does not
affect the result of a UNION operation.

Mimer SQL Version 11.0 185
SQL Reference Manual

The names in the first select specification are used in UNION constructions.
See Result Data Types on page 84 for a description of how the data type of the UNION
result is determined.

The EXCEPT Operator
If several SELECT statements are connected by EXCEPT (or EXCEPT DISTINCT), the
result is derived by taking the distinct rows of the first query and return the rows that do
not appear in second result query. All columns in the result table are significant for the
purpose of eliminating duplicates.
The EXCEPT ALL operator on the other hand retains all duplicates.
The rules described below apply to both EXCEPT and EXCEPT ALL.
All separate result tables from SELECT statements connected by EXCEPT must have the
same number of columns and the data types of columns to be merged must be compatible.
The columns in the result table are named in accordance with the columns in the first
SELECT statement of the EXCEPT construction.
Separate SELECT statements may be enclosed in parentheses if desired. This does not
affect the result of a EXCEPT operation.
The names in the first select specification are used in EXCEPT constructions.
See Result Data Types on page 84 for a description of how the data type of the EXCEPT
result is determined.

The INTERSECT Operator
If several SELECT statements are connected by INTERSECT (or INTERSECT
DISTINCT), the result is derived by taking the results of two queries and return only rows
that appear in both result sets, and then eliminating duplicate rows from the merged set.
All columns in the result table are significant for the purpose of eliminating duplicates.
The INTERSECT ALL operator on the other hand retains all duplicates.
The rules described below apply to both INTERSECT and INTERSECT ALL.
All separate result tables from SELECT statements connected by INTERSECT must have
the same number of columns and the data types of columns to be merged must be
compatible.
The columns in the result table are named in accordance with the columns in the first
SELECT statement of the INTERSECT construction.
Separate SELECT statements may be enclosed in parentheses if desired. This does not
affect the result of a INTERSECT operation.
The names in the first select specification are used in INTERSECT constructions.
See Result Data Types on page 84 for a description of how the data type of the
INTERSECT result is determined.

186 Chapter 11 The SELECT Expression
The ORDER BY Clause

The ORDER BY Clause
The result table may be ordered according to an order-by-clause.
The ORDER BY clause has the following syntax:

Every expression in the order-by-clause must contain a reference to a column in a
table specified in the FROM clause.
Column labels, created with SELECT AS, may not be part of a complex ORDER BY
expression, (i.e. if column label is used, the expression must contain nothing but the
column label).
The ORDER BY expressions must not include set functions (i.e. MAX, MIN, AVG, SUM and
COUNT), subqueries or NEXT VALUE FOR sequence.
If DISTINCT, GROUP BY, UNION, EXCEPT or INTERSECT is specified, only columns
from the result set may be specified as ORDER BY expressions.
The default collation for sorting data is the collation defined for the column being sorted.
If you include a COLLATE clause, you can override the default collation by explicitly
specifying a different collation. For more information, see the Mimer SQL User’s
Manual, Chapter 4, Collations.

Ascending/Descending
For each column in the order-by-clause, the sort order may be specified as ASC
(ascending) – the default, or DESC (descending). If more than one column is specified, the
result table is ordered first by values in the first specified column, then by values in the
second, and so on.

The RESULT OFFSET Clause
The result-offset-clause is used to limit the result set by removing a specified
number of rows from its beginning.
The result-offset-clause clause has the following syntax:

If a statement contains both an order-by-clause and a result-offset-clause, the
result set is first sorted according to the ORDER BY clause, and then the number of rows
specified in the result-offset-clause are removed.

Mimer SQL Version 11.0 187
SQL Reference Manual

The FETCH FIRST Clause
The fetch-first-clause is used to limit the result set by specifying the number of
rows to be returned.
The fetch-first-clause has the following syntax:

If a statement contains both an order-by-clause and a fetch-first-clause, the
result set is first sorted according to the order-by-clause and then limited to the
number of rows specified in the fetch-first-clause.
If both a result-offset-clause and a fetch-first-clause are specified, the
result-offset-clause is applied first, then the fetch-first-clause.

Restrictions
SELECT access is required on all tables and views specified in a FROM clause.

Notes
If the SELECT statement is used without the ORDER BY clause, the sort order is undefined.
This means that the sort order may change if new indexes are created, indexes are
dropped, new statistics are gathered or if a new version of the SQL optimizer is installed.

Standard Compliance
This section summarizes standard compliance for select-specifications.

Standard Compliance Comments

SQL-2016 Core Fully compliant.

188 Chapter 11 The SELECT Expression
Standard Compliance

SQL-2016 Features outside core Feature F302, “INTERSECT table operator”.
Feature F304, “EXCEPT ALL table operator”.
Feature T551, “Optional keywords for default
syntax” support for the keyword DISTINCT.
Feature F591, “Derived tables”.
Feature F661, “Simple tables”
Feature F851, “<order by clause> in
subqueries”.
Feature F855, “Nested <order by clause> in
<query expression>”.
Feature F856,” Nested <fetch first clause> in
<query expression>”.
Feature F857, “Top-level <fetch first clause>
in <query expression>”
Feature F858, “<fetch first clause> in
subqueries”.
Feature F860, “dynamic <fetch first row
count> in <fetch first clause>”.
Feature F861, “Top-level <result offset
clause> in <query expression>”.
Feature F862, “<result offset clause> in
subqueries”.
Feature F863, “Nested <result offset clause>
in <query expression>”.
Feature F865, “dynamic <offset row count> in
<result offset clause>”.
Feature T121, “WITH (excluding
RECURSIVE) in query expression”
Feature T122, “WITH (excluding
RECURSIVE) in subquery”
Feature T131, “Recursive query”
Feature T132, “Recursive query in subquery”
Feature T551, “Optional key words for default
syntax”.

Standard Compliance Comments

Mimer SQL Version 11.0 189
SQL Reference Manual

Mimer SQL
Extension

Support for host variable in
<fetch first clause> and <result offset clause>
is a Mimer SQL extension.
<cycle literal> and <nocycle literal> must be
data type CHAR(1) according to the SQL
standard. Mimer SQL requires both literals to
be of compatible types and can be boolean,
numeric, or character.
The option to perform CYCLE CHECK with
an error code is a Mimer SQL extension.

Standard Compliance Comments

190 Chapter 11 The SELECT Expression
Standard Compliance

Mimer SQL Version 11.0 191
SQL Reference Manual

Chapter 12

SQL Statements
This chapter documents SQL statements in Mimer SQL.
In SQL there are different types of statements:
• Procedural statements, including DML (Data Manipulation Language), see

Procedural SQL Statements on page 193.
• Data definition (DDL) statements, see Data Definition Statements on page 192.
• Access control statements, see Access Control Statements on page 191.
• Connection statements, see Connection Statements on page 191.
• Declarative statements, see Declarative Statements on page 193.
• Embedded SQL statements, see Embedded SQL Statements on page 193.
• Embedded SQL control statements, see Embedded SQL Control Statements on

page 193.
• System administration statements, see System Administration Statements on

page 194.

Access Control Statements
Access control statements can be divided into two categories: GRANT and REVOKE.
For information on GRANT statements, see:
• GRANT ACCESS PRIVILEGE on page 359
• GRANT OBJECT PRIVILEGE on page 361
• GRANT SYSTEM PRIVILEGE on page 364.
For information on REVOKE statements, see:
• REVOKE ACCESS PRIVILEGE on page 388
• REVOKE OBJECT PRIVILEGE on page 391
• REVOKE SYSTEM PRIVILEGE on page 394.

Connection Statements
For information on connection statements, see:
• CONNECT on page 245
• DISCONNECT on page 325
• ENTER on page 331

192 Chapter 12 SQL Statements

• LEAVE (PROGRAM ident) on page 375
• SET CONNECTION on page 406.

Data Definition Statements
For information on data definition (DDL) statements, see:
• ALTER DATABANK on page 200
• ALTER DATABASE on page 207
• ALTER FUNCTION on page 209
• ALTER IDENT on page 212
• ALTER METHOD on page 214
• ALTER PROCEDURE on page 216
• ALTER ROUTINE on page 219
• ALTER SEQUENCE on page 222
• ALTER SHADOW on page 223
• ALTER STATEMENT on page 225
• ALTER TABLE on page 226
• ALTER TYPE on page 230
• COMMENT on page 239
• CREATE COLLATION on page 251
• CREATE DATABANK on page 253
• CREATE DOMAIN on page 256
• CREATE FUNCTION on page 258
• CREATE IDENT on page 262
• CREATE INDEX on page 264
• CREATE MODULE on page 269
• CREATE PROCEDURE on page 271
• CREATE SCHEMA on page 275
• CREATE SEQUENCE on page 277
• CREATE SHADOW on page 280
• CREATE STATEMENT on page 282
• CREATE SYNONYM on page 284
• CREATE TABLE on page 285
• CREATE TRIGGER on page 294
• CREATE VIEW on page 302
• DROP on page 326.

Mimer SQL Version 11.0 193
SQL Reference Manual

Declarative Statements
Declarative statements, denoted as declarative-statement in syntax diagrams,
include the following statements:
• DECLARE CONDITION, see page 307
• DECLARE CURSOR, see page 309
• DECLARE HANDLER, see page 312
• DECLARE VARIABLE, see page 315.

Embedded SQL Statements
Embedded SQL statements include the following statements:
• ALLOCATE CURSOR, see page 196
• ALLOCATE DESCRIPTOR, see page 198
• DEALLOCATE DESCRIPTOR, see page 305
• DEALLOCATE PREPARE, see page 306
• DESCRIBE, see page 323
• EXECUTE, see page 332
• EXECUTE IMMEDIATE, see page 334
• GET DESCRIPTOR, see page 344
• PREPARE, see page 380
• SET DESCRIPTOR, see page 411.

Embedded SQL Control Statements
Embedded SQL control statements include the following statements:
• DECLARE SECTION, see page 314
• WHENEVER, see page 434.

Procedural SQL Statements
Procedural SQL statements (including DML), denoted procedural-sql-statement
in syntax diagrams, include the following statements:
• CALL, see page 233
• CASE, see page 235
• CLOSE, see page 237
• COMMIT, see page 241
• COMPOUND STATEMENT, see page 243
• DELETE CURRENT, see page 319
• DELETE, see page 317
• EXECUTE STATEMENT, see page 335
• FETCH, see page 339

194 Chapter 12 SQL Statements

• FOR, see page 342
• GET DIAGNOSTICS, see page 351
• IF, see page 366
• INSERT, see page 368
• ITERATE, see page 371
• LEAVE, see page 373
• LOOP, see page 376
• OPEN, see page 378
• REPEAT, see page 382
• RESIGNAL, see page 384
• RETURN, see page 386
• ROLLBACK, see page 396
• SELECT INTO, see page 401
• SELECT, see page 398
• SET SESSION, see page 413
• SET TRANSACTION, see page 418
• SET, see page 404
• SIGNAL, see page 422
• START, see page 424
• UPDATE CURRENT, see page 429
• UPDATE, see page 426
• WHILE, see page 435.

System Administration Statements
System administration statements include the following statements:
• ALTER DATABANK RESTORE, see page 205
• CREATE BACKUP, see page 248
• DELETE STATISTICS on page 321
• SET DATABANK, see page 407
• SET DATABASE, see page 409
• SET SHADOW, see page 416
• UPDATE STATISTICS, see page 432.

Mimer SQL Version 11.0 195
SQL Reference Manual

Usage Modes
The following usage modes apply for SQL statements in Mimer SQL:

• Embedded
You can embed the statement in an embedded SQL application.

• Interactive
You can use the statement in interactive SQL tools such as Mimer BSQL and
DbVisualizer.

• JDBC
You can use the statement via the Java Database Connectivity (JDBC) interface.

• Module
You can embed the statement in a Module SQL application.

• ODBC
You can use the statement via the Microsoft Open Database Connectivity (ODBC)
interface.

• Procedural
You can use the statement in a function, procedure, trigger, method or compound
statement.

196 Chapter 12 SQL Statements
ALLOCATE CURSOR

ALLOCATE CURSOR
Allocates an extended cursor.

Usage
Embedded, Module.

Description
The value of the extended-cursor-name is associated with the prepared statement
specified by the extended-statement-name. Extended cursors and statements differ
from ‘normal’ cursors and statements in that they are identified by a host variable or a
string-literal, instead of by an identifier. The host variable must be declared in the
DECLARE SECTION of the compilation unit as a character string variable.
The association between the cursor and the statement is preserved until the prepared
statement is destroyed, see DEALLOCATE PREPARE on page 306, at which time the
cursor is also destroyed.
A cursor allocated WITH HOLD will be a holdable cursor. An open holdable cursor is not
closed when a transaction is committed.
WITHOUT HOLD and NO SCROLL are the default cursor attributes, therefore you do not
need to specify them.
A cursor allocated as REOPENABLE may be opened several times in succession and
previous cursor states are saved on a stack, see OPEN on page 378. Saved cursor states
are restored when the current state is closed, see CLOSE on page 237.
A cursor allocated as SCROLL will be a scrollable cursor. For a scrollable cursor, records
can be fetched using an orientation specification. See the description of FETCH on
page 339 for a description of how the orientation is specified.

Restrictions
A cursor for a result set procedure call must not be allocated WITH HOLD.

Notes
The extended statement must identify a statement previously prepared in the scope of the
extended-statement-name. That prepared statement must be a query expression.
There must be no other extended cursor with the same name allocated in the same
compilation unit.

Mimer SQL Version 11.0 197
SQL Reference Manual

Cursors should normally be allocated WITHOUT HOLD (default), because WITH HOLD
cursors require more internal resources than ordinary cursors.
A re-openable cursor can be used to solve the ‘Parts explosion’ problem. Refer to the
Mimer SQL Programmer’s Manual, Chapter 4, The 'Parts explosion' Problem for a
description of this.

Example
exec sql PRERARE 'stmA' FROM :sqlstr;
exec sql DESCRIBE OUTPUT 'stmA' USING SQL DESCRIPTOR 'descrOut';
exec sql GET DESCRIPTOR 'descrOut' :cnt = COUNT;
if (cnt > 0) {
 /* The statement is returning a result set.
 Allocate a cursor to be used when reading it. */
 exec sql ALLOCATE 'curA' SCROLL CURSOR FOR 'stmA';
…

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside core Feature B031, “Basic dynamic SQL”
Feature B032, “Extended dynamic SQL”
support for dynamic cursor names.
Feature F431, “Read-only scrollable
cursors”.

Mimer SQL extension REOPENABLE is Mimer specific.

198 Chapter 12 SQL Statements
ALLOCATE DESCRIPTOR

ALLOCATE DESCRIPTOR
Allocates an SQL descriptor area.

Usage
Embedded, Module.

Description
An SQL descriptor area is allocated. The SQL descriptor area is used to provide
information about variables used for input and output between the application and the
database. The descriptor-name is identified by a host variable or a literal.
The allocated SQL descriptor area will have as many item descriptor areas as specified
by the WITH MAX occurrences clause. If WITH MAX occurrences is omitted,
100 item descriptor areas are allocated.
The SQL descriptor area has the following structure:

The COUNT field specifies how many item descriptor areas contain data.
See GET DESCRIPTOR on page 344 for a description of the descriptor fields.

Notes
The maximum length of the descriptor-name is 128 characters.
The scope of a descriptor-name is limited to a single compilation unit and there
cannot be more than one descriptor with the same name in a single compilation unit.

Example
maxcol = 256;
exec sql ALLOCATE DESCRIPTOR 'descrOut' WITH MAX :maxcol;

COUNT

item descriptor area 1

item descriptor area 2

…

item descriptor area n

Mimer SQL Version 11.0 199
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside core Feature B031, “Basic dynamic SQL”
Feature B032, “Extended dynamic SQL”
support for dynamic descriptor names.

200 Chapter 12 SQL Statements
ALTER DATABANK

ALTER DATABANK
Alters transaction control option, databank files, file location or file size attributes of a
databank.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Mimer SQL Version 11.0 201
SQL Reference Manual

Description
The SET clause is used to set, change or remove various characteristics for the specified
databank.
The DROP clause is used to remove databank attributes, like file size limitations and
REMOVABLE. The DROP FILESIZE option will shrink the file size as much as possible.
ADD FILE is used to add another file to a databank. (A databank consists of one or several
files.)
DROP FILE is used to remove a file from a databank. The data stored in the removed file
will automatically be transferred to other file(s).
ALTER FILE is used to set, change or remove various characteristics for the specified
databank file(s).

FILESIZE
The databank file’s physical file size is set by using the SET FILESIZE option.
When specifying sizes, K (kilo) means that the size (in bytes) is multiplied by 1 024,
M (mega) means the size is multiplied by 1 048 576, and G (giga) means that the size is
multiplied by 1 073 741 824.
The DROP FILESIZE option will shrink the file size as much as possible.

GOALSIZE
By specifying a GOALSIZE value, the system will always try to keep the file size limited
to the value specified.

MAXSIZE
It is possible to specify the maximum file size by using the MAXSIZE option.

MINSIZE
It is possible to specify the minimum file size by using the MINSIZE option.
This option is used to assure ALTER DATABANK DROP FILESIZE does not shrink the
databank file too much.

FILE
If the FILE clause is specified, the databank location stored in the data dictionary is
changed to the location given in the filename-string parameter. The file specified by
filename-string must exist when the ALTER DATABANK statement is executed. The
filename-string may be represented as character literal, national character literal, or
unicode character literal.
The new file must be identifiable as a copy of the databank created for the current Mimer
SQL database. The first page of the databank file is read to verify that the data in the
databank can be accessed and that the file was closed correctly the last time it was used.
If the file is flagged internally as not being closed correctly, a full databank check is
effectively done on it, see the Mimer SQL System Management Handbook, Chapter 6,
Databank Check Functionality, for details on the DBC functionality.
The ALTER DATABANK statement will fail if the new file does not verify correctly against
the checks performed.

202 Chapter 12 SQL Statements
ALTER DATABANK

If the timestamp information in the databank file indicates that additional information
must be restored to it to bring it up to date, an information message is written to the
database server log file (this message will be returned to the user if the database is being
accessed in single user mode).
This situation will not cause the ALTER DATABANK statement to fail, but any attempt to
subsequently access the databank will raise an error indicating that additional information
must be restored to the databank. Once the additional information has been restored, the
databank can be used normally.
If the databank is OFFLINE, however, the new file will be accepted by the ALTER
DATABANK statement without any verification. In this case the file is validated when the
databank is next set ONLINE and the SET DATABANK statement will fail if the file does
not verify correctly against the checks performed.

ADD FILE
This command may also be done concurrently with other operations on the databank. As
this is typically a fast operation, it is not possible to cancel.

DROP FILE
Drop file can be done concurrently with other operations on the databank. The operation
may itself take a long time, especially when there is a lot of data in the file that needs to
be reallocated to the remaining file(s). In addition, the system will wait for concurrent
transactions for TRANSDB. I.e. any long running transaction will block the completion
of the drop of a TRANSDB file command. For other databanks, long running large object
operations may also block completion.
It is possible to cancel the command. When this happens any wait for transaction or large
object operations is interrupted. If the command is in the process of moving data this
operation is interrupted and the system will continue working with the state where the
drop file command was interrupted.

OPTION
If the SET OPTION clause is specified, the transaction control option of the databank is
changed. The possible options are:

• LOG
All operations on the databank are performed under transaction control. All
transactions are logged.

• TRANSACTION
All operations on the databank are performed under transaction control. No
transactions are logged.

• WORK
All operations on the databank are performed without transaction control (even if
they are requested within a transaction) and are not logged. Set operations (DELETE,
UPDATE and INSERT on several rows) which are interrupted will not be rolled back.
All secondary indexes contained in the databank are flagged as not consistent
(a secondary index that is flagged as not consistent will not offer optimal
performance when used in a query).

Mimer SQL Version 11.0 203
SQL Reference Manual

• READ ONLY
Only read only operations are allowed, i.e. DELETE, UPDATE and INSERT
operations are not allowed, nor it’s possible to create indexes or altering tables.

Note: Secondary indexes for tables in a databank that is altered from WORK option
will still be flagged as not consistent after the ALTER DATABANK
operation. Use the UPDATE STATISTICS statement to make the indexes
consistent, see UPDATE STATISTICS on page 432.

REMOVABLE
When a databank is set to the REMOVABLE attribute, the database system does not signal
an error when a SELECT, UPDATE, or DELETE operation is performed on a table in an
inaccessible databank. Instead, the system behaves as if the table is empty and signals an
end-of-table condition. (If the databank does not have the REMOVABLE attribute, an open
file error is returned whenever it is accessed and the file cannot be accessed.) INSERT
operations will always signal an error if the databank is inaccessible.
This functionality is useful, for example, if the databank is located on a flash memory
card.
Note: A database can be set in AUTOUPGRADE mode, which has precedence for

REMOVABLE, meaning that for a databank having both AUTOUPGRADE and
REMOVABLE enabled a missing databank and/or table will be created. I.e. the
file is created whenever it is accessed. If the create fails, the REMOVABLE
attribute is used.
See ALTER DATABASE on page 207 for more information about
AUTOUPGRADE.

Restrictions
Only the creator of the databank may alter all of its attributes. An ident with BACKUP
privilege may alter the databank’s different file size attributes.
A databank that is shadowed or contains a table defined with foreign or unique keys, a
table referenced in a foreign key context, or a table on which a UNIQUE index has been
created, must have databank option set to TRANSACTION or LOG.
There can only be one ADD FILE and/or DROP FILE command active for a single
databank. If a command is in progress for the selected databank, a return code with
databank locked is returned.
A maximum of 15 files per databank is allowed.

Notes
If the extension of the databank exceeds the available disk space, the databank is extended
as much as possible.
A databank will be extended automatically on operating systems supporting dynamic file
extension (provided that there is free space on the disk). However, such incremental
extensions may lead to the disk becoming fragmented, so the use of explicit ALTER
DATABANK … SET FILESIZE can help avoid disk fragmentation.

204 Chapter 12 SQL Statements
ALTER DATABANK

For databanks with option TRANSACTION and LOG the system treats the maximum size
as an advisory limit. This limit may be temporarily exceeded. The reason for this is that
the actual updating of the databank files are performed in the background while the
detection of the maximum size is performed when the applications perform insert
operations during transaction buildup. In addition, when several concurrent users are
inserting data the actual space is not reserved until the background updates are made.
Changing the location of a databank with the ALTER DATABANK… SET FILE statement
only changes the file location stored in the data dictionary, it does not move any physical
files in the host operating system. You must first copy or move the databank file to its new
location using operating system commands and then use the ALTER DATABANK statement
to correct the location stored in the data dictionary.
The value of filename-string must always be enclosed in string delimiters. The
maximum length of the filename string is 256 characters.
Refer to Specifying the Location of User Databanks on page 13 for details concerning the
specification of path-name components in filename-string.
When the databank option is altered to WORK, all secondary indexes contained in the
databank will be flagged as not consistent.
It is not possible to update primary key columns if the table is located in a databank with
the WORK option.
Tip: It is possible to alter the location of a databank by first doing an ADD FILE

operation, followed by a DROP of the original file. This may be done when data is
accessed by other applications.

Examples
ALTER DATABANK usrdb SET GOALSIZE 100 M, MAXSIZE 1 G;
ALTER DATABANK usrdb ADD FILE 'usrdb_pt2', GOALSIZE 100 M, MAXSIZE 1 G;
ALTER DATABANK usrdb DROP FILE 'usrdb_pt1';

Standard Compliance
Standard Compliance Comments

Mimer SQL extension The ALTER DATABANK statement is a
Mimer SQL extension.

Mimer SQL Version 11.0 205
SQL Reference Manual

ALTER DATABANK RESTORE
Restores a databank from a backup of LOGDB or from the information currently in LOGDB.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
This form of ALTER DATABANK is used to recover a databank in the event of it being
damaged or destroyed. You can use this SQL statement to restore the databank from
information contained in the log records for the databank held in the current LOGDB or
from a LOGDB backup. Refer to of the Mimer SQL System Management Handbook,
Chapter 5, Backing-up and Restoring Data, for details on Backup and Restore.
Before using the ALTER DATABANK RESTORE command a valid backup copy of the
databank must be copied in place.
The recovery operation must start from a usable backup copy of the databank file, which
has been created using the host file system backup or from a backup taken using CREATE
BACKUP.
Once the restored databank file is in place, ALTER DATABANK is used to bring the
databank up to date by applying any updates made to it since that copy of the databank
file was taken. The updates may have been recorded in one or more backups of LOGDB
and the latest updates will be contained in the log records in the LOGDB system databank.
When the LOG option is used, the updates for the databank recorded in the log records
currently in LOGDB will be applied to the databank.
Note: The timestamp information contained in both the databank file and the LOGDB

records must match, otherwise a backup sequence error is returned.
When the filename-string is specified, it names a backup LOGDB file. The updates
contained in the file will be applied to the databank. Note that the timestamp information
contained in both the databank file and the backup file must match, otherwise a backup
sequence error is returned.

Restrictions
Only the creator of the databank or an ident with BACKUP privilege (e.g. SYSADM), may
use the ALTER DATABANK RESTORE statement to restore it.
If the databank does not have LOG option, there will be no operations recorded in LOGDB.

Notes
It is possible to restore a databank that has been set offline.
The recovery operations performed using ALTER DATABANK RESTORE can only be
applied to a copy of a databank file which has been placed in the original file location used
by the databank.

206 Chapter 12 SQL Statements
ALTER DATABANK RESTORE

If the copy of the databank file must be restored to a new location for some reason (e.g. a
disk has been lost), then ALTER DATABANK is first used to change the databank file
location.

Example
ALTER DATABANK usrdb RESTORE USING 'usrdblog'

For more information, see the Mimer SQL System Management Handbook, Chapter 5,
Backing-up and Restoring Data.

Standard Compliance
Standard Compliance Comments

Mimer SQL extension The ALTER DATABANK RESTORE
statement is a Mimer SQL extension.

Mimer SQL Version 11.0 207
SQL Reference Manual

ALTER DATABASE
Sets or drops the AUTOUPGRADE attribute for a database.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
When a database is set to attribute AUTOUPGRADE, the database system will keep track of
changes to tables, indexes and constraints in the database. The upgrade process is
performed by the following steps:
1 Initially a database (i.e. system databank and associated databank files) is copied

from development environment to a production system.
2 Changes are made to the original development database. Changes such as create

table and alter table are kept track as the AUTOUPGRADE attribute has been set.
3 When all changes are completed, the updated system databank is copied from the

development system to the production system. (Note that only sysdb is copied.)
4 The auto-upgrade is now performed as tables are accessed in the databanks that use

the old table definition. Upgrades may, for example, add new columns to a table.
When this is done the table is reloaded with the new column in place. During the
upgrade new constraints are not validated. Instead, the constraints are applied when
rows are modified in subsequent use of the table.

Note: When adding constraints to a table within a database applying AUTOUPGRADE,
the WITHOUT CHECK option must be used. See ALTER TABLE on page 226 to
find out the consequences of this.
When creating a unique index within a database applying AUTOUPGRADE, the
WITHOUT CHECK option must be used. See CREATE INDEX on page 264 to
find out the consequences of this.

When a table is found missing in a database with the AUTOUPGRADE attribute, the table
will automatically be created. The table is initially empty. In addition, if a databank file
is missing the databank is automatically created when AUTOUPGRADE is in effect.

Restrictions
SYSADM is the only ident allowed to execute the ALTER DATABASE statement.
The Mimer SQL shadowing functionality cannot be used together with the automatic
upgrade feature. When setting the AUTOUPGRADE attribute on a database, following
CREATE SHADOW statements will fail. And vice versa, when having databank shadows in
the system it will not be possible to enable the AUTOUPGRADE attribute.

208 Chapter 12 SQL Statements
ALTER DATABASE

Notes
The AUTOUPGRADE attribute must be set when the database is set into production for the
first time. This is essential for the upgrade functionality to work properly, otherwise
automatic upgrade cannot be performed.
When dropping the AUTOUPGRADE attribute there is no way to come back to automatic
upgrade for the database. All upgrade information gathered will be dropped. If restoring
the AUTOUPGRADE attribute after dropping it, a new starting point for automatic upgrade
is created. This means that upgrade information is gathered again, but upgrade cannot be
performed from earlier system databank versions.
The AUTOUPGRADE attribute provides an advanced, but also restricted, method for
automatic upgrade which is mainly aimed for mobile devices using remote upgrading.
The functionality is not recommended for enterprise application environments.
Using the AUTOUPGRADE attribute gives certain implications when adding table
constraints, see Adding a Table Constraint on page 227.

Example
Set the database to AUTOUPGRADE.

ALTER DATABASE SET AUTOUPGRADE;

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The ALTER DATABASE statement is a Mimer
SQL extension.

Mimer SQL Version 11.0 209
SQL Reference Manual

ALTER FUNCTION
Alter an existing function.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
With the ALTER FUNCTION statement it is possible to change attributes or the procedural
sql statement used in the routine body for the function.
The function-name should follow the normal rules for naming database objects, see
Naming Objects on page 39.
If no schema name is given, it is assumed that the function is defined in a schema with the
same name as the current ident.
If the function name is unique within the schema and only the routine attributes are
altered, it is not necessary to provide a parameter list.
If there are multiple functions with the same name, it is possible to identify the function
by using a specific name or by providing a parameter list. How to use a specific name
when altering a routine is described in the ALTER ROUTINE statement (see ALTER
ROUTINE on page 219.)
The parameter-name should follow the normal rules for naming SQL identifiers, see SQL
Identifiers on page 38.
The routine attributes that can be altered are: DETERMINISTIC, ACCESS MODE, IS
NULL CALL and SPECIFIC. If a routine attribute is not present in the alter function
statement the attribute will keep the value it had prior to the statement.

210 Chapter 12 SQL Statements
ALTER FUNCTION

The meaning of the routine attributes are the same as when creating a function (see
CREATE FUNCTION on page 258.)
It is possible to change the data type in the returns clause, with some restrictions (see
below.)

Restrictions
It is only the creator of the schema in which the function is defined, that is allowed to alter
the function.
It is not possible to alter the data type of a parameter.
If the routine body is altered, a complete parameter list with names and a returns clause
must also be given.
It is possible to change the data type in the returns clause if there are no other objects
referencing this function or if the new data type is comparable with the old data type (see
Comparisons on page 80 for more details.)
If the altered routine body contains references to objects on which the current ident does
not have the applicable privilege with grant option and there are other objects referencing
the function being altered, the alter operation is not allowed.
In addition, all restrictions for create function also applies.

Notes
Any privilege on the function granted to other idents will remain.
It is possible to alter a function that is part of a module.

Example
Alter the deterministic attribute for a function

CREATE FUNCTION mimer_store_book.authors_name(p_name VARCHAR(48)) RETURNS
VARCHAR(48) DETERMINISTIC
BEGIN
 ...
END

ALTER FUNCTION mimer_store_book.authors_name NOT DETERMINISTIC

Example on how to change the procedure sql statement in a function definition
CREATE FUNCTION C_from_F (Fdegrees integer) RETURNS integer
 RETURN CAST((Fdegrees - 42) * 5.0 / 9 + 0.5 AS integer);

ALTER FUNCTION C_from_F (Fdegrees integer) RETURNS integer
 RETURN CAST((Fdegrees - 32) * 5.0 / 9 + 0.5 AS integer);

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside
core

Feature F381, “Extended schema manipulation”

Mimer SQL Version 11.0 211
SQL Reference Manual

Mimer SQL
extension

The possibility to change the routine body of a
function is a Mimer SQL extension.

Mimer SQL
extension

The possibility to use domains in PSM is a Mimer
SQL extension

Standard Compliance Comments

212 Chapter 12 SQL Statements
ALTER IDENT

ALTER IDENT
Set, alter or drop the password for an existing ident, or add or drop OS_USER for a USER
ident.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The ALTER IDENT statement is used for either adding and dropping OS_USER logins for
a USER ident, or for setting and dropping the password for an ident. Adding an OS_USER
login for an ident makes it possible to connect to Mimer SQL without giving a password.
See USER Idents on page 14 for more details.

Restrictions
GROUP idents do not have passwords, therefore the ALTER IDENT statement cannot be
used on a GROUP ident.
OS_USER logins can only be added or dropped for USER idents. It is only the creator of
the ident that may add or drop OS_USER logins.
Dropping a password is only allowed for USER idents. It is only the creator of the ident
that may drop the password.
The password can only be changed by the ident or by the creator of the ident. An ident
may only change the password if the password already has been set.

Notes
The password may contain any characters except the space character. The case of
alphabetical characters is significant.
The password string must be enclosed in string delimiters, which are not included as part
of the password.
A USER ident password must be at least 1 and at most 128 characters long. A PROGRAM
ident password must be at least 1 and at most 18 characters long.
All letters in OS_USER login names are treated as uppercase in Mimer SQL, regardless of
operating system conventions. See SQL Identifiers on page 38 for more information on
naming objects.
On Windows, an OS_USER should be qualified with domain name.

Mimer SQL Version 11.0 213
SQL Reference Manual

Examples
Change the user SAMMY’s password to SaXm2Jo:

ALTER IDENT SAMMY SET PASSWORD 'SaXm2Jo';

Add the OS_USER login Kessler to the ident Kramer:
ALTER IDENT KRAMER ADD OS_USER 'KESSLER';

Add the OS_USER login Kessler to the ident Kramer, on the Windows domain UWS:
ALTER IDENT KRAMER ADD OS_USER 'UWS\KESSLER';

For more information, see the Mimer SQL User’s Manual, Chapter 7, Altering
Databanks, Tables and Idents.

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The ALTER IDENT statement is a Mimer SQL
extension.

214 Chapter 12 SQL Statements
ALTER METHOD

ALTER METHOD
Alter an existing method.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
With the ALTER METHOD statement it is possible to change the procedural sql statement
used in the routine body for a method. It is not possible to alter routine attributes for a
method but this is done by altering the method specification on which the method is
based. (See ALTER TYPE on page 230 for details.)
The method-name should follow the normal rules for naming database objects, see
Naming Objects on page 39.
If no schema name is given, it is assumed that the method is defined in a schema with the
same name as the current ident.
If the method name is unique within the schema, it is not necessary to provide a data type
list.
If there are multiple methods with the same name, it is possible to identify the method by
using a specific name or by providing a parameter list. How to use a specific name when
altering a routine is described in the ALTER ROUTINE statement (ALTER ROUTINE on
page 219.)
The parameter-name should follow the normal rules for naming SQL identifiers, see SQL
Identifiers on page 38.

Restrictions
It is only the creator of the schema in which the method is defined, that is allowed to alter
the method.
If the altered routine body contains references to objects on which the current ident does
not have the applicable privilege with grant option and there are other objects referencing
the method being altered, the alter operation is not allowed.

Mimer SQL Version 11.0 215
SQL Reference Manual

In addition, all restrictions for CREATE METHOD also applies. (See CREATE METHOD
on page 267.)

Notes
Any privilege on the method granted to other idents are retained.
It is possible to alter a method that is part of a module.

Example
Example on how to change the procedure sql statement in a function definition:

CREATE STATIC METHOD C_from_F (Fdegrees integer) FOR DEGREES
 RETURN CAST((Fdegrees - 42) * 5.0 / 9 + 0.5 AS integer);

ALTER STATIC METHOD C_from_F (Fdegrees integer)
 RETURN CAST((Fdegrees - 32) * 5.0 / 9 + 0.5 AS integer);

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The ALTER METHOD statement is a Mimer SQL
extension.

216 Chapter 12 SQL Statements
ALTER PROCEDURE

ALTER PROCEDURE
Alter an existing procedure.

Usage
Interactive, Embedded, Module, ODBC, JDBC.

Description
With the ALTER PROCEDURE statement it is possible to change attributes or the
procedural sql statement used in the routine body for the procedure .
The procedure name should follow the normal rules for naming database objects, see
Naming Objects on page 39.
If no schema name is given, it is assumed that the procedure is defined in a schema with
the same name as the current ident.
If the procedure name is unique within the schema and only the routine attributes are
altered, it is not necessary to provide a parameter list.
If there are multiple procedures with the same name, it is possible to identify the
procedure by using a specific name or by providing a parameter list. How to use a specific
name when altering a routine is described in the ALTER ROUTINE statement (see ALTER
ROUTINE on page 219.)
The parameter-name should follow the normal rules for naming SQL identifiers, see SQL
Identifiers on page 38.

Mimer SQL Version 11.0 217
SQL Reference Manual

The routine attributes that can be altered are: DETERMINISTIC, ACCESS MODE, IS NULL
CALL and SPECIFIC. If a routine attribute is not present in the ALTER PROCEDURE
statement the attribute will keep the value it had prior to the statement.
The meaning of the routine attributes are the same as when creating a procedure (see
CREATE PROCEDURE on page 271.)
It is possible to change the data type in the returns clause, with some restrictions (see
below).
If there is a returns clause and a procedural sql statement in the alter procedure statement,
the procedure will be a result set procedure. Likewise if there is no returns clause and a
procedural sql statement in the alter procedure statement, the procedure will be an regular
procedure. Thus it is possible to change an regular procedure to a result set procedure and
vice versa.

Restrictions
It is only the creator of the schema in which the procedure is defined, that is allowed to
alter the procedure.
It is not possible to alter the data type of a parameter.
If the routine body is altered, a complete parameter list with names must also be given.
It is possible to change the data type in the returns clause if there are no other objects
referencing this procedure or if the new data types are comparable with the old data type
(see Comparisons on page 80.)
If the altered routine body contains references to objects on which the current ident does
not have the applicable privilege with grant option and there are other objects referencing
the procedure being altered, the alter operation is not allowed.
In addition, all restrictions for create procedure also applies.

Notes
Any privilege on the function granted to other idents will remain.
It is possible to alter a procedure that is part of a module.

Example
Alter the access mode for a procedure

CREATE PROCEDURE INSERT_AUTHOR
(IN FIRST_NAME NCHAR VARYING(30),IN LAST_NAME NCHAR VARYING(30))

 INSERT INTO AUTHORS VALUES(FIRST_NAME,LAST_NAME)

ALTER PROCEDURE INSERT_AUTHOR modifies sql data

Example of altering the routine body
ALTER PROCEDURE INSERT_AUTHOR

(IN FIRST_NAME NCHAR VARYING(30),IN LAST_NAME NCHAR VARYING(30))
BEGIN
 ...
END

218 Chapter 12 SQL Statements
ALTER PROCEDURE

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside
core

Feature F381, “Extended schema manipulation”

Mimer SQL
extension

The possibility to change the routine body of a
procedure is a Mimer SQL extension.

Mimer SQL
extension

The possibility to use domains in PSM is a Mimer
SQL extension.

Mimer SQL Version 11.0 219
SQL Reference Manual

ALTER ROUTINE
Alter an existing routine.

where routine-type is:

Usage
Interactive, Embedded, Module, ODBC, JDBC.

Description
With the ALTER ROUTINE statement it is possible to change attributes or the procedural
sql statement used in the routine body for a routine. A routine can either be a function or
procedure.

220 Chapter 12 SQL Statements
ALTER ROUTINE

The routine to be altered is either identified by the specific name for the routine or the
name of the routine. If the form alter routine is used there can only be one function or
procedure having that name.
The specific name for a routine is either given or generated when the routine is created
and is unique within a schema. As the name is unique it is not necessary to specify the
type for the routine but the generic qualifier ROUTINE can be used. However, if an explicit
type is given in the alter statement, the routine identified by the specific name must match
the routine type.
The routine-name and the specific-name should follow the normal rules for naming
database objects, see Naming Objects on page 39.
If no schema name is given, it is assumed that the routine is defined in a schema with the
same name as the current ident.
If only the routine attributes are altered, it is not necessary to provide a parameter list. If
a parameter list is given, the names and the data types must match the routine identified
by the specific name.
The parameter-name should follow the normal rules for naming SQL identifiers, see SQL
Identifiers on page 38.
The routine attributes that can be altered are: DETERMINISTIC, ACCESS MODE, IS NULL
CALL and SPECIFIC. If a routine attribute is not present in the ALTER ROUTINE
statement, the attribute will keep the value it had prior to the statement.
The meaning of the routine attributes are the same as when creating a routine (see
CREATE FUNCTION on page 258 and CREATE PROCEDURE on page 271.)
It is possible to change the data type in the returns clause, with some restrictions (see
below).

Restrictions
It is only the creator of the schema in which the routine is defined, that is allowed to alter
the routine.
It is not possible to alter the data type of a parameter.
If the routine body is altered, a complete parameter list with names must also be given.
It is possible to change the data type in the returns clause if there are no other objects
referencing this routine or if the new data types are comparable with the old data type (see
Comparisons on page 80 for more details.)
If the altered routine body contains references to objects on which the current ident does
not have the applicable privilege with grant option and there are other objects referencing
the routine being altered, the alter operation is not allowed.
In addition, all restrictions for CREATE PROCEDURE and CREATE FUNCTION
apply.

Notes
Any privilege on the routine granted to other idents are retained.
It is possible to alter a routine that is part of a module.

Mimer SQL Version 11.0 221
SQL Reference Manual

Examples
Alter the specific name for a routine:

CREATE PROCEDURE INSERT_AUTHOR
(IN FIRST_NAME NCHAR VARYING(30),IN LAST_NAME NCHAR VARYING(30))

 SPECIFIC INS_AUTH
BEGIN
 ...
END

ALTER SPECIFIC ROUTINE INS_AUTH SPECIFIC INSERT_AUTHOR

Example of altering the routine body:
ALTER ROUTINE INSERT_AUTHOR

(IN FIRST_NAME NCHAR VARYING(30),IN LAST_NAME NCHAR VARYING(30))
 BEGIN
 ...
 END

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside
core

Feature F381, “Extended schema manipulation”

Mimer SQL
extension

The possibility to change the routine body of a
routine is a Mimer SQL extension.

Mimer SQL
extension

The possibility to use domains in PSM is a Mimer
SQL extension.

222 Chapter 12 SQL Statements
ALTER SEQUENCE

ALTER SEQUENCE
Change attribute for a sequence.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
Defines the next value for a sequence. That is, the next call to the function NEXT VALUE
using this sequence will return the given restart value. The restart value must be within
the limits of the minimum (MINVALUE) and maximum (MAXVALUE) values for the
sequence.

Restrictions
Only the creator of a sequence may alter it.

Notes
The alter operation is only allowed if there is no user accessing the sequence.

Example
Restart a sequence with value 1.

ALTER SEQUENCE id_seq RESTART WITH 1;

Standard Compliance
Standard Compliance Comments

SQL-2016 Feature outside
core

Feature T176, “Sequence generator support”.

Mimer SQL Version 11.0 223
SQL Reference Manual

ALTER SHADOW
Alters the file location or the size of a shadow, or switches a databank shadow to be the
master databank.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
Alters an existing databank shadow, see the Mimer SQL Programmer’s Manual,
Chapter 10, Mimer SQL Shadowing, for details on databank shadowing.
If the ADD integer PAGES clause is specified, the shadow file is extended by the
number of Mimer SQL pages given by the integer parameter.
If the INTO clause is specified, the shadow file location stored in the data dictionary is
changed to the location specified in the filename-string parameter. The file specified
by filename-string must exist when the ALTER SHADOW statement is executed.
The new file must be identifiable as a copy of the databank shadow created for the current
Mimer SQL database. The first page of the databank file is read to verify that it was closed
correctly the last time it was used and that the internal timestamp information is consistent
with the current contents of LOGDB.
If the file is flagged internally as not being closed correctly, a full databank check is
effectively done on it, see the Mimer SQL System Management Handbook, Chapter 6,
Databank Check Functionality, for details on the DBC functionality.
The ALTER SHADOW statement will fail if the new file does not verify correctly against
the checks performed.
If the shadow is OFFLINE, however, the new file will be accepted by the ALTER SHADOW
statement without any verification. In this case the file is validated when the shadow is
next set ONLINE and the SET SHADOW statement will fail if the file does not verify
correctly against the checks performed.
If the TO MASTER clause is specified, the data dictionary is changed so that the file
location stored for the shadow file is set for the databank file and vice versa, i.e. the
shadow becomes the master and the master becomes a shadow. If the shadow is OFFLINE
when the TO MASTER clause is specified, it is automatically set ONLINE before the data
dictionary is updated.

Restrictions
ALTER SHADOW is only for use with the optional Mimer SQL Shadowing module.
Only an ident with SHADOW privilege may use the ALTER SHADOW statement.
ALTER SHADOW may not be used if the master databank is OFFLINE.
The ADD integer PAGES clause may not be used if the shadow is OFFLINE.

224 Chapter 12 SQL Statements
ALTER SHADOW

The databank for which the shadow exists cannot be used by any other user while the
shadow is being altered.
Shadows for the system databanks SYSDB, TRANSDB and LOGDB cannot be altered with
the ALTER SHADOW statement. These shadows must be altered by the Mimer SQL BSQL
program, see Mimer SQL System Management Handbook, Chapter 10, Restoring System
Databanks.

Notes
If the extension of the shadow exceeds the available disk space, the shadow is expanded
as much as possible.
A shadow will be extended automatically in systems supporting dynamic file extension
(provided that there is space on the disk). However, such incremental extensions may lead
to the file becoming fragmented and use of explicit ALTER SHADOW… ADD is generally
recommended (used at the same time as ALTER DATABANK… ADD is used to extend the
master databank).
Changing the location of a shadow with the ALTER SHADOW… INTO statement only
changes the location as stored in the data dictionary, it does not move any physical files
in the host operating system. You must first copy or move the shadow file to its new
location using operating system commands and then use the ALTER SHADOW statement
to correct the location stored in the data dictionary.
The value of filename-string must always be enclosed in string delimiters. The
maximum length of the filename string is 256 characters.
Refer to Specifying the Location of User Databanks on page 13 for details concerning the
specification of path name components in filename-string.
The TO MASTER option is used when the original databank file has been lost or is
inaccessible for any reason. Since this option swaps the information about the shadow and
the master databank stored in the data dictionary, the command may be followed by a
DROP SHADOW command to dispose of the original databank.

Example
The following example alters USRDB_S, a shadow of the USRDB databank, to the USRDB
master databank:

ALTER SHADOW USRDB_S TO MASTER

For more information, see the Mimer SQL System Management Handbook, Chapter 10,
Creating and Managing Shadows.

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The ALTER SHADOW statement is a Mimer
SQL extension.

Mimer SQL Version 11.0 225
SQL Reference Manual

ALTER STATEMENT
Recompile a stored statement.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The compiled form of the precompiled statement is replaced with the result of a new
compilation.

Restrictions
It is only the creator of the statement that may alter it.

Notes
The use for this statement is diminished since automatic statement refresh has been
implemented. That is, when creating or dropping an index for a table, all statements using
that table are automatically refreshed. Likewise, UPDATE STATISTICS for a table will
also cause a rebuild of statements using that table.
One case where this statement still is useful is after DELETE STATISTICS which will not
cause an automatic refresh of statements.

Example
ALTER STATEMENT seltaba REFRESH;

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The ALTER STATEMENT statement is a Mimer
SQL extension.

226 Chapter 12 SQL Statements
ALTER TABLE

ALTER TABLE
Alters a table definition by: adding a column or table constraint; dropping a column or a
table constraint; changing the data-type or the default value for a column; setting disk
representation.

where set-data-type is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description

Adding a Column
When a column is added, the existing table is extended with the addition of a new column,
which is placed at the end of the table definition.
For each existing row in the table, the column will be assigned the default value (which
will be the column default value if one is defined, the domain default if the column
belongs to a domain or otherwise the null value).

Mimer SQL Version 11.0 227
SQL Reference Manual

Note: If the column-definition of the column being added includes the
NOT NULL column constraint, then the column must either have a non-null
default value defined or belong to a domain with a non-null default value.
Otherwise an attempt would be made to insert the null value into a column
which cannot accept it.

For information on column-definition, please see CREATE TABLE on page 285.

Altering a Column
When a column is altered, it is possible to change the data type of the data in it and to set
or drop the column default value.
If a new data type is set for the column, it must be assignment-compatible with the values
that already exist in the column.
If a column default value is set for the column, it must be assignment-compatible with the
values that already exist in the column.
When the column default value is dropped, the column takes its default value from the
domain to which the column belongs (if it uses a domain), otherwise the column default
becomes the null value.

Altering Table’s Disk Representation
The SET COMPRESS and SET PAGESIZE clauses make it possible to override a decision
the server has taken regarding how data is represented on disk.
Valid page-sizes are 4, 32 and 128 K.

Dropping a Column
When a column is dropped, it is removed from the table. The keywords CASCADE and
RESTRICT specify the action to be taken if other objects (such as views, table constraints,
indexes, routines and triggers) exist which reference the column being dropped.
If CASCADE is specified, referencing objects will be dropped as well.
If RESTRICT is specified, an error will be raised if referencing objects exist and neither
the column nor the referencing objects will be dropped. If neither keyword is specified,
RESTRICT behavior is the default.

Adding a Table Constraint
It is possible to add a new table constraint to the table, which is specified in the same way
it would be when a new table is created. If the table constraint is explicitly named, it
cannot have the same name as a constraint, table, view, synonym or index that already
exists in the schema in which the table is created. See CREATE TABLE on page 285 for
more details.
The WITH CHECK and WITHOUT CHECK clauses are used to control whether existing table
data should be verified against the constraint or not. WITH CHECK is the default behavior.
If WITH CHECK is used and the existing data in a table violates the table constraint being
added, the ALTER TABLE statement will fail and the new constraint will not be added to
the table.

228 Chapter 12 SQL Statements
ALTER TABLE

Note: For a table in a database with the AUTOUPGRADE attribute enabled, the
WITHOUT CHECK option must be used when adding constraints. Please note
that changing the primary key composition may lead to loss of data if the
modification results in primary key duplicates among existing data (duplicates
will silently be removed).
See ALTER DATABASE on page 207 for more information about
AUTOUPGRADE.

Dropping Table Constraints
It is also possible to drop an existing table constraint in order to remove the constraint
from the table. The keywords CASCADE and RESTRICT specify the action to be taken in
the case of a referential constraint being dropped.
If CASCADE is specified when a referential constraint is dropped, any other referential
constraints which are referencing the unique key being dropped will also be dropped.
If RESTRICT is specified an error will be raised, and nothing will be dropped, if there are
other referential constraints referencing the one to be dropped. If neither keyword is
specified, RESTRICT behavior is the default.

Language Elements
column-definition, see CREATE TABLE on page 285.
table-constraint-definition, see CREATE TABLE on page 285.
default-value, see Default Values on page 76.

Restrictions
A table can only be altered by the creator of the schema to which the table belongs.
You must have exclusive access to a table to alter it.
A column cannot be dropped if it is the only column in a table (i.e. a drop column
operation may not result in a table with no columns).
The ident performing an ALTER TABLE operation must have USAGE privilege on any
domain or sequence involved, EXECUTE privilege on any function involved and
REFERENCES privilege on all columns specified in references of a referential constraint.
Change of data type for a column is not allowed if the column participates in any type of
table constraint (PRIMARY KEY, UNIQUE, REFERENTIAL) or index (INDEX,
UNIQUE INDEX).
Change of data type for a column is not allowed if the column is used by a view,
procedure, function or trigger.
If a UNIQUE constraint is added to the table, it must be stored in a databank with the
TRANSACTION or LOG option.
If a REFERENTIAL constraint is added to the table, both the referencing table and the
referenced table must be stored in a databank with the TRANSACTION or LOG option.
If any record exists for a table it is not allowed to add a column with PRIMARY KEY or
UNIQUE constraint.
A column of LARGE OBJECT (i.e. BLOB, CLOB, or NCLOB) data type is not allowed in
any type of table constraint.

Mimer SQL Version 11.0 229
SQL Reference Manual

Examples
ALTER TABLE staff ADD city VARCHAR(50);

ALTER TABLE staff ALTER COLUMN city SET DATA TYPE NCHAR VARYING(50)
COLLATE english_1;

Notes
See Appendix C Limits for information on the maximum length of a row in a table.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F033, “ALTER TABLE statement: DROP
COLUMN clause”
Feature F191, “Referential delete actions”.
Feature F251, “Domain support”.
Feature F381, “Extended schema manipulation”.
Feature F382, “Alter column data type”.
Feature F491, “Constraint management”, support for
named constraints.
Feature T591, “UNIQUE constraints of possibly null
columns”.
Feature F690, “Collation support”.
Feature F701, “Referential update actions”.
Feature F721, “Deferrable constraints”, only for
referential constraints.

Mimer SQL
extension

The WITH/WITHOUT CHECK clause is a Mimer
SQL extension.
The SET COMPRESS and SET PAGESIZE clauses
are Mimer SQL extensions.

230 Chapter 12 SQL Statements
ALTER TYPE

ALTER TYPE
Alter a user-defined type.

where alter-action is:

where method is:

and where specific-method is:

Mimer SQL Version 11.0 231
SQL Reference Manual

and method-specification is:

and routine-attribute is:

Usage
Embedded, Interactive, Module, ODBC, JDBC

Description
The ALTER TYPE statement is used to add method specifications to a type, or to drop
method specifications from a type.
It is only the creator of a type that can alter it.
For information on method-specification, please see CREATE TYPE on page 298.

Restrictions
The restrictions for CREATE TYPE applies to ALTER TYPE also. (See CREATE TYPE on
page 298.)

232 Chapter 12 SQL Statements
ALTER TYPE

Standard Compliance
Alter a user-defined type.

Standard Compliance Comments

SQL-2016 Features
outside core

Mimer SQL Version 11.0 233
SQL Reference Manual

CALL
Calls a procedure.

Usage
Embedded, Interactive, Module, ODBC, Procedural, JDBC.

Description
The CALL statement is used to invoke a procedure. As there can be multiple procedures
with the same name, the number of parameters and their type is used to determine which
actual procedure should be invoked.
The nature of each expression depends on the parameter it applies to. For parameters
with mode OUT or INOUT, expression must be a target-variable, see Target Variables
on page 43. For parameters with mode IN, expression may be a value-expression.
The value of expression must be assignment-compatible with the data type of the
parameter to which it is applied, see Assignments on page 77.

Restrictions
In programming environments a cursor is needed when invoking result set procedures,
see ALLOCATE CURSOR on page 196 and DECLARE CURSOR on page 309 for
information about calling result set procedures.
In interactive SQL, the CALL statement is used to invoke all types of procedures.
Recursion is permitted, an error will be raised if the internal recursion limit is exceeded.
In a procedural usage context, the called procedure must have an access-clause which
is lower or equal to that of the calling procedure, see CREATE PROCEDURE on page 271
for details about procedure access clause values.

Notes
The CALL statement is not used to invoke functions.

Examples
CALL PROC1();

CALL PROC2(X,Y);

CALL IDENT1.PROC7(CURRENT_DATE, X+3, Z);

234 Chapter 12 SQL Statements
CALL

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 235
SQL Reference Manual

CASE
Allows sequences of SQL statements to be selected for execution based on search or
comparison criteria.
Note: A CASE statement is not the same as a CASE expression. A CASE statement is

for conditional execution of SQL statements, while a CASE expression has a
return value, and is typically used in SQL queries. See CASE Expression on
page 145.

where simple-case-when-clause is:

where searched-case-when-clause is:

Usage
Procedural.

Description
The CASE statement provides a mechanism for conditional execution of SQL statements.
It exists in two forms: the simple case and the searched case.
The simple case involves an equality comparison between one expression and a number
of alternative expressions, each following a WHEN clause.
The searched case involves the evaluation for truth of a number of alternative search
conditions, each following a WHEN clause.
In each form of the CASE it is the first WHEN clause to evaluate to true, working from the
top down, that determines which sequence of SQL statements will be executed.
There may be one or more SQL statements following the THEN clause for each WHEN.
If none of the WHEN clauses evaluates to true, the SQL statements following the ELSE
clause are executed. If none of the WHEN clauses evaluates to true and there is no ELSE
clause, an exception condition is raised to indicate that a case was not found.

236 Chapter 12 SQL Statements
CASE

Providing an ELSE clause supporting an empty compound statement will avoid an
exception condition being raised, in cases where no ‘else’ action is required, when none
of the WHEN alternatives evaluates to true.

case-expression
For information on the case-expression, which provides a mechanism for
conditionally selecting values, see CASE Expression on page 145.

procedural-sql-statements
For a list of procedural-sql-statements, see Procedural SQL Statements on
page 193.

Notes
Flow of control leaves the CASE statement as soon as the SQL statements following the
selected THEN, or the ELSE, have been executed (i.e. there is no fall-through as is found
in a case statement in, for example, the C programming language).

Examples

Simple CASE statement:
DECLARE Y INTEGER;

CASE Y
 WHEN 1 THEN ...
 WHEN 2 THEN ...
 WHEN 3 THEN ...
 ELSE ...
END CASE;

Searched CASE statement:
CASE
 WHEN EXISTS (SELECT * FROM BILL) THEN ...
 WHEN X > 0 OR Y = 1 THEN ...
ELSE ...
END CASE;

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside
core

Feature P002, “Computational
completeness”.

Mimer SQL Version 11.0 237
SQL Reference Manual

CLOSE
Closes a cursor.

Usage
Embedded, Module, Procedural.

Description
The current state of the named cursor is closed.
If any states of the cursor have been saved on a stack by successive OPEN statements, see
OPEN on page 378, the most recently saved cursor state is restored. Information about
whether there are cursor states remaining on the stack is returned as diagnostic
information. Otherwise the cursor is closed (deactivated), and may not be used until it has
been re-opened with a new OPEN statement.
If the optional keyword RELEASE is used, all resources allocated to the cursor including
any stacked references are destroyed. The cursor must be re-prepared (in dynamic SQL)
and reopened before it can be used again.
See ALLOCATE CURSOR on page 196 for a description of extended-cursor-name.

Restrictions
In a procedural usage context, a cursor cannot be specified by extended-cursor-
name.

Notes
For the statement to be valid, the cursor in question must be open.

Example
DECLARE c_1 CURSOR FOR SELECT product, producer, format,
 …
…
…
OPEN c_1;
…
…
CLOSE c_1;

238 Chapter 12 SQL Statements
CLOSE

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL extension The keyword RELEASE is a Mimer SQL
extension.

Mimer SQL Version 11.0 239
SQL Reference Manual

COMMENT
Inserts or replaces a comment string on a database object.

where routine-specification is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

240 Chapter 12 SQL Statements
COMMENT

Description
The comment string for the specified object is stored in the data dictionary. Any
previously defined comment for the object is replaced by the new.

Restrictions
A comment can only be stored by the creator of the object.

Notes
A comment string may have a maximum length of 254 characters, and must be enclosed
in string delimiters.
Comments may not be altered or dropped directly. However, since the COMMENT
statement replaces any existing comment with the new text, a comment may be altered
simply by issuing a new COMMENT statement. A comment may be effectively dropped by
issuing a COMMENT statement with an empty string.
When a comment is written for a column, the column name must be qualified by a table-
name or a view-name in the form table-name.column-name or
view-name.column-name.

Example
COMMENT ON TABLE countries IS 'All countries we ship to';

Standard Compliance
Standard Compliance Comments

Mimer SQL extension Support for the COMMENT statement is a
Mimer SQL extension.

Mimer SQL Version 11.0 241
SQL Reference Manual

COMMIT
Commits the current transaction.

Usage
Embedded, Interactive, Module, Procedural.

Description
The current transaction is terminated. Database alterations requested in the transaction
build-up are executed against the database, provided that no transaction conflict is
detected and that no deferred constraints are unsatisfied.
If the commit statement fails, no changes are made in the database, and an error code is
set. A transaction conflict causes the SQLSTATE 40000 being raised while an unsatisfied
deferred constraint causes the SQLSTATE 40002 being raised.
All cursors opened by the current connection are closed, except cursors that are defined
WITH HOLD.
Cursors that are defined WITH HOLD remain open, but the cursor is no longer positioned
on a row. A FETCH statement is required to position the cursor on a row before another
DELETE CURRENT or UPDATE CURRENT statement can be executed.
If there is no currently active transaction, any cursors opened by the current ident are
closed (except WITH HOLD cursors), but the COMMIT statement is otherwise ignored. No
error code is returned in this case.
Committing a BACKUP transaction performs online backup for all databanks for which a
CREATE BACKUP command has been performed since START BACKUP. Please note that
this command may be lengthy if backups for large databank files are made.

Restrictions
The COMMIT statement cannot be used in a result set procedure because this would close
the cursor which is calling it.
The COMMIT statement cannot be used within an atomic compound SQL statement, see
COMPOUND STATEMENT on page 243.
The COMMIT BACKUP statement can only be used when a corresponding START BACKUP
command has been given. The COMMIT BACKUP statement is not supported in procedural
mode.

Notes
See the Mimer SQL Programmer’s Manual, Chapter 9, Transaction Handling and
Database Security, for a detailed discussion of transaction control.

242 Chapter 12 SQL Statements
COMMIT

Example
EXEC SQL SET TRANSACTION START EXPLICIT

LOOP
 EXEC SQL FETCH C1 INTO :var1,:var2,...,:varn;
 DISPLAY var1,var2,...,varn;
 PROMPT "Update row?";
 EXIT when answer = "yes";
END LOOP

EXEC SQL START;
EXEC SQL UPDATE table SET ...
 WHERE col1 = :var1,
 col2 = :var2, ...
EXEC SQL COMMIT;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL extension Support for the BACKUP and
TRANSACTION keywords is a Mimer SQL
extension.

Mimer SQL Version 11.0 243
SQL Reference Manual

COMPOUND STATEMENT
The compound statement (BEGIN/END) is used either in a routine or trigger, or as a
separate statement, to create an environment within which variables, cursors, exception
condition names and exception handlers can be declared.

Usage
Embedded, Interactive, Module, Procedural.

Description
The procedural SQL statements in a compound statement are executed in sequence
whenever the compound statement is executed.
The compound statement may be used wherever a single procedural SQL statement is
permitted. Thus, it provides a mechanism for executing a sequence of statements in places
where the syntax rules permit only a single statement to be specified.
Compound statements can be nested and the optional label value can be used to qualify
the names of objects declared within the compound statement. The label value can also
be used in conjunction with the LEAVE statement to control the execution flow by exiting
from the compound statement.
A compound statement can be defined as atomic by specifying ATOMIC next to the BEGIN
keyword.
When a compound statement is defined as atomic, an ‘atomic execution context’ becomes
active while it, or any invoked routine, is executing. While an atomic execution context
is active it is not possible to explicitly terminate a transaction, i.e. the statements START,
COMMIT or ROLLBACK are not allowed. Within an atomic compound statement it is
possible to declare an undo handler for exception handling. If an undo handler is activated
due to an exception, the handler will undo any insert, delete or update operations done
within the atomic execution context. If there is no appropriate undo handler found the
exception handling will be the same as in a non-atomic context, only the operations
performed by the statement causing the exception will be undone.

Restrictions
If ATOMIC is specified, the ROLLBACK and COMMIT statements must not be used in the
compound statement.
A compound statement which contains a declaration of an UNDO exception handler must
be ATOMIC.

244 Chapter 12 SQL Statements
COMPOUND STATEMENT

Notes
A compound statement without an ATOMIC or NOT ATOMIC specification is assumed to
be NOT ATOMIC.
The value of label must be the same at both ends of the compound statement.
If label is specified at the end of the compound statement it must also be specified at the
beginning.
If the LEAVE statement is to be used to exit the compound statement, the label at the
beginning must be specified.

Example
CREATE PROCEDURE exproc(IN P_SIRE VARCHAR(30)) MODIFIES SQL DATA
S0: BEGIN

...
S1: BEGIN

DECLARE EOF BOOLEAN DEFAULT FALSE;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET EOF = TRUE;
DECLARE HORSES CURSOR FOR

SELECT *
FROM HORSES
WHERE SIRE = P_SIRE;

DECLARE HORSE AS (HORSES);
L1: LOOP

FETCH FROM HORSES INTO HORSE;
IF EOF THEN

LEAVLE L1;
END IF;

--
-- atomic compound to ensure that both or none of the DML operations are done
--

BEGIN ATOMIC
DECLARE UNDO HANDLER FOR SQLEXCEPTION BEGIN END;
UPDATE HORSE_PEOPLE ...;
UPDATE HORSE_EVENTS ...;

END;
END LOOP;

END S1;
END S0;

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside core Feature P002, “Computational completeness”.

Mimer SQL Version 11.0 245
SQL Reference Manual

CONNECT
Connects a user ident to a database.

where database-specifics is:

Usage
Embedded, Interactive, Module.

Description
The ident is logged into the specified database. The database can exist on the local
machine, a local database, or on another machine in a network configuration, a remote
database.
The database, connection, ident and the password can be supplied either using a
host variable or as a literal value.
If an empty string is specified for database, a connection is established to the DEFAULT
database, see the Mimer SQL System Management Handbook, Chapter 3, The Default
Database, for details on how the DEFAULT database is defined in the Mimer SQL system.
If ident is not specified (or ident is specified as blank), the name of the current operating
system user is assumed. If the (implicitly or explicitly) specified ident has an OS_USER
login that matches the current system username, the connection is established without
checking the password. See ALTER IDENT on page 212 for more details on how to add
an OS_USER login for an ident.
Note: It is only possible to establish a connection to a remote database without

specifying ident (or specifying a blank ident) if both the node on which the
database resides and the node from which the connection is attempted are
running the Windows operating system, and the NamedPipes protocol is used
for the network communication.
It is not possible for the database server node to determine the name of the
operating system user currently using the remote machine in other network
configurations.

When connected, the ident is able to access the database and becomes the current ident
(i.e. the name the returned by SESSION_USER).
If connection is specified, the name must be a valid identifier or an empty string.
Note: Connection names must be unique. If an empty string is specified, or if no

connection name is given, the value of database will be used as the
connection name.

246 Chapter 12 SQL Statements
CONNECT

Password and connection are case sensitive in the CONNECT statement.
Ident and database are not case sensitive in the CONNECT statement.
See SQL Identifiers on page 38 for more information.

Restrictions
Only idents of type USER can connect to a database using the CONNECT statement.

Notes
If it is desired that a CONNECT TO DEFAULT be effectively performed, but with the
possibility of specifying one or more of connection, ident or password, then specify
database-specifics but supply an empty string for database.
The maximum length of database, connection, ident and password is 128
characters.
If an SQL statement is executed in an application without first executing a CONNECT
statement, an implicit CONNECT TO DEFAULT is performed.
This requires that a USER ident with an OS_USER login with the same name exist in the
default database with the same name as the operating system user, and that the default
database either be a local database or a remote database residing on a node which allows
the name of the current operating system user to be determined – see the related note in
the Description section above for details.
Such an implicit default connection will only be established if the CONNECT statement has
not been previously executed in the application. This means that if an explicit connection
has been previously established and then disconnected, any subsequent attempt to execute
an SQL statement without a current connection will result in either a Connection does
not exist error or a transaction rollback depending on the context of the SQL
statement.
If only the implicit default connection has been previously established and then
disconnected, any subsequent attempt to execute an SQL statement without a current
connection will result in that connection being re-established.
Observe that it is possible for the implicit default connection to exist but not be currently
active (this will be the case if a connection has been subsequently established and then
disconnected).
We recommend that Mimer SQL applications always establish explicit connections and
reliance on the implicit default connection is discouraged.
Earlier versions of Mimer SQL used a different syntax for the CONNECT statement, see
Appendix D Deprecated Features. This syntax is still supported for backward
compatibility, but its use is not recommended in new applications.

Example
The following example connects the user JOE to proddatabase using the password
hopPsan7:

CONNECT TO 'proddatabase' USER 'JOE' USING 'hopPsan7';

Mimer SQL Version 11.0 247
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside core Feature F771, “Connection management”.

Mimer SQL extension The USING password clause is a Mimer SQL
extension.

248 Chapter 12 SQL Statements
CREATE BACKUP

CREATE BACKUP
Takes a backup copy of a databank file.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
This SQL statement is used to take a backup of a databank.
A backup is a copy of the current databank file and may be used as the basis for a databank
recovery operation, see ALTER DATABANK RESTORE on page 205.
The backup will be recorded in a file on disk, the name of the file is specified in the
CREATE BACKUP statement.
In order to preserve the consistency of the backup between related databanks, a backup
of each of the databanks must be taken at exactly the same point in time, from the point
of view of transactions updating the databanks. This is done by starting a transaction for
the online backup operations using the START BACKUP statement (see START on
page 424), then executing a CREATE BACKUP statement for each databank to be backed
up. Finally conclude the transaction by executing the COMMIT BACKUP statement (see
COMMIT on page 241), or ROLLBACK BACKUP statement (see ROLLBACK on
page 396.)
It is recommended that all databanks (including system databanks) in a database are
backed up together in this way.
The CREATE BACKUP command creates the backup file. The actual copying of data from
the databank to the backup file is not done until a COMMIT BACKUP is executed.
When the keyword EXCLUSIVE is used, the backup of the databank will be taken without
allowing any concurrent operations. Otherwise, the backup will be taken online, i.e. other
operations can be executed concurrently.
When a backup of LOGDB is taken, changes made on all databanks are copied to the
backup. I.e. this corresponds to taking an incremental backup of all databanks. The entire
log is dropped when the backup transaction is committed.
When LOGDB is not included in the backup, only the information that applies to the backed
up databanks is dropped from the database log. Note that, in this case, it will not be
possible to restore the databanks from a previous backup, as the log records are not saved.
Therefore, it is highly recommended to always include LOGDB whenever any databank is
backed up.

Mimer SQL Version 11.0 249
SQL Reference Manual

Restrictions
CREATE BACKUP requires that the current ident be the creator of the databank or have
BACKUP privilege.
The CREATE BACKUP statement cannot be executed unless a transaction, that was started
by executing a START BACKUP statement, is currently active.
A backup requires read access to all tables in the databank. It is therefore not possible to
take a backup when commands, such as ALTER TABLE and CREATE INDEX, are
executing. When a backup has been initiated, commands that require exclusive access
will get an error indicating the table is in use by another user.

Notes
The value of filename-string must always be enclosed in string delimiters.
The maximum length of filename-string is 256 characters.
Refer to Specifying the Location of User Databanks on page 13 for details concerning
specification of the path name components in filename-string.
The CREATE BACKUP command can be used with all databanks in a database including
SYSDB, TRANSDB, LOGDB and SQLDB.
The databank option will affect the backup copy:

• LOG
A consistent backup is made of the databank. Transaction logging is used and it will
be possible to redo operations made after the backup.

• TRANSACTION
A consistent backup is made of the databank. But as transaction logging is not used,
it will not be possible to redo operations made after the backup. I.e. if a disk is
corrupted, it is only possible to revert to the state of the latest backup.

• WORK
An online backup of the databank will give a backup which is not completely
consistent as the system uses the transaction system to make backups. For a
completely consistent backup to be made, the keyword EXCLUSIVE must be used in
the CREATE BACKUP command.

• READ ONLY
For read only databanks the backup is always consistent.

The removal of records from the database log to maintain consistency with the backups
is handled automatically by these statements, i.e. no additional commands are needed.

250 Chapter 12 SQL Statements
CREATE BACKUP

Example
The following example starts a backup transaction, creates backup files for the specified
databank files, commits the backup and exits:

START BACKUP;
 CREATE BACKUP IN 'user_databank' FOR DATABANK user_databank;
 CREATE BACKUP IN 'logdb_backup' FOR DATABANK logdb;
 CREATE BACKUP IN 'sysdb_backup' FOR DATABANK sysdb;
 CREATE BACKUP IN 'transdb_backup' FOR DATABANK transdb;
COMMIT BACKUP;
EXIT;

For more information, see the Mimer SQL System Management Handbook, Chapter 5,
Backing-up and Restoring Data.

Standard Compliance
Standard Compliance Comments

Mimer SQL extension The CREATE BACKUP statement is a Mimer
SQL extension.

Mimer SQL Version 11.0 251
SQL Reference Manual

CREATE COLLATION
Creates a new collation, based on an existing collation.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A new collation is created. A collation is always based on an existing collation, i.e. the
new collation collation-name-1 is based on the already existing collation
collation-name-2. If the CREATE COLLATION statement has a USING clause, the
delta-string is appended to the definition of the collation specified in the FROM
clause.
By omitting the USING clause, the CREATE COLLATION statement can be used to create
copies of already existing collations.
See Tailorings on page 27 for information about the delta-string.

Restrictions
Any ident, who owns a schema, is authorized to create collations.

Notes
Usage privilege on the collation is granted to PUBLIC.

Examples
This example will create a Basque collation based on EOR_1, where Ñ is treated as a
separate letter, sorted directly after N:

CREATE COLLATION basque FROM eor_1 USING '& N < ñ <<< Ñ'

The following example will create an English collation based on ENGLISH_1, which also
sorts numerical data:

CREATE COLLATION english_numeric_1 FROM english_1 USING '[NUMERIC ON]'

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside core Feature F690, “Collation support” support for
CREATE COLLATION statement.

252 Chapter 12 SQL Statements
CREATE COLLATION

Mimer SQL extension The syntax with USING delta-string is a
Mimer SQL extension.
The SQL-2016 syntax contains a FOR
<character set> clause, which is not supported
in Mimer SQL.

Standard Compliance Comments

Mimer SQL Version 11.0 253
SQL Reference Manual

CREATE DATABANK
Creates a new databank.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A new databank is created, i.e. a physical file is created in the host file system and
formatted for use as a Mimer SQL databank. Databank attributes that can be set are
described below.

FILESIZE
The initial file size can be specified by using the FILESIZE option. A value of 2 000 kB
is assumed if an initial file size is not specified.
When specifying sizes, K (kilo) means that the size (in bytes) is multiplied by 1 024, M
(mega) means the size is multiplied by 1 048 576, and G (giga) means that the size is
multiplied by 1 073 741 824.

GOALSIZE
By specifying a GOALSIZE value, the system will always try to keep the databank size
limited to the value specified.

MAXSIZE
It is possible to specify the maximum file size by using the MAXSIZE option.

MINSIZE
It is possible to specify the minimum file size by using the MINSIZE option.
This attribute may be useful when executing ALTER DATABANK DROP FILESIZE, to
assure that the databank file is not shrunk too much. See ALTER DATABANK on
page 200.

254 Chapter 12 SQL Statements
CREATE DATABANK

FILE
The filename-string specifies the name of the new databank file in the host file
system and this is stored in the data dictionary as the location of the databank file. If a
filename is not specified, it will be the same as databank-name (and the databank will
be created in the database home directory.) The filename-string may be represented
as character literal, national character literal, or unicode character literal.

OPTION
The databank is created with the transaction and logging options as specified:

LOG
All operations on the databank are performed under transaction control. All
transactions are logged, i.e. it will be possible to restore the databank from a backup.

TRANSACTION
All operations on the databank are performed under transaction control. No
transactions are logged. (This databank option is assumed if one is not explicitly
specified.)

WORK
All operations on the databank are performed without transaction control (even if
they are requested within a transaction) and they are not logged. Set operations
(DELETE, UPDATE and INSERT on several rows) which are interrupted, will not be
rolled back. All secondary indexes created in the databank are flagged as not
consistent. A secondary index that is flagged as not consistent will not offer
optimal performance when used in a query, see UPDATE STATISTICS on page 432
for information on how to ensure that secondary indexes are consistent.

REMOVABLE
When a databank is set to the REMOVABLE attribute, the database system does not signal
an error when a SELECT, UPDATE, or DELETE operation is performed on a table in the
databank. Instead, the system behaves as if the table is empty and signals an end-of-table
condition. If the databank does not have the REMOVABLE attribute, an open file error is
returned whenever it is accessed and the file cannot be accessed. INSERT operations will
always signal an error if the databank is inaccessible.
This functionality is useful, for example, if the databank is located on a flash memory
card.
Note: A database can be set in AUTOUPGRADE mode, which has precedence for

REMOVABLE, meaning that for a databank having both AUTOUPGRADE and
REMOVABLE enabled a missing databank and/or table will be created. I.e. the
file is created whenever it is accessed. If the create fails, the REMOVABLE
attribute is used.
See ALTER DATABASE on page 207 for more information about
AUTOUPGRADE.

Mimer SQL Version 11.0 255
SQL Reference Manual

Restrictions
CREATE DATABANK requires that the current ident has DATABANK privilege.
The databank name must not be the same as that of an existing databank or shadow.
The databank must be created with either the TRANSACTION or LOG option if any of the
following are true:
• the databank is to be shadowed
• the databank will be used to store tables defined with foreign or unique keys
• the databank will be used to store tables that are referenced in a foreign key context
• the databank will be used to store tables holding UNIQUE indexes
• the databank contains tables that will accept updates in their primary key column(s)

Notes
For databanks with option TRANSACTION and LOG the system treats the maximum size
as an advisory limit. This limit may be temporarily exceeded. The reason for this is that
the actual updating of the databank files are performed in the background while the
detection of the maximum size is performed when the applications perform insert
operations during transaction buildup. In addition, when several concurrent users are
inserting data the actual space is not reserved until the background updates are made.
The creator of the databank is granted TABLE privilege on the new databank, with the
WITH GRANT OPTION.
The value of filename-string must always be enclosed in string delimiters. The
maximum length of the filename string is 256 characters.
Refer to Specifying the Location of User Databanks on page 13 for details concerning the
specification of path name components in filename-string.

Example
CREATE DATABANK mimer_store SET FILE 'mimer_store.dbf',
 FILESIZE 10M, GOALSIZE 10M, MAXSIZE 100M,
 OPTION LOG;

Standard Compliance
Standard Compliance Comments

Mimer SQL extension The CREATE DATABANK statement is a
Mimer SQL extension.

256 Chapter 12 SQL Statements
CREATE DOMAIN

CREATE DOMAIN
Creates a domain.

where check-clause is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A domain is created with the properties specified in the statement. Domains may be used
instead of explicit data type specifications to define column formats in the CREATE and
ALTER TABLE statements.
If domain-name is specified in its unqualified form, the domain will be created in the
schema which has the same name as the current ident.
If domain-name is specified in its fully qualified form (i.e. schema-name.domain-
name) the domain will be created in the named schema (in this case, the current ident must
be the creator of the specified schema).
Refer to Data Types in SQL Statements on page 44 for a description of how the various
data types are specified for the domain.
If default-value is specified, this value will be assigned to a column defined using the
domain whenever a new table row is created or an existing table row is updated without
an explicit value being specified for that column.

The COLLATE Clause
If the COLLATE clause is specified, the data controlled by the domain will be ordered and
compared according to the collation specified.
For more information, see the Mimer SQL User’s Manual, Chapter 4, Collations.

Mimer SQL Version 11.0 257
SQL Reference Manual

The CHECK Clause
Specification of a CHECK clause means that only values for which the search condition
does not evaluate to false may be assigned to a column defined using the domain.
The search condition, see Search Conditions on page 165, in the CHECK clause may only
reference the domain (by using the keyword VALUE), literals, user-defined function
invocations or the keyword NULL. The CHECK clause must not contain any non-
deterministic expressions, e.g. CURRENT_DATE.
References to columns, subqueries, set functions or host variables are not allowed.
Specifying INITIALLY IMMEDIATE NOT DEFERRABLE explicitly states that the check
constraint will be, by default, verified at the time the relevant data manipulation operation
is performed rather than when the transaction is committed and that the verification may
never be explicitly deferred until the time the transaction is committed. This is also the
default behavior. (This is to allow for future extensions to the Mimer SQL syntax.)

Language Elements
default-value, see Default Values on page 76.

Restrictions
An ident must have USAGE privilege on the domain in order to use it.

Notes
The domain name may not be the same as the name of any other domain or used defined
type belonging to the same schema.
The CREATE DOMAIN statement does not verify that any specified default value conforms
to the restrictions of any specified CHECK clause. It is, therefore, possible to create a
domain definition where attempts to store the default value in a column defined using the
domain will fail.

Examples
CREATE DOMAIN domi AS INTEGER
CHECK (VALUE IN (-1,0,3) OR VALUE BETWEEN 75 AND 99)

CREATE DOMAIN name AS NCHAR VARYING(48) COLLATE english_1
CHECK (CHARACTER_LENGTH(VALUE) > 0)

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside core Feature F251, “Domain support”.

258 Chapter 12 SQL Statements
CREATE FUNCTION

CREATE FUNCTION
Creates a new stored user-defined function.

where function-definition is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The function-name should follow the normal rules for naming database objects, see
Naming Objects on page 39.
If function-name is specified in its unqualified form, the function will be created in the
schema which has the same name as the current ident.
If function-name is specified in its fully qualified form (i.e.
schema-name.function-name) the function will be created in the named schema (in
this case, the current ident must be the creator of the specified schema).
The fully qualified function name must be used by all idents except the ident that has the
same name as the schema to which the function belongs.

Mimer SQL Version 11.0 259
SQL Reference Manual

It is possible to create multiple functions with the same name if they differ with regard to
either the number of parameters or the data type for the parameter. It is not possible to
have multiple functions that only differ with regard to the return data type. See
Mimer SQL Programmer’s Manual, Chapter 11, Parameter Overloading for more
information. Type precedence lists are found in Appendix H Type Precedence Lists.
Each function can be given a specific name, which must be unique within a schema. If no
specific name is given, the system will generate a unique name. The specific name for a
function can be retrieved by using the INFORMATION_SCHEMA views.
A specific name can be used in DROP, GRANT and REVOKE statements. It is particularly
useful when dealing with function with parameter overloading. Instead of having to
specify a list of data types, in order to distinguish the function, the specific name can be
used.
The parameter-name should follow the normal rules for naming SQL identifiers, see
SQL Identifiers on page 38.
The permitted data types are pre-defined data types (described in Data Types in SQL
Statements on page 44).
If neither DETERMINISTIC nor NOT DETERMINISTIC is specified, then NOT
DETERMINISTIC is implicit.
If DETERMINISTIC is specified, then the function is guaranteed to produce the same
result every time it is invoked with the same set of input values and repeated invocations
of it can, therefore, be optimized.
The following access options may be specified:

• CONTAINS SQL
The function may not contain any data-manipulation-statements. All other
procedural-sql-statements are permitted. The function may only invoke
CONTAINS SQL functions and procedures. This option effectively prevents a
routine from performing read or write operations on data in the database.

• READS SQL DATA
All procedural-sql-statements are permitted except those performing
updates (i.e. DELETE, INSERT and UPDATE). The function may only invoke
CONTAINS SQL or READ SQL DATA functions and procedures.
This option effectively prevents a routine from performing write operations on data
in the database.

• MODIFIES SQL DATA
All procedural-sql-statements are permitted and any function or procedure
may be invoked from this type of function.
This option allows a routine to perform read and write operations on data in the
database.

If neither CONTAINS SQL, READS SQL DATA nor MODIFIES SQL DATA is specified,
then CONTAINS SQL is implicit.

260 Chapter 12 SQL Statements
CREATE FUNCTION

Restrictions
A function created this way cannot be added to a module.
It is possible to create multiple functions with the same name in a schema if the functions
have a different number of parameters or parameters with different data types. It is not
possible to have multiple functions that only differs with respect to the return data type.
It is not possible to create a synonym for a function name.
A parameter name must be unique within the function.
The parameter mode cannot be specified for a function parameter (as it is for a procedure
parameter).
The ROW data type cannot be specified in data-type.
If DETERMINISTIC is specified, the procedural SQL statement of the function may not
contain, or be, a reference to: SESSION_USER, CURRENT_PROGRAM, CURRENT_DATE,
LOCALTIME, LOCALTIMESTAMP or BUILTIN.UTC_TIMESTAMP and the function may
not invoke functions or procedures that are not deterministic.
If an invoked function attempts to execute a COMMIT or ROLLBACK statement in a context
where this is not permitted, (i.e. after being invoked from within a result set procedure,
from within an atomic compound statement or from a data manipulation statement in one
of these contexts) an exception will be raised.
An ident must have EXECUTE privilege on the function in order to invoke it.

Notes
A function is invoked by specifying its name and parameter list where a value-expression
would be used.
All function parameters have the default mode (which is IN). See CREATE
PROCEDURE on page 271 for details on the parameter modes.
A parameter-name can be the same as the name of the function.
If a parameter is defined as using a domain, any input value for this parameter will be
verified to ensue that any check constraint is not violated.
Refer to the Mimer SQL User’s Manual, Chapter 7, Creating Functions, Procedures,
Triggers and Modules for details on using the CREATE FUNCTION statement in BSQL,
where the @ delimiter is required.

Mimer SQL Version 11.0 261
SQL Reference Manual

Examples
CREATE FUNCTION mimer_store_book.authors_name(p_name VARCHAR(48))
 RETURNS VARCHAR(48)
-- Formats a name into <surname>[,<initial>]
DETERMINISTIC
BEGIN
 DECLARE v_length, v_offset INTEGER;
 DECLARE v_fnm, v_name VARCHAR(48);

 SET v_length = POSITION(',' IN p_name);
 IF v_length = 0 THEN
 SET v_name = UPPER(TRIM(SUBSTRING(p_name FROM 1)));
 ELSE
 -- Append first initial to surname
 SET v_name = UPPER(TRIM(SUBSTRING(p_name FROM 1 FOR v_length)));
 SET v_fnm = UPPER(TRIM(SUBSTRING(p_name FROM v_length+1)));
 SET v_name = v_name || SUBSTRING(v_fnm FROM 1 FOR 1);
 END IF;

 RETURN v_name;
END -- of routine mimer_store_book.authors_name

Example on how to create and use a simple function converting to Celsius degrees from
Fahrenheit degrees:

CREATE FUNCTION C_from_F (Fdegrees integer) RETURNS integer
 RETURN CAST((Fdegrees - 32) * 5.0 / 9 + 0.5 AS integer);

SELECT C_from_F(temperature) AS Celsius_degrees
FROM US_Weather;

SET ? = C_from_F(451);

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL extension The possibility to use domains in PSM is a
Mimer SQL extension.

262 Chapter 12 SQL Statements
CREATE IDENT

CREATE IDENT
Creates a GROUP, PROGRAM or USER (authorization-identity) ident.

where schema-clause is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A new ident is created. If the ident is a USER or PROGRAM ident, a schema with the same
name as the ident can also be created. A schema is created by default and when WITH
SCHEMA is explicitly specified. For idents who are not supposed to create database
objects, it’s good practice to specify WITHOUT SCHEMA. (If such an ident later needs a
schema, just grant schema to that ident.)
If the ident is a USER, a password can be optionally specified.
If the ident is a PROGRAM ident, a password must be specified.
USER idents are authorized to access a Mimer SQL database by using the CONNECT
statement. In interactive contexts, e.g. when Mimer BSQL is started, a USER ident is used
to log in.
A USER may connect either by specifying a password or using an OS_USER login. An
OS_USER login is added to a USER by using the ALTER IDENT statement. There may be
multiple OS_USER logins defined for a USER ident. When a connect statement is executed,
the Mimer SQL server will pick up the current system username from the operating
system. If there is an OS_USER login for the ident name used in the connect statement that
matches the system username there is no need to specify a password in the connect
statement. If the system username is the same as the ident name in the Mimer SQL server
there is no need to give a ident name when doing a connect statement.
If the connect is done with a tool such as BSQL, this is achieved by entering <return>
when prompted for username or password.
PROGRAM idents cannot be used to connect to a database. After a connection has been
established (by using a USER or OS_USER ident), the ENTER statement can used to make
a PROGRAM ident the current ident. The access rights to the database defined for the
PROGRAM ident will thus come into effect.

Mimer SQL Version 11.0 263
SQL Reference Manual

The ident executing the ENTER statement must have EXECUTE privilege on the PROGRAM
ident (the ENTER statement can be executed by a PROGRAM ident).
The ident that executed the ENTER statement will become the current ident again after the
LEAVE statement has been executed.
GROUP idents cannot be used to connect to a database. They are used to implement
collective authorization of access rights to the database. Other idents become members of
a GROUP ident when MEMBER privilege on the GROUP ident is granted to them.
While an ident is a member of a GROUP ident, that ident is effectively granted the
privileges held by the GROUP ident.
For a more detailed description of idents, see the Mimer SQL Programmer’s Manual,
Chapter 8, Idents and Privileges.

Restrictions
CREATE IDENT requires that the current ident have IDENT privilege.
The ident must not have the same name as an ident or schema that already exists in the
database.

Notes
The creator of a GROUP ident is automatically granted MEMBER privilege on it, with the
WITH GRANT OPTION.
The creator of a PROGRAM ident is automatically granted EXECUTE privilege on it, with
the WITH GRANT OPTION.
A USER ident password must be at least 1 and at most 128 characters long. A PROGRAM
ident password must be at least 1 and at most 18 characters long. A password may contain
any characters except space. The case of alphabetic characters is significant. The
password string must be enclosed in string delimiters, which are not stored as part of the
password.
An ident who is authorized to created new idents (by having IDENT privilege) can also
create new schemas.

Example
CREATE IDENT mimer_adm AS USER USING 'admin';

For more information, see the Mimer SQL User’s Manual, Chapter 7, Creating Idents
and Schemas.

Standard Compliance
Standard Compliance Comments

Mimer SQL extension The CREATE IDENT statement is a Mimer
SQL extension.

264 Chapter 12 SQL Statements
CREATE INDEX

CREATE INDEX
Creates a secondary index on one or more columns of a table.

where index-algorithm is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A secondary index is created on the column(s) in the table as specified. The index is
stored in the data dictionary under the given name. The secondary index is used internally
by the optimizer to improve the efficiency of a search.

The UNIQUE Option
If UNIQUE is specified each index value (i.e. the value of all index columns together) is
only allowed once. In this context two null values are considered equal.

Index-name
If index-name is specified in its unqualified form, the index will be created in the
schema which has the same name as the current ident.
If index-name is specified in its fully qualified form (i.e. schema-name.index-name)
the index will be created in the named schema (in this case, the current ident must be the
creator of the specified schema).

The COLLATE Clause
If the collate-clause is specified, the index will be ordered according to the collation
specified.
Otherwise, the collation is inherited from the column-definition.
For more information, see the Mimer SQL User’s Manual, Chapter 4, Collations.

Mimer SQL Version 11.0 265
SQL Reference Manual

Index-algorithm
If the WORD_SEARCH index algorithm is specified, the index will be optimized for “begins
word” searches and “match word” searches. (See BUILTIN.BEGINS_WORD on page 93
and BUILTIN.MATCH_WORD on page 94.)

Ascending/Descending
ASC and DESC indicate the sort order of the column within the index. If neither is
specified, then ASC is implicit. This makes an index appropriate for queries with a
matching ORDER BY specification.

WITHOUT CHECK
The WITH CHECK and WITHOUT CHECK clauses are used to control whether existing table
data should be verified for uniqueness or not when a unique index is created. WITH
CHECK is the default behavior.
If WITH CHECK is used but the existing data in the table is not unique, the CREATE INDEX
statement will fail.
If WITHOUT CHECK is used and the existing data in the table is not unique, the CREATE
INDEX statement will still succeed. (After the index has been created, all new data will be
verified for uniqueness.)
Note: For a database with the AUTOUPGRADE attribute enabled, the WITHOUT CHECK

option must be used when creating a unique index.
See ALTER DATABASE on page 207 for more information about
AUTOUPGRADE.

Restrictions
An index can not have the same name as a table, view, synonym, constraint or other index
in the same schema.
An index must belong to the same schema as the table on which it is created.
Indexes may only be created on base tables, not on views.
UNIQUE indexes may only be created on tables in databanks defined with the LOG or
TRANSACTION transaction option.
The WITH/WITHOUT CHECK clause is only valid for unique indexes.
Large object columns (clob, nclob and blob) are not allowed in indexes.
The WORD_SEARCH index algorithm can only be specified for character and national
character columns.
The WORD_SEARCH index algorithm may not be specified for unique indexes.

Notes
Each column name must identify an existing column of the table. The same column may
not be identified more than once.
Mimer SQL can make use of an index in both the forward and backward direction. It is
therefore immaterial whether ASC or DESC is specified if all the index columns have the
same sorting direction.

266 Chapter 12 SQL Statements
CREATE INDEX

Secondary indexes are automatically maintained and are invisible to the user. The index
is used automatically when it provides better efficiency.
Table columns that are in the primary key, a unique key or used in a foreign key reference
are automatically indexed (in the order in which they are defined in the key). Therefore,
explicitly creating an index on these columns will not improve performance at all.
Consider a table with columns A, B and C of which A and B form the primary key, in that
order. An index is automatically created for the column combination (A, B). Therefore,
there is no advantage in explicitly creating an index on column A or on the column
combination (A, B). Secondary indexes may, however, be advantageous on column B
alone or on combinations such as (B, A) or (A, C).
Also, if there is an index on the columns (C, A) there’s no need for an index on C alone.

Examples
CREATE INDEX cst_date_of_birth ON customers (date_of_birth);

CREATE INDEX cst_ename_french ON customers (ename COLLATE french_1);

CREATE INDEX tracks_track_ws ON tracks (track for word_search);

For more information, see Mimer SQL User’s Manual, Chapter 7, Creating Secondary
Indexes.

Standard Compliance
Standard Compliance Comments

Mimer SQL extension The CREATE INDEX statement is a Mimer
SQL extension.

Mimer SQL Version 11.0 267
SQL Reference Manual

CREATE METHOD
Create a method for a user-defined type.

where method-definition is:

Usage
Embedded, Interactive, Module, ODBC, JDBC

Description
Creates a new method. A method returns a single value and can thus be used wherever an
expression is allowed. A method is always associated with a user-defined type. Before a
method can be created, there must exist a method specification for the type with matches
the method with regard to parameters and result type. (As it is possible to have method
specifications with parameter overloading there must be an exact match.) Method
specifications are created using the CREATE TYPE statement (see CREATE TYPE on
page 298), or using the ALTER TYPE statement (see ALTER TYPE on page 230).
If no method type is specified, instance is default. See Mimer SQL Programmer’s
Manual, Chapter 13, Invoking Methods.
The specific name for a method can be retrieved by using the information_schema views.
A specific name can be used in DROP, GRANT and REVOKE statements. It is
particularly useful when dealing with routines with parameter overloading. Instead of
having to specify a list of data types, in order to distinguish the routine, the specific name
can be used.
If no schema name is specified, the method is created in a schema with the same name as
the current ident. The ident creating the method must be the owner of the schema. It is
only the creator of a user-defined type that can create methods for that type.
The parameter names should follow the normal rules for naming SQL identifiers. All
parameters have the parameter mode IN. The data type for a parameter may be a pre-
defined type (see Data Types in SQL Statements on page 44) or a user-defined type. The
same applies to the result type for the method.

268 Chapter 12 SQL Statements
CREATE METHOD

Within the routine body of an instance or constructor method it is possible to use SELF
to reference to the actual object that invokes the method.
In a constructor method the attributes have their default values as specified in the CREATE
TYPE statement.

Restrictions
If the method specification for the method is DETERMINISTIC the routine-body may not
contain references to SESSION_USER, CURRENT_PROGRAM, CURRENT_DATE,
LOCALTIME, LOCALTIMESTAMP and BUILTIN.UTC_TIMESTAMP. It is also not possible
to invoke procedures, functions or methods that are deterministic.
Likewise the access option for the method specification will govern which operations that
are allowed.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features outside core Feature S027, “Create method by specific
method name”

Mimer SQL Version 11.0 269
SQL Reference Manual

CREATE MODULE
Creates a new module.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
If module-name is specified in its unqualified form, the module will be created in the
schema which has the same name as the current ident.
If module-name is specified in its fully qualified form (i.e.
schema-name.module-name) the module will be created in the named schema (in this
case, the current ident must be the creator of the specified schema).
A module is simply a convenient enclosure for the collection of one or more routines that
are declared as belonging to the module when it is created.

Language Elements
function-definition, see CREATE FUNCTION on page 258.
procedure-definition, see CREATE PROCEDURE on page 271.

Restrictions
Two modules with the same name cannot belong to the same schema.
All the functions and procedures declared as belonging to the module must be created in
the same schema as the module.
Two functions with the same name can only belong to the same schema if they have
different numbers of parameters, or the data types for the parameters differ. (See
Mimer SQL Programmer’s Manual, Chapter 11, Parameter Overloading for more
information.)
Similarly, two procedures with the same name can only belong to the same schema if they
have different numbers of parameters, or the data types for the parameters differ.
It is not possible to create a synonym for a module name.

Notes
The names of the functions and procedures declared as belonging to the module are
qualified by using the name of schema to which they belong and not the name of the
module.

270 Chapter 12 SQL Statements
CREATE MODULE

Example
@
CREATE MODULE M1
DECLARE PROCEDURE PROC_1()
READS SQL DATA
BEGIN
...
END;

DECLARE PROCEDURE PROC_2(IN X INTEGER)
MODIFIES SQL DATA
BEGIN
...
END;

DECLARE FUNCTION FUNC_1() RETURNS INTEGER
READS SQL DATA
BEGIN
...
END;

END MODULE
@

For more information, see the Mimer SQL User’s Manual, Chapter 7, Creating
Functions, Procedures, Triggers and Modules.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside
core

Feature P001, “Stored modules”.

Mimer SQL Version 11.0 271
SQL Reference Manual

CREATE PROCEDURE
Creates a new stored procedure.

where procedure-definition is:

and parameter-definition is:

and result-set-clause is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The procedure-name should follow the normal rules for naming database objects, see
Naming Objects on page 39.
If procedure-name is specified in its unqualified form, the procedure will be created in
the schema which has the same name as the current ident.

272 Chapter 12 SQL Statements
CREATE PROCEDURE

If procedure-name is specified in its fully qualified form (i.e.
schema-name.procedure-name) the procedure will be created in the named schema
(in this case, the current ident must be the creator of the specified schema).
The fully qualified procedure name must be used by all idents except the ident that has
the same name as the schema to which the procedure belongs.
The parameter-name in the parameter-definition should follow the normal rules
for naming SQL identifiers, see Naming Objects on page 39.
It is possible to create multiple procedures with the same name if they differ with regard
to either the number of parameters, or the data type for the parameters. See Mimer SQL
Programmer’s Manual, Chapter 11, Parameter Overloading for more information. Type
precedence lists are found in Appendix H Type Precedence Lists.
Each routine can be given a specific name, which must be unique within a schema. If no
specific name is given, the system will generate a unique name. The specific name for a
procedure can be retrieved by using the INFORMATION_SCHEMA views.
A specific name can be used in DROP, GRANT and REVOKE statements. It is particularly
useful when dealing with procedures with parameter overloading. Instead of having to
specify a list of data types, in order to distinguish the procedure, the specific name can be
used.

Parameter Definitions
The following mode values may be specified in a parameter-definition:
• IN

The parameter is effectively read-only, i.e. it cannot be used as the target in an
assignment, fetch or select into statement in the procedure

• OUT

The parameter is effectively write-only, i.e. it can only be used as the target for an
assignment and cannot be used in a value expression in the procedure. This type of
parameter must be a variable in the procedure CALL statement

• INOUT

The parameter can be used both as an IN and OUT parameter, this type of parameter
must be a variable in the procedure CALL statement.

If neither IN, OUT nor INOUT is specified, then IN is implicit.
The permitted data types, specified in parameter-definition, are pre-defined data
types (described in Data Types in SQL Statements on page 44).

Result-Set-Clause
If a result-set-clause is specified, the procedure is created as a result set procedure.
A result set procedure is a special type of procedure which returns a result set and is called
by being specified in a cursor declaration, see DECLARE CURSOR on page 309, rather
than by using the CALL statement.
If neither DETERMINISTIC nor NOT DETERMINISTIC is specified, then NOT
DETERMINISTIC is implicit.
If DETERMINISTIC is specified, then the procedure is guaranteed to produce the same
result every time it is invoked with the same set of input values and repeated invocations
of it can, therefore, be optimized.

Mimer SQL Version 11.0 273
SQL Reference Manual

Access Options
The following access options may be specified:
• CONTAINS SQL

The procedure may not contain any data-manipulation-statements. All other
procedural-sql-statements are permitted. The procedure may only invoke
CONTAINS SQL functions and procedures.
This option effectively prevents a routine from performing read or write operations
on data in the database.

• READS SQL DATA

All procedural-sql-statements are permitted except those performing
updates (i.e. DELETE, INSERT and UPDATE). The procedure may only invoke
CONTAINS SQL or READ SQL DATA functions and procedures.
This option effectively prevents a routine from performing write operations on data
in the database.

• MODIFIES SQL DATA

All procedural-sql-statements are permitted and any function or procedure
may be invoked from this type of procedure.
This option allows a routine to perform read and write operations on data in the
database.

If neither CONTAINS SQL, READS SQL DATA nor MODIFIES SQL DATA is specified,
then CONTAINS SQL is implicit.

Restrictions
A procedure created this way cannot be added to a module.
It is possible to create multiple procedures with the same name in a schema if the
procedures have a different number of parameters or parameters with different data types.
It is not possible to create a synonym for a procedure name.
A parameter name must be unique within the procedure.
The ROW data type cannot be specified in parameter-definition or in a result-
set-clause.
A result set procedure may only have parameters with mode IN.
A result set procedure or a routine invoked from within a result set procedure, must not
execute a COMMIT or ROLLBACK statement because this would interfere with the cursor
used when the result set procedure is called.
If DETERMINISTIC is specified, the procedural-sql-statement of the procedure
may not contain, or be, a reference to: SESSION_USER, CURRENT_DATE,
CURRENT_PROGRAM, LOCALTIME, LOCALTIMESTAMP or BUILTIN.UTC_TIMESTAMP.
The option MODIFIES SQL DATA cannot be used for a result set procedure.
An ident must have EXECUTE privilege on the procedure in order to invoke it.

274 Chapter 12 SQL Statements
CREATE PROCEDURE

Notes
Refer to the Mimer SQL User’s Manual, Chapter 7, Creating Functions, Procedures,
Triggers and Modules, for details on using the CREATE PROCEDURE statement in Mimer
BSQL where the @ delimiter is required.
If an in parameter is defined as using a domain, any input value for this parameter will be
verified to ensue that any check constraint is not violated. If an out parameter is defined
as using a domain, the parameter will be initialized with the default value for the domain.

Example
CREATE PROCEDURE res_proc (IN A INTEGER, IN B INTEGER)
 RETURNS TABLE (CLIENT_NAME VARCHAR(32), CLIENT_ID INTEGER)
READS SQL DATA
BEGIN
...
END;

For more information, see the Mimer SQL User’s Manual, Chapter 7, Creating
Functions, Procedures, Triggers and Modules.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL
extension

The result-set-clause is a Mimer SQL extension.

Mimer SQL
extension

The possibility to use domains in PSM is a Mimer
SQL extension.

Mimer SQL Version 11.0 275
SQL Reference Manual

CREATE SCHEMA
Creates a new schema.

where schema-name-clause is:

and schema-element is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A new schema is created with the name specified in schema-name-clause. If
schema-name is specified, the schema is created with that name, otherwise the name of
the schema will be the same as ident-name.
If ident-name is specified, the schema and all the other objects created by the CREATE
SCHEMA statement are created with the named ident as the effective current ident.
A schema-element is a CREATE or GRANT statement that is specified using the normal
syntax for such a statement and which is executed by the CREATE SCHEMA statement in
the normal way.

Language Elements
create-collation-statement, see CREATE COLLATION on page 251.
create-domain-statement, see CREATE DOMAIN on page 256.
create-index-statement, see CREATE INDEX on page 264.
create-sequence-statement, see CREATE SEQUENCE on page 277.
create-synonym-statement, see CREATE SYNONYM on page 284.
create-table-statement, see CREATE TABLE on page 285.

276 Chapter 12 SQL Statements
CREATE SCHEMA

create-view-statement, see CREATE VIEW on page 302.
grant-statement, see GRANT ACCESS PRIVILEGE on page 359 or GRANT
OBJECT PRIVILEGE on page 361.

Restrictions
The schema name must not be the same as that of a schema which already exists in the
database.
CREATE SCHEMA requires that the current ident has SCHEMA or IDENT privilege.
The value for ident-name is currently restricted to be the name of the current ident.
If a schema-element contains a CREATE statement where the name of the object to be
created is specified in its fully qualified form (i.e. schema_name.object_name), the
schema-name component must be the same as the name of the schema being created by
the CREATE SCHEMA statement.

Notes
If a schema-element contains a CREATE statement where the name of the object to be
created is specified in an unqualified form, it will be created in the schema created by the
CREATE SCHEMA statement (and not the schema with the same name as the current ident
as is usual for CREATE statements).
It is possible for one schema-element to reference the objects created by other
schema-element’s regardless of the order of creation of the objects. All object
references are verified at the conclusion of the CREATE SCHEMA statement when all the
schema-element’s have been executed and all objects have been created.

Example
CREATE SCHEMA mimer_store_music;

For more information, see the Mimer SQL User’s Manual, Chapter 7, Creating Idents
and Schemas.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F171, “Multiple schemas per user” support
for schema name-clause.
Feature F251, “Domain support” support for
CREATE DOMAIN statement in schema definition.
Feature F690, “Collation support” support for
CREATE COLLATION statement in schema
definition.

Mimer SQL
extension

Support for CREATE INDEX and CREATE
SYNONYM statements in a schema definition is a
Mimer SQL extension.

Mimer SQL Version 11.0 277
SQL Reference Manual

CREATE SEQUENCE
Creates a new sequence.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A sequence generates a series of exact numeric values by starting at the start value and
proceeding in steps as defined by the increment value. The increment can either be
positive or negative. If increment is positive the sequence is called an ascending
sequence, and if increment is negative it is a descending sequence. The default increment
value is 1.
If no start value is specified, the start value for a regular ascending sequence is
MINVALUE, and for a descending sequence it is MAXVALUE.
The default MINVALUE is 1. The default MAXVALUE is the highest possible value (depends
on the data type, see table below).
MINVALUE, MAXVALUE, start value and increment value must all be between the limits for
the data type for the sequence.

If no data type is specified, INTEGER is default.

Data type Lowest possible value Highest possible value

SMALLINT -32768 32767

INTEGER -2147483648 2147483647

BIGINT -9223372036854775808 9223372036854775807

278 Chapter 12 SQL Statements
CREATE SEQUENCE

Start value must be between MINVALUE and MAXVALUE (if specified).
The set of possible values for a sequence is limited by MINVALUE and MAXVALUE. If
CYCLE option is specified for the sequence these values will be generated endlessly, while
if NO CYCLE is specified, the sequence will be exhausted once all possible values has been
generated. NO CYCLE is the default if cycle option is not specified.
To generate a new value for a sequence the expression

next value for sequence-name

is used. This can be used in all DML-statements where an expression is allowed. It can
also be used in the default clause for a column or for a domain definition. See NEXT
VALUE on page 111.
To get the latest generated value within a session the expression

current value for sequence-name

is used. The generated value is kept for each session. This means that current value is not
affected by other users using the same sequence. See CURRENT VALUE on page 100.
The IN databank-name specifies in which databank sequence data should be stored. The
user creating the sequence must have SEQUENCE privilege on the databank.
If IN databank-name is not specified, the system will choose a databank on which the user
has SEQUENCE privilege. If more than one such databank exists, databanks created by
the current ident are chosen in preference to others and the databank with the most secure
transaction option is chosen (i.e. a databank with LOG option would be chosen in
preference to one with TRANSACTION option).

Restrictions
The sequence-name should follow the normal rules for naming database objects, see
Naming Objects.
If sequence-name is specified in its unqualified form, the sequence will be created in the
schema which has the same name as the current ident.
If sequence-name is specified in its fully qualified form (i.e. schema-name.sequence-
name) the sequence will be created in the named schema (in this case, the current ident
must be the creator of the specified schema).
Two sequences with the same name cannot belong to the same schema.
An ident must have USAGE privilege on the sequence in order to use it.
The sequence must be created in a databank on which the current ident has SEQUENCE
privilege.
A databank used to store sequences must have TRANSACTION or LOG option.

Notes
The sequence is created with an undefined current value initially. When NEXT VALUE
FOR sequence-name is used for the first time after the sequence is created, the initial value
for the sequence is returned and established as the current value of the sequence.
If CURRENT VALUE FOR sequence-name is used when the current value of the sequence
is undefined, an error will be raised.

Mimer SQL Version 11.0 279
SQL Reference Manual

Examples

A sequence with default options:
create sequence mseq01;

When used this sequence will generate values between 1 and 2147483647 in steps of one,
starting with the value 1.

A smallint based sequence:
create sequence mseq02
 as smallint
 start with 2
 increment by 3
 minvalue 1
 maxvalue 10
 cycle;

This sequence will generate the following (repeating) series of values:
 2, 5, 8, 1, 4, 7, 10, 1, 4, 7, 10 ...

A bigint based sequence:
create sequence mseq03 as bigint
 increment by -1;

When used this sequence will generate values between 9223372036854775807 and 1 in
descending steps of one.

Use a sequence for column default:
create sequence idseq start with 1;
create table orders (orderid integer default next value for idseq,

primary key (orderid),
purchasedate date,
customerid integer references customer);

If a new row is inserted into the orders table without specifying a value for the orderid
column, the sequence will be used to generate a new unique value for the column.
Note: It is possible that not every value in the series of values defined by the

sequence will be generated. In case of a server failure it is possible that some
of the values in the series might be skipped.

For more information, see the Mimer SQL User’s Manual, Chapter 7, Creating
Sequences.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature T176 "Sequence generator support".

Mimer SQL
extension

The IN databank clause is a Mimer SQL extension.

280 Chapter 12 SQL Statements
CREATE SHADOW

CREATE SHADOW
Creates a new shadow for a databank.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A new shadow for a databank is created, i.e. a new physical file is created in the host file
system and the contents of an existing Mimer SQL databank is copied to the file, see the
Mimer SQL System Management Handbook, Chapter 10, Mimer SQL Shadowing, for
more details.
The filename-string specifies the name of the new file in the host system and is
stored in the data dictionary as the physical location of the shadow.

Restrictions
CREATE SHADOW is only for use with the optional Mimer SQL Shadowing module.
The ident executing the CREATE SHADOW statement must hold SHADOW privilege.
The CREATE SHADOW statement cannot be used if the databank to be shadowed is
OFFLINE.
The databank to be shadowed (specified by databank-name) cannot be used by any
other user while the shadow is being created.
A databank must have either the TRANSACTION or LOG option if it is to be shadowed,
since the shadowing facility requires transaction handling.
The Mimer SQL shadowing functionality cannot be used together with the automatic
upgrade feature. When setting the AUTOUPGRADE attribute on a database, following
CREATE SHADOW statements will fail. And vice versa, when having databank shadows in
the system it will not be possible to enable the AUTOUPGRADE attribute.

Notes
The shadow-name may not be the same as that of any existing databank or shadow.
The value of filename-string must always be enclosed in string delimiters. The
maximum length of the filename string is 256 characters.
Refer to Specifying the Location of User Databanks on page 13 for details concerning the
specification of path name components in filename-string.

Mimer SQL Version 11.0 281
SQL Reference Manual

Example
The following example creates the shadow SYSDB_S for the Mimer SQL system databank
SYSDB in the file sysdb_s:

CREATE SHADOW SYSDB_S FOR SYSDB IN 'sysdb_s'

For more information, see the Mimer SQL System Management Handbook, Chapter 10,
Mimer SQL Shadowing.

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The CREATE SHADOW statement is a Mimer SQL
extension.

282 Chapter 12 SQL Statements
CREATE STATEMENT

CREATE STATEMENT
Stores a precompiled statement in the data dictionary for execution later.

Usage
Embedded, Interactive, Module, ODBC, JDBC

Description
The statement specified, stored with the name statement-name, is compiled and
optimized and thereafter stored in its compiled form in the data dictionary.
The statement can then be executed through the EXECUTE STATEMENT command (see
EXECUTE STATEMENT on page 335.) A statement that produces a result set (e.g.
SELECT), needs a cursor to read it.
You can use the SCROLL option to specify that the result set should be read by a scrollable
cursor.
If you use the NO SCROLL option, the result set will only be accessible for no-scroll
cursors.
If you do not specify an option, the result set can be used by both scroll and no-scroll
cursors.
Once the precompiled statement has been created, only cursors with the correct scroll
mode can be used to read the result set.

Language Elements
call-statement, see CALL on page 233.
delete-statement, see DELETE on page 317.
insert-statement, see INSERT on page 368.
select-statement, see SELECT on page 398.
set-statement, see SET on page 404.
update-statement, see UPDATE on page 426.

Mimer SQL Version 11.0 283
SQL Reference Manual

Restrictions
The ident executing the CREATE STATEMENT command must have adequate access rights
to perform the stored command.

Notes
The statement-name must not be the same as any other statement name in the schema.
Parameter marker references may be used in the statement to denote values that are
supplied when the statement is executed. Parameter markers can either be a ? or on the
form :variable.

Examples
CREATE SCROLL STATEMENT seltaba
SELECT col1, col2
FROM taba WHERE col3 < 10

CREATE STATEMENT updtaba
UPDATE taba SET col2 = :inpvar
WHERE col3 < :col3var

CREATE STATEMENT callme
CALL proc1('ABC', ?)

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The CREATE STATEMENT command is a Mimer
SQL extension.

284 Chapter 12 SQL Statements
CREATE SYNONYM

CREATE SYNONYM
Creates an alternative name for a table, view or another synonym.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A synonym is created for the table, view or synonym specified in object-name.
If synonym-name is specified in its unqualified form, the synonym will be created in the
schema which has the same name as the current ident.
If synonym-name is specified in its fully qualified form (i.e.
schema-name.synonym-name) the synonym will be created in the named schema (in
this case, the current ident must be the creator of the specified schema).

Restrictions
A synonym may only be created if the creator has some access privilege on the object
specified in object-name.
A synonym can only be created for an existing table, view or synonym.
The synonym name may not be the same as the name of any other table, view, index,
constraint or synonym already belonging to the schema in which the synonym is created.

Notes
The synonym is stored in the data dictionary and it may be used to refer to the associated
table or view wherever object-name would normally be used in the syntax
specifications for SQL.
Synonyms are not the same as correlation names. The latter are defined in the FROM clause
of select-specifications, see Chapter 11, The SELECT Expression, and apply
only within the context of the statement where they are defined.

Example
CREATE SYNONYM artists FOR mimer_store_music.artists;

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The CREATE SYNONYM statement is a Mimer
SQL extension.

Mimer SQL Version 11.0 285
SQL Reference Manual

CREATE TABLE
Creates a new table.

where column-definition is:

and column-constraint-definition is:

286 Chapter 12 SQL Statements
CREATE TABLE

and table-constraint-definition is:

and references is:

and update-rule is:

and delete-rule is:

Mimer SQL Version 11.0 287
SQL Reference Manual

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A new table is created as specified.
If table-name is specified in its unqualified form, the table will be created in the schema
which has the same name as the current ident.
If table-name is specified in its fully qualified form (i.e. schema-name.table-name)
the table will be created in the named schema (in this case, the current ident must be the
creator of the specified schema).
The table definition includes a list of column-definition’s and
table-constraint-definition’s.
The table must be created in a databank on which the current ident has TABLE privilege.
If IN databank-name is not specified, the system will choose a databank on which the
user has TABLE privilege. If more than one such databank exists, databanks created by the
current ident are chosen in preference to others and the databank with the most secure
transaction option is chosen (i.e. a databank with LOG option would be chosen in
preference to one with TRANSACTION option and one with TRANSACTION option in
preference to one with WORK option).
The new table is empty until data is inserted.

Column Definitions
The columns will appear in the table in the order specified. Each column name must be
unique within the table. Column formats may be specified either by explicit data type, see
Data Types in SQL Statements on page 44, or by specifying the name of a domain to
which the column will belong. In the latter case, all the properties of the domain apply to
the column.
A default value can be defined for the column by specifying default-value in
column-definition or by having the column belong to a domain for which a default
value is defined. A default value specified in default-value will take precedence over
a domain default value and the data type of the value specified in default-value must
conform to the data type of the column.
The default value will be assigned to a column whenever an INSERT is performed with
no explicit value supplied. If the defined default value does not conform to other
constraints, e.g. a CHECK constraint, then an INSERT must supply a value. The default
value will also be assigned by an UPDATE statement with DEFAULT specified as update
value.

The COLLATE Clause
In order to enable string data comparison and ordering, you can specify a COLLATE clause
for a column.
A collation specified in the column-definition will take precedence over a domain
collation.
By doing so, the collation defined will always considered in clauses such as WHERE,
ORDER BY and GROUP BY, as well as when using relational and comparison operators.
For more information, see the Mimer SQL User’s Manual, Chapter 4, Collations.

288 Chapter 12 SQL Statements
CREATE TABLE

Table Constraints
One or more constraints may be defined on the table, either by specifying a column-
constraint-definition in a column-definition or by the specifying a table-
constraint-definition in the table element list.
All table constraints may be named by specifying a constraint-name in the column-
constraint-definition or table-constraint-definition. If a constraint is
defined without specifying an explicit name, an automatically generated name will be
assigned to it.
Note: Automatically generated constraint names start with SQL_, so it is

recommended that this initial character sequence be avoided when explicitly
specifying a constraint name.

Constraint names are shown in the appropriate INFORMATION_SCHEMA views, see
Chapter 13, INFORMATION_SCHEMA dictionary views.
The constraint name is used to identify a constraint when it is dropped using the ALTER
TABLE statement. For more information, see ALTER TABLE on page 226.

NOT NULL Constraints
If this constraint is specified in a column-constraint-definition in the column-
definition for a column, the column will not accept an attempt to insert the null value.

PRIMARY KEY Constraint
One PRIMARY KEY can be defined for the table, composed of one or more of the table
columns.
The same column must not occur more than once in the primary key.
A column that is a part of the primary key will implicitly be constrained as NOT NULL,
regardless of any NOT NULL constraints explicitly defined on the table. The null value
cannot, therefore, occur in a primary key column.
The purpose of a primary key is to define a key value that uniquely identifies each table
row, therefore the primary key value for each row in the table must be unique.
The primary key value for a table row is the combined value of the column(s) making up
the primary key. The column(s) of the primary key (and their order in the key) can be
defined using the PRIMARY KEY clause in a table-constraint-definition.
If the primary key for the table is to be composed of only a single column, then it can be
defined by specifying PRIMARY KEY in a column-constraint-definition in the
column-definition for that column.

UNIQUE Constraints
One or more UNIQUE constraints can be defined on the table. A UNIQUE constraint
defines a unique key for the table. A unique key is composed of one or more table
columns, just like the primary key. A column must not occur more than once in the same
unique key.
A unique key defines a key value that uniquely identifies each row in the table, therefore
a table cannot contain two rows which have the same value for a unique key unless one
or more of the columns are null.
A unique key must not be composed of the same set of column(s) (occurring in any order)
as either the primary key or an existing unique key defined for the table.

Mimer SQL Version 11.0 289
SQL Reference Manual

A unique key value for a table row is the combined value of the column(s) making up the
unique key. The column(s) of the unique key (and their order in the key) can be defined
using the UNIQUE clause in a table-constraint-definition.
If a unique key is to be composed of only a single column, then it can be defined by
specifying UNIQUE in a column-constraint-definition in the column-
definition for that column.
Note: Multiple occurrences of the null-value do not violate a UNIQUE constraint.

(However, a UNIQUE INDEX allows just one null-value. See CREATE
INDEX on page 264.)

REFERENTIAL Constraints
A referential constraint defines a foreign key relationship between the table being created
(the referencing table) and another table in the database (the referenced table).
A foreign key relationship exists between a key (the foreign key) in the referencing table
and the primary key or one of the unique keys of the referenced table.
The foreign key in the referencing table is defined by using the FOREIGN KEY clause in
table-constraint-definition and is composed of one or more columns of the
referencing table. The same referencing table column cannot occur more than once in the
foreign key.
The corresponding key in the referenced table is specified by using the REFERENCES
clause in references. If a list of column names is not specified after the name of the
referenced table, then the primary key of the referenced table is assumed.
More than one foreign key can be defined for a table and the same table column can occur
in more than one of the foreign keys.
The name of the referenced table must be specified in its fully qualified form if the name
of the schema to which it belongs is not the same as the current ident.
The i-th column in the referencing table foreign key corresponds to the i-th column in the
specified key of the referenced table and both keys must be composed of the same number
of columns.
The data type and data length of each column in the referencing table foreign key must be
identical to the data type and data length of the corresponding column in the specified key
of the referenced table.
The effect of a referential constraint is to constrain table data in a way that only allows a
row in the referencing table which has a foreign key value that matches the specified key
value of a row in the referenced table.
One or more of the columns in a foreign key may permit the null value (this will be the
case if there is no NOT NULL constraint or equivalent CHECK constraint in effect for the
column).
A referencing table row which has a foreign key value with the null value in at least one
of the columns will always fulfil the referential constraint and therefore be acceptable as
a row in the referencing table.
If all of the columns in a foreign key are constrained not to accept the null value, then the
only rows that will be accepted in the referencing table are those with a foreign key value
that already exists in the corresponding key of the referenced table.

290 Chapter 12 SQL Statements
CREATE TABLE

A referential constraint can be defined by specifying a FOREIGN KEY clause in table-
constraint-definition. If a referencing table foreign key is to be composed of only
a single column, then the referential constraint can be defined by specifying references
in a column-constraint-definition in the column-definition for that column.
Rules can be defined in references that specify an action to be performed on the affected
row(s) of the referencing table when a delete or update operation in the referenced table
causes a referential constraint to be violated (because rows would consequently exist in
the referencing table those foreign key value did not match the corresponding key value
of a row in the referenced table).

One of the following actions can be specified for a referential constraint for update
operations:
• ON UPDATE CASCADE - referencing columns in affected rows in the referencing

table will be set to the updated value of the referenced columns in the referenced
table.

• ON UPDATE SET NULL - referencing columns in affected rows in the referencing
table will be set to the null value.

• ON UPDATE SET DEFAULT - referencing columns in affected rows in the
referencing table will be set to the default value for that column.

• ON UPDATE RESTRICT - this implies that the checking of the constraint will be
done once for each row affected by the update statement.

• ON UPDATE NO ACTION - this implies that the checking of the constraint is done
either when the update statement is completed or at commit, depending on the
deferrability of the constraint.

If no update-rule is specified, ON UPDATE NO ACTION is default.

One of the following actions can be specified for a referential constraint for delete
operations:
• ON DELETE CASCADE - the affected rows in the referencing table are deleted
• ON DELETE SET NULL - the relevant foreign key columns of the affected rows in

the referencing table will be set to the null value.
• ON DELETE SET DEFAULT - the relevant foreign key columns of the affected

rows in the referencing table will be set to the default value for that column.
• ON DELETE RESTRICT - this implies that the checking of the constraint will be

done once for each row affected by the delete statement.
• ON DELETE NO ACTION - this implies that the checking of the constraint is done

either when the delete statement is completed or at commit, depending on the
deferrability of the constraint.

If a delete-rule is not specified, then ON DELETE NO ACTION is default.

Mimer SQL Version 11.0 291
SQL Reference Manual

CHECK Constraints
One or more check constraints can be defined on the table, which will determine whether
the changes resulting from an INSERT or UPDATE operation will be accepted or rejected.
The search-condition which defines the check constraint must not contain a select-
specification, an invocation of a set function, a reference to a host variable, or a non-
deterministic expression. (However, as a work-around invoked functions may contain
such functionality.)
If the search-condition of a check constraint specified in a table-constraint-
definition contains column references, they must be columns in the table being
created.
If the search-condition of a check constraint specified in a column-constraint-
definition in a column-definition contains a column reference, it must be the
column identified by column-name of the column-definition.
The search-condition of a check constraint defined on the table will be evaluated
whenever a new row is inserted into the table and whenever an existing row is updated.
The values for any column reference(s) contained in the search-condition will be
taken from the row being inserted or updated.
The data change operation will only be accepted if the search condition does not evaluate
to false.

Constraint Characteristics
When defining a constraint it is possible to specify that the constraint should either be
INITIALLY IMMEDIATE or INITIALLY DEFERRED. This attribute defines when the
constraint is checked.
A constraint that is specified as INITIALLY IMMEDIATE is checked when a statement is
executed. Constraints are INITIALLY IMMEDIATE by default.
A constraint that is specified as INITIALLY DEFERRED is checked at commit.
Note that for a foreign key constraint, it is only the checking that is deferred to commit
time. I.e. referential actions such as CASCADE, SET DEFAULT, SET NULL and RESTRICT
are all performed when the statement is executed.

Language Elements
default-value, see Default Values on page 76.
search-condition, see Search Conditions on page 165.

Restrictions
CREATE TABLE requires TABLE privilege on the databank in which the table is to be
created.
The table name must not be the same as the name of any other table, view, synonym,
index or constraint belonging to the same schema.
If a domain name is specified for column-definition, USAGE privilege must be held
on the domain.
Each table-constraint-definition can only be specified once in the CREATE
TABLE statement.

292 Chapter 12 SQL Statements
CREATE TABLE

If a UNIQUE constraint is defined on the table, it must be stored in a databank with the
TRANSACTION or LOG option.
If a REFERENTIAL constraint is defined, both the referencing table and the referenced
table must be stored in a databank with the TRANSACTION or LOG option.
A constraint name must not be the same as the name of any other table, view, synonym,
index or constraint belonging to the same schema.
The creator of the table must hold REFERENCES privilege on all the columns specified in
references.
The name of a view cannot be specified for table-name in references.
When creating a table with a foreign key, you, the creator, must have exclusive access to
the referenced table.
A column of LARGE OBJECT data type is not allowed in any type of table constraint but
NOT NULL.
The constraint mode INITIALLY DEFERRED can only be specified for referential
constraints.

Notes
The creator of the table is granted all access privileges to the table WITH GRANT OPTION.
In a REFERENTIAL constraint, the referenced table can be the same as referencing table.
In this situation, the table data is constrained in a way that only allows the foreign key
columns to contain key values that are already present in the referenced (primary or
unique) key.
If a name is not specified for a table or column constraint, a system generated name is
applied to it. System generated names will begin with SQL_ so it is recommended that this
starting character sequence be avoided for explicitly specified constraint names.
The primary key and the unique keys for a table are not dissimilar in their function and
they constrain data in the same way apart from the fact that primary key columns are
always defined as not null, however a unique key should not be used instead of a primary
key. One reason for this is that the primary key is handled more efficiently than the unique
keys, so there is a performance advantage. See Relational Databases – Selected Writings
by C. J. Date for a discussion of primary and unique keys.

Example
CREATE TABLE eng_table (col_1 INTEGER,
 col_2 NCHAR(2000) COLLATE english_1,
 PRIMARY KEY (col_1));

For many more examples, see the Mimer SQL User’s Manual, Chapter 7, Creating
Tables.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 293
SQL Reference Manual

SQL-2016 Features
outside core

Feature F191, “Referential delete actions”.
Feature F251, “Domain support”.
Feature F491, “Constraint management”, support for
named constraints.
Feature F690, “Collation support”.
Feature F701, “Referential update actions”.
Feature F721, “Deferrable constraints”, only for
referential constraints.
Feature T591, “UNIQUE constraints of possibly null
columns”.

Mimer SQL
extension

Support for the IN databank-name clause is a Mimer
SQL extension.

Standard Compliance Comments

294 Chapter 12 SQL Statements
CREATE TRIGGER

CREATE TRIGGER
Creates a trigger which is invoked by data changes in a named table or view.

where trigger-event is:

and alias-list is:

and trigger-action is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
A trigger is created on a table or view (table reference).
For a complete description of triggers, see the Mimer SQL Programmer’s Manual,
Chapter 12, Triggers.
The trigger-name should follow the normal rules for naming database objects, see
Naming Objects on page 39.
If trigger-name is specified in its unqualified form, the trigger will be created in the
schema which has the same name as the current ident.
If trigger-name is specified in its fully qualified form (i.e. schema-name.trigger-
name) the trigger will be created in the named schema (in this case, the current ident must
be the creator of the specified schema).

Mimer SQL Version 11.0 295
SQL Reference Manual

The trigger-action will be executed when the data manipulation operation specified
by trigger-event occurs on table-reference and any search-condition
specified in the WHEN clause of the trigger-action evaluates to true.
There are two types of triggers, row triggers and statement triggers. A row trigger is
executed once for each row that is modified by a data manipulation operation. A
statement trigger is invoked once for a data manipulation operation.
A row trigger is defined by specifying for each row in the trigger definition. If for each
statement is specified or the for each clause is omitted, the trigger will be a statement
trigger. Note that a statement trigger will always be invoked, regardless of if any rows are
modified by the data manipulation operation. A row trigger will only be executed if any
row is affected by the data manipulation.
The trigger time specifies when a trigger is executed. For a more detailed description of
this, see Mimer SQL Programmer’s Manual, Chapter 12, Triggers.
It is possible to create multiple triggers for the same event and time and if so the triggers
will be executed in the order they are created.
In a statement trigger it is possible to refer to temporary tables that contains the data
affected by the data manipulation operation. These tables are named in the referencing
clause and are commonly referred to as the old and new table. These tables are read only.
The old table shows the data as it were before the data manipulation operation and the new
table shows the data after the statement has taken place.
The old table can be used if the trigger event is delete or update. The new table can be
used if the trigger event is update or insert. The temporary tables will only be created if
there is at least one statement trigger that references the old or new table.
In a row trigger it is possible to refer to the row being affected by the data manipulation
operation. The old and new row variables can be seen as implicit parameters for the
triggers. The old row variable is read only in all cases but the new row variable can be
modified if the trigger time is before. The old and new row are defined as records where
each field corresponds to a column in the table reference. To refer to individual fields a
dot notation is used. See example below.
If the trigger time is INSTEAD OF the table reference must be a view. This is the only
trigger time that can be specified for a trigger defined on a view.
If there is an INSTEAD OF trigger defined for a view this means that the data
manipulation operation for a view will not be performed, but the trigger will be executed
instead. In the trigger it is possible to do data manipulations on the tables on which the
view is defined. Thus it is possible to make any view updatable by creating an instead of
trigger. An instead of trigger may also use the old and new tables to access the data
affected by the data manipulation operation that caused the trigger to be executed.

Restrictions
The trigger and table-reference must belong to the same schema.
Two triggers with the same name cannot belong to the same schema.
If the trigger time is INSTEAD OF, then table-reference must be the name of a view.
OLD TABLE and NEW TABLE may each be specified only once in the alias-list and the
same alias-name must not appear twice in the list.
OLD ROW and NEW ROW may each be specified only once in the alias-list and the same
alias-name must not appear twice in the list.

296 Chapter 12 SQL Statements
CREATE TRIGGER

OLD ROW and NEW ROW may only be specified if FOR EACH ROW is specified.
OLD TABLE or OLD ROW may not be specified if the trigger-event is INSERT.
NEW TABLE or NEW ROW may not be specified if the trigger-event is DELETE.
AFTER and INSTEAD OF are currently not supported for row triggers.
If the trigger time is BEFORE and FOR EACH STATEMENT is specified, the
REFERENCING keyword and alias-list must not be specified.
If the procedural-sql-statement of the trigger-action is a COMPOUND STATEMENT, it
must be ATOMIC.
The creator of the trigger must hold the appropriate access rights, with grant option, for
all operations performed in the trigger action.
The trigger-action must not contain a COMMIT or ROLLBACK statement.
If the trigger time is BEFORE, the following restrictions apply to the trigger-action:
• the trigger-action must not contain any SQL statement that performs data update

(i.e. DELETE, INSERT and UPDATE statements are not permitted)
• a routine which possibly MODIFIES SQL DATA may not be invoked from within

the trigger-action.
A trigger can be created on tables that have columns defined as LARGE OBJECT data
type, with the restrictions that it is not possible to refer to such columns in the new table
in an instead of trigger and that it is not possible to modify such fields in the new row
variable.

Notes
The trigger-action is always executed in the transaction started for the data
manipulation operation which caused the trigger to be invoked. Thus, if the data
manipulation operation is subject to a rollback, all operations performed in the trigger-
action will also be undone and an unhandled error occurring in the trigger-action
will be treated like an error in the triggering data manipulation statement. Situations like
this can be handled using condition handlers. (See DECLARE HANDLER on page 312.)
During the execution of the trigger-action, the effect of changes made in the
transaction are visible.
The scope of the trigger-action is the optional WHEN clause and the procedural-
sql-statement.
The tables specified by using OLD TABLE and NEW TABLE in the alias-list are
temporary and are local to scope of the trigger-action. It is not possible to perform
any data change operations on either table and the data contained in each will not
otherwise change during the time it exists.
Data manipulation operations performed in the trigger-action may cause the trigger
to be invoked recursively. Trigger execution in a recursive situation will proceed
normally in every respect.
If the body of the trigger contains operations on tables located in a databank with work
option, these operations will not be part of the atomic statement that constitute the trigger
execution.
If the procedural-sql-statement in a trigger contains a compound statement, it is
possible to declare condition handlers for handling errors that may occur in the trigger
code. See DECLARE HANDLER on page 312.

Mimer SQL Version 11.0 297
SQL Reference Manual

Examples
CREATE TRIGGER mimer_store_book.titles_after_insert
 AFTER INSERT ON mimer_store_book.titles
REFERENCING NEW TABLE AS btl
BEGIN ATOMIC
…
…
END -- of trigger mimer_store_book.titles_after_insert

CREATE TABLE versions(document_id int, version_date date);

CREATE TRIGGER set_version_date BEFORE UPDATE ON versions
REFERENCING NEW ROW AS new_version OLD ROW AS old_version FOR EACH ROW
 IF old_version.version_date = new_version.version_date THEN
 SET new_version.version_date = current_date;
 END IF;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 12, Triggers.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features outside core Feature F571, “Truth value tests”.
Feature T211, “Basic trigger
capability”.
Feature T212, “Enhanced trigger
capability”.
Feature T213, “INSTEAD OF triggers”.

298 Chapter 12 SQL Statements
CREATE TYPE

CREATE TYPE
Create user-defined type.

where representation is:

and type-attributes is:

and cast-option is:

and method-specification is:

Mimer SQL Version 11.0 299
SQL Reference Manual

where access-option is:

Usage
Embedded, Interactive, Module, ODBC, JDBC

Description
A new type is defined. A user-defined type may be used as the data type for columns in
CREATE or ALTER TABLE statements. It can also be used in stored procedures and
triggers as the type for variables and parameters.
The type-name should follow the normal rules for naming database objects (see
Identifiers on page 38). If the type-name is unqualified, the type will be created in the
schema with the same name as the current ident. If the type-name is qualified with a
schema name, this schema must be owned by the current ident. The permitted values for
data-type are described in Data Types in SQL Statements on page 44.
A distinct type has a single data type whereas a structured type has a list of attributes.
User-defined types are strongly typed, which means that it is only possible to compare
values of the same type. When comparing a predefined data type and a distinct user-
defined type a type cast must be used. For this purpose there are two routines created
automatically when the type is created. Firstly, a function that can be used for casting
from the type on which the user-defined type is based to the distinct type. If a cast-source
clause is specified the identifier will be used as the name for the function, otherwise the
function will have the same name as the user-defined type. Secondly, a function for
casting from the user-defined type to the type on which it is based is also created. If cast
distinct as source is specified the identifier in this clause is used for the function otherwise
the name depends on the source type as seen in the following table.

Source type Function name

Character CHAR

Character varying VARCHAR

National character NCHAR

National character varying NVARCHAR

Binary BINARY

Binary varying VARBINARY

Integer INTEGER

Decimal DECIMAL

Numeric NUMERIC

Float FLOAT

300 Chapter 12 SQL Statements
CREATE TYPE

Examples
CREATE TYPE weight AS int;
CREATE FUNCTION checkWeight(w weight) RETURNS boolean RETURN integer(w) > 100;
SET :v = checkWeight(weight(200));

BEGIN
 DECLARE w weight;
 DECLARE i int;
 …
 SET i = integer(w);
 …
 SET w = weight(i);
 …
END

Access Options
The following access options may be specified:

• CONTAINS SQL
The method may not contain any data-manipulation-statements. All other
procedural-sql-statements are permitted. The method may only invoke methods,
functions and procedures with the access option CONTAINS SQL. This option
effectively prevents a routine from performing read or write operations on data in
the database.

• READS SQL DATA
All procedural-sql-statements are permitted except those performing updates (i.e.
DELETE, INSERT and UPDATE). The method may only invoke methods,
functions and procedures with the access option CONTAINS SQL or READS SQL
DATA.
This option effectively prevents a routine from performing write operations on data
in the database.

Real REAL

Double precision DOUBLE

Date DATE

Time TIME

Timestamp TIMESTAMP

Any interval type INTERVAL

Boolean BOOLEAN

Binary large object BLOB

Character large object CLOB

National character large object NCLOB

Source type Function name

Mimer SQL Version 11.0 301
SQL Reference Manual

• MODIFIES SQL DATA
All procedural-sql-statements are permitted and any method, function or procedure
may be invoked from this type of method.
This option allows a routine to perform read and write operations on data in the
database.

If no access options is specified, CONTAINS SQL is implicit

Restrictions
The type-name must be unique within a schema.
A method specification must be unique for a user-defined type with regard to the number
of parameters and data types. This means that user-defined type may have multiple
method specifications with the same name as long as either the number of parameters
differ or if the data types for the parameters differ.
If a parameter name is specified in a parameter list it must be unique within the parameter
list.
The ROW data type cannot be used at any place in a type definition.
A domain may not be used as the type for a distinct user-defined type.
The parameter mode for a parameter cannot be specified. It is always IN.
cast-option can only be specified for a distinct type.

Notes
When dropping a type with cascade option, any column using that type will be dropped.
If this column is the last column in the table, the table will be dropped as well. See DROP
TYPE for more details.
The ALTER TYPE statement can be used for adding and dropping method specifications.
(See ALTER TYPE on page 230.)
The keywords FINAL and INSTANTIABLE are supported for compliance with SQL-
2016. SQL-2016 has support for single inheritance and polymorphism, which is not
supported in this version of Mimer SQL.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

302 Chapter 12 SQL Statements
CREATE VIEW

CREATE VIEW
Creates a view on one or more tables or views.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description

View-name
If view-name is specified in its unqualified form, the view will be created in the schema
which has the same name as the current ident.
If view-name is specified in its fully qualified form (i.e. schema-name.view-name)
the view will be created in the named schema (in this case, the current ident must be the
creator of the specified schema).

Column-name
If a list of column names is given in parentheses before the query-expression, the
columns in the view are named in accordance with this list. There must be the same
number of names in the column list as there are columns addressed by the
query-expression. The names must be unique within the list.
If the column name list is omitted, the columns in the view will be given the same names
as they have in the source table(s) or view(s) addressed in the select-specification. The
column names in the source must all be unique in the view being created. If this is not the
case, an explicit column name list must be given. An explicit column name list must also
be given if columns in the view are defined as expressions without correlation names.

select-expression
A view is created in accordance with the specification in the query-expression, see
SELECT on page 398 for more information on select-expression’s.

WITH CHECK OPTION
Specification of WITH CHECK OPTION indicates that any data inserted into the view by
INSERT or UPDATE statements will be checked for conformity with the definition of the
view. Attempts to insert data which do not conform to the view definition will be rejected.
The optional keyword CASCADED can be explicitly specified in the WITH CHECK OPTION
clause to ensure that any data inserted into a view which is based on this view will be also
be checked for conformity with the definition of this view.

Mimer SQL Version 11.0 303
SQL Reference Manual

Thus, if an INSERT or UPDATE in a view based on this one results in an attempt to insert
data into this view which does conform to the view definition, the data change operation
will be rejected.
If CASCADED is not specified, it is assumed by default (use of the keyword CASCADED is
now permitted to allow for future extensions to the Mimer SQL syntax).

Language Elements
query-expression, see SELECT on page 398.

Restrictions
CREATE VIEW requires SELECT access to the tables or views from which the view is
created, and EXECUTE privilege on routines and USAGE privilege on sequences and
domains referenced.

Notes
The view name may not be the same as the name of any other table, view, index,
constraint or synonym belonging to the same schema.
The creator of the view is always granted SELECT access to the view. If the view is
updatable, see below, any access the creator may hold on the underlying table or view at
the time the new view is created is also granted on the new view. Access to the view is
granted WITH GRANT OPTION only if the corresponding access to all underlying tables,
views, routines, sequences and domains are held WITH GRANT OPTION.
SELECT and UPDATE statements can only be performed on data accessible from the view.
Insertion of a new row assigns the default value or null value to columns in the base table
excluded from the view, in accordance with the definition of the columns. Deletion of a
row from a view removes the entire row from the underlying base table, including
columns invisible from the view.
The select-specification defining the view may not contain references to host
variables.
The WITH CHECK OPTION clause is illegal if the view is not updatable. A result set is
only updatable if all of the following conditions are true:
• the keyword DISTINCT is not specified
• the FROM clause specifies exactly one table reference and that table reference refers

either to a base table or an updatable view
• a GROUP BY clause is not included
• a HAVING clause is not included.
• the result set is not the product of an explicit INNER or OUTER JOIN
• the keyword UNION is not included
• the keyword EXCEPT is not included
• the keyword INTERSECTION is not included

304 Chapter 12 SQL Statements
CREATE VIEW

A view will always be updatable if an INSTEAD OF trigger exists on the view, regardless
of the conditions previously mentioned. If there is an INSTEAD OF trigger any possible
with check option for the view is ignored. If all the INSTEAD OF triggers on the view are
dropped, the view will revert to not updatable if one or more of those conditions are not
true.
If an updatable view is based on other views, insert and update operations are checked
against all view definitions for which WITH CHECK OPTION is specified. Thus if view-2
is defined with check option on view-1, which in turn is defined with check option on a
base table, no changes may be made in the base table through either view-1 or view-2
which violate the definition of view-1.

Example
CREATE VIEW mimer_store_book.details
 AS SELECT authors_list, product AS title, producer AS publisher, format,
 price, stock, reorder_level,
 extract_date(release_date) AS release_date,
 'ISBN:99-999-9999-9' as ISBN, -- *****
 -- *****'ISBN:' || mimer_store_book.format_isbn(isbn) AS isbn,
 ean_code, status, product_search AS title_search,

product_details.item_id, category_id, product_id,
display_order, image_id

 FROM product_details
JOIN mimer_store_book.titles
ON product_details.item_id = mimer_store_book.titles.item_id;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 305
SQL Reference Manual

DEALLOCATE DESCRIPTOR
Deallocates an SQL descriptor area.

Usage
Embedded, Module.

Description
This statement deallocates an SQL descriptor area that was previously allocated with the
specified descriptor-name.

Notes
An SQL descriptor area with the specified name must have been previously allocated.

Example
EXEC SQL DEALLOCATE DESCRIPTOR 'SDA';

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature B031, “Basic dynamic SQL”.
Feature B032, “Extended dynamic SQL” support for
dynamic descriptor names.

306 Chapter 12 SQL Statements
DEALLOCATE PREPARE

DEALLOCATE PREPARE
Deallocates a prepared SQL statement.

Usage
Embedded, Module.

Description
The prepared statement associated with the statement name is destroyed. Any cursor
allocated with an ALLOCATE CURSOR statement that is associated with the prepared
statement is also destroyed.
See ALLOCATE CURSOR on page 196 for a description of extended statements.

Notes
The statement name must identify a statement prepared in the same compilation unit.
The statement must not identify an existing prepared statement that is associated with an
open cursor.

Example
EXEC SQL DEALLOCATE PREPARE :stm1;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 4, Dynamic
SQL.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature B032, “Extended dynamic SQL”.

Mimer SQL Version 11.0 307
SQL Reference Manual

DECLARE CONDITION
Declares a condition name for an exception condition value.

Usage
Procedural.

Description
A condition declaration defines an identifier that can be used as a name for exceptions
and/or SQLSTATE values. The identifier can be used in SIGNAL and RESIGNAL
statements as well as in handler declarations. This results in a code that is easier to read
and understand compared with using explicit SQLSTATE values.
A condition identifier can optionally be associated with an SQLSTATE value. Using a
condition identifier with an associated SQLSTATE value in a SIGNAL or RESIGNAL
statement means that the associated SQLSTATE value is signaled as well. If the condition
identifier does not have an associated SQLSTATE value, the SQLSTATE value 45000 is
signaled.

Restrictions
A condition name which represents an SQLSTATE value may only be declared to
represent a specific SQLSTATE value, i.e. it is not possible to declare a condition name to
represent an exception class group. For a description of exception class groups, see
DECLARE HANDLER on page 312.
The scope of a condition name covers all the procedural SQL statements in the compound
statement declaring it, including any other compound statements nested within it.
The general naming rules for a condition name are the same as those for other database
objects.
If a condition name is declared to represent a particular SQLSTATE value, another
condition name cannot exist for that same SQLSTATE value which has exactly the same
scope.
A condition name cannot be declared for an SQLSTATE value with class ‘successful
completion’, this covers all SQLSTATE values starting with 00.

Notes
The SQLSTATE value string is five characters long and contains only alphanumeric
characters.
In Mimer SQL any SQLSTATE value that falls outside the range of standard SQLSTATE
values is treated as an implementation-defined value.

308 Chapter 12 SQL Statements
DECLARE CONDITION

Standard SQLSTATE values begin with the characters A-I, S, 0-4 and 7, while
implementation-defined SQLSTATE values begin with the characters J-R, T-Z, 5-6 and
8-9.

Example
DECLARE invalid_parameter CONDITION;

DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
 DECLARE condition_name VARCHAR(128);
 GET DIAGNOSTICS EXCEPTION 1 condition_name = CONDITION_IDENTIFIER;
 IF condition_name = 'invalid_parameter' THEN
 ...
 END IF;
END;

SIGNAL invalid_parameter;

For more information, see Appendix E Return Status and Conditions or Mimer SQL
Programmer’s Manual, Chapter 11, Declaring Condition Names.
For information about the SIGNAL statement, see SIGNAL on page 422. For information
about the RESIGNAL statement, see RESIGNAL on page 384.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

Mimer SQL Version 11.0 309
SQL Reference Manual

DECLARE CURSOR
Declares a cursor definition.

Usage
Embedded, Module, Procedural.

Description
A cursor is declared in accordance with the select-statement or the result set
procedure call specified in procedure-call-statement.
The select-statement may be specified explicitly in ordinary embedded SQL
applications or by the name of a prepared SELECT, identified by dynamic-statement-
name, in dynamic SQL statements, see the Mimer SQL Programmer’s Manual,
Chapter 4, Dynamic SQL.
The cursor is identified by cursor-name, and may be used in FETCH, DELETE CURRENT
and UPDATE CURRENT statements. The cursor must be activated with an OPEN statement
before it can be used.
A cursor declared as REOPENABLE may be opened several times in succession, and
previous cursor states are saved on a stack, see OPEN on page 378. Saved cursor states
are restored when the current state is closed, see CLOSE on page 237.
A cursor declared as SCROLL will be a scrollable cursor. For a scrollable cursor, records
can be fetched using an orientation specification. See the description of FETCH on
page 339 for a description of how the orientation can be specified.
A cursor declared WITH HOLD will be a holdable cursor. Open holdable cursors are not
closed when a transaction is committed. A cursor will be non-holdable if WITHOUT HOLD
is explicitly specified.
WITHOUT HOLD and NO SCROLL are default cursor attributes and do not have to be
specified.

Language Elements
select-statement, see SELECT Statements on page 398.
procedure-call-statement, see CALL on page 233.

310 Chapter 12 SQL Statements
DECLARE CURSOR

Restrictions
A cursor for a result set procedure call must not be declared WITH HOLD.
If an execute-statement-command is used, the precompiled statement must be a
SELECT or a result set procedure CALL.
If a procedure-call-statement is specified, it must specify a result set procedure.
The following restrictions apply to procedural usage:
• The cursor cannot be declared as REOPENABLE
• The SELECT statement cannot be in the form of a prepared dynamic SQL

statement, i.e. specifying dynamic-statement-name is not allowed
• If the cursor declaration contains a SELECT statement, the access-clause for

the procedure must be READS SQL DATA or MODIFIES SQL DATA, see CREATE
PROCEDURE on page 271

• The execute-statement-command is not allowed.

Notes
The DECLARE CURSOR statement is declarative, not executable. In an embedded usage
context, access rights for the current ident are checked when the cursor is opened, not
when it is declared.
In a procedural usage context, access rights for the current ident are checked when the
cursor is declared, i.e. when the procedure containing the declaration is created.
The value of cursor-name may not be the same as the name of any other cursor declared
within the same compound statement (Procedural usage) or in the same compilation unit
(Embedded usage).
The select-statement is evaluated when the cursor is opened, not when it is declared.
This applies both to select-statement’s identified by statement name, and to host
variable references used anywhere in the SELECT statement.
The execution of the result set procedure specified in a CALL statement is controlled by
the opening of the cursor and subsequent fetches, see the Mimer SQL Programmer’s
Manual, Chapter 11, Result Set Procedures.
REOPENABLE cannot be used if evaluation of select-statement uses a work table, or
if the cursor declaration occurs within a procedure.
If the declared cursor is a dynamic cursor, the DECLARE statement must be placed before
the PREPARE statement.
Cursors should normally be declared WITHOUT HOLD (default), because WITH HOLD
cursors require more internal resources then ordinary cursors.
A reopenable cursor can be used to solve the ‘Parts explosion’ problem. Refer to the
Mimer SQL Programmer’s Manual, Chapter 4, The 'Parts explosion' Problem for a
description.

Examples
DECLARE cur2 SCROLL CURSOR FOR SELECT c1,c2 FROM tab1;

DECLARE cur3 CURSOR WITH HOLD FOR stmt1;

DECLARE cur1 CURSOR FOR EXECUTE STATEMENT seltaba;

Mimer SQL Version 11.0 311
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F431, “Read-only scrollable cursor”,
support for the SCROLL keyword.
Feature F831, “Full cursor update”
Feature T551, “Optional keywords for default
syntax” support for the WITHOUT HOLD clause.

Mimer SQL
extension

The keyword REOPENABLE is a Mimer SQL
extension.
Support for EXECUTE STATEMENT and CALL
statement in a cursor definition is a Mimer SQL
extension.

312 Chapter 12 SQL Statements
DECLARE HANDLER

DECLARE HANDLER
Declares an exception handler.

Usage
Procedural.

Description
An exception handler may be declared to respond to a specific exception condition or one
or more of the exception class groups SQLEXCEPTION, SQLWARNING or NOT FOUND. An
exception handler that responds to one or more exception class groups is called a general
exception handler.
A specific exception condition may be specified by using an SQLSTATE value or a
condition name, see DECLARE CONDITION on page 307. An exception handler that
responds to one or more specific exception conditions is called a specific exception
handler.
The keywords CONTINUE, EXIT and UNDO affect the flow of control behavior subsequent
to the execution of the exception handler.
If CONTINUE is specified, the flow of control continues by executing the SQL statement
immediately following the statement that raised the error, after the handler has executed.
If EXIT is specified, the flow of control exits the compound statement within which the
exception handler is declared after the handler has executed.
If UNDO is specified, all the changes made by the SQL statements in the ATOMIC
compound statement, within which the handler is declared, (or by any SQL statements
triggered by those changes) are canceled. Then the handler is executed and the flow of
control exits the compound statement.

Mimer SQL Version 11.0 313
SQL Reference Manual

Restrictions
An UNDO exception handler can only be declared within an ATOMIC compound statement.
An exception handler must be either a general or a specific exception handler, it cannot
respond to both an exception class group and a specific exception condition.
The same exception condition must not be specified more than once, whether by
SQLSTATE value or by condition name, in an exception handler declaration.
Within a given scope, only one specific exception handler may be declared for a particular
exception condition.
If string is specified, it must have length five and contain only alphanumeric characters.

Notes
Within a given compound statement, if both a general and a specific exception handler
have been declared to respond to a given exception condition, the specific exception
handler will handle the exception.
If no exception handlers have been declared to respond to an exception condition in the
compound statement within which the error was raised, the exception condition is
propagated out to the enclosing compound statement or to the calling environment.
The above does not apply to exception conditions with the NOT FOUND and SQLWARNING
class, these are not propagated by the exception handling mechanism in absence of an
exception handler defined to handle them.
SQLWARNING covers SQLSTATE values beginning with 01.
NOT FOUND covers SQLSTATE values beginning with 02.
SQLEXCEPTION covers all other SQLSTATE values (including implementation-defined
values), except those beginning with 00.

Example
S1:
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 ...
 ...
 END;
 ...
 ...
 END S1;

For more information, see Appendix E Return Status and Conditions or the Mimer SQL
Programmer’s Manual, Chapter 11, Declaring Exception Handlers.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

314 Chapter 12 SQL Statements
DECLARE SECTION

DECLARE SECTION
Identifies declaration of host variables used in SQL statements.

Usage
Embedded.

Description
Host variables declared between the BEGIN DECLARE SECTION and END DECLARE
SECTION statements are declared for both the host language compiler and the SQL
compiler. Host variables used in SQL statements must be declared in an SQL DECLARE
SECTION.

Notes
Host variables declared in the SQL DECLARE SECTION must be elementary data items
or pointers to character strings. They may not be declared as part of a record or structure.
The rules for placing the DECLARE SECTION in the host program code and for declaring
variables within the SECTION follow the host language syntax.
Language-specific issues are discussed in the Mimer SQL Programmer’s Manual,
Appendix A, Host Language Dependent Aspects.
SQL statements may not be placed within the SQL DECLARE SECTION.
BEGIN DECLARE SECTION and END DECLARE SECTION are two separate SQL
statements, each of which must be preceded by EXEC SQL and followed by the (language-
specific) statement terminator.

Example
The following example, in C, shows the correct usage of both statements:

exec sql BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 char usernm[129], passwd[129];
 NVARCHAR tablenm[129];
exec sql END DECLARE SECTION;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 315
SQL Reference Manual

DECLARE VARIABLE
Declares a variable.

where row-specification is:

Usage
Procedural.

Description
The value for data-type can be any data type supported by Mimer SQL, see Data Types
in SQL Statements on page 44.
More than one variable of the same type can be declared in a single declaration.
It is possible to declare a variable as a record, by using the row specification.
The fields in a record may themselves be records, to an unlimited depth. To reference a
field in a record the notation recordVariable.fieldName is used.
A record can be declared as being the same as a table or a part of table with the AS clause.
This means that the fields in the record will have the same name and type as the columns
in the table. If the column list is omitted, all columns are used.
The optional DEFAULT clause may be used to specify an initial value for the variable(s).
A value of null is permitted as the value for the DEFAULT clause.
If a ROW data type definition has been specified for data-type, a row value expression can
be specified for expression in the DEFAULT clause.
If the DEFAULT clause is not specified, the variable(s) will be set to null initially.
In the case of a variable declared with the ROW data type, each field in the variable is set
to null initially if a DEFAULT clause is not specified.

316 Chapter 12 SQL Statements
DECLARE VARIABLE

Restrictions
The name of a variable cannot be the same as any of the routine parameter names.
A function with MODIFIES SQL DATA specified for its access clause cannot be used as
expression in the DEFAULT clause.

Notes
It is possible to declare a variable with the same name as that of a column in a table. In
such a situation, an unqualified name will always resolve to the table column name and
not the variable. We recommend that a suitable naming convention be adhered to that
distinguishes between the two.
If a variable is defined as using a domain, any assignment to this parameter will be
verified to ensue that any check constraint is not violated. If the domain has a default
value, the variable will be initialized with this value unless there is an explicit default
clause in the declaration.

Examples
DECLARE orderNumber INTEGER DEFAULT 0;

DECLARE firstName,lastName VARCHAR(30);

DECLARE purchase row(customerId integer, orderNumber integer,
 purchaseDate date, productId integer, quantity integer)
 DEFAULT (0,0,current_date,0,0);

DECLARE book ROW AS (mimer_store_book.details);

DECLARE bookTitle ROW AS(mimer_store_book.details(isbn,title));

For more information, see Mimer SQL Programmer’s Manual, Chapter 11, Declaring
Variables.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

Mimer SQL
extension

The use of AS-clause is a Mimer SQL extension.

Mimer SQL
extension

The possibility to use domains in PSM is a Mimer
SQL extension.

Mimer SQL Version 11.0 317
SQL Reference Manual

DELETE
Deletes a set of rows from a table or view.

Usage
Embedded, Interactive, Module, ODBC, Procedural, JDBC.

Description
All rows in the set defined by the WHERE clause are deleted from the base table or view
identified by table-name. If no WHERE clause is specified, all rows are deleted.
If table-name identifies a view rather than a base table, entire rows, including columns
invisible from the view, are deleted from the base table on which the view is defined. For
a delete to be performed on a view, the view must be updatable, see CREATE VIEW on
page 302.
A NOT FOUND condition code is returned if no row is deleted, see Appendix E Return
Status and Conditions.

Language Elements
search-condition, see Search Conditions on page 165.
with-clause, see The WITH Clause on page 179.

Restrictions
DELETE privilege must be held on the table or view identified by table-name.
In a procedural usage context, the DELETE statement is only permitted if the procedure
access-clause is MODIFIES SQL DATA, see CREATE PROCEDURE on page 271.

Notes
If a correlation-name is specified after the table name in the DELETE FROM clause,
the correlation name must be used to refer to the table in the WHERE clause of the DELETE
statement.

318 Chapter 12 SQL Statements
DELETE

If the table name addressed by the DELETE statement is subject to any referential
constraints, the delete operation must not create a situation where these constraints are
violated. The effect of the delete operation on any referential constraints depends on the
delete-rule in effect for each constraint, see CREATE TABLE on page 285 for a
description of the delete-rule options.
A DELETE statement is executed as a single statement. If an error occurs at any point
during the execution, none of the rows in the set defined by the WHERE clause will be
deleted (however, if the table is stored in a databank with the WORK option it is possible
that some rows will be deleted).

Example
DELETE FROM countries
 WHERE CITY = 'Dublin';

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 319
SQL Reference Manual

DELETE CURRENT
Deletes the current row indicated by a cursor.

Usage
Embedded, Module, ODBC, Procedural, JDBC.

Description
The row currently indicated by the cursor is deleted from the base table implied by the
cursor definition.
The row indicated by the cursor is that retrieved by the most recent FETCH statement, see
FETCH on page 339.
After the deletion, the cursor is no longer positioned on a row in the set defined by the
cursor declaration. A FETCH statement is required to position the cursor on the next row
in the set before another DELETE CURRENT or an UPDATE CURRENT statement can be
executed.
See ALLOCATE CURSOR on page 196 for a description of extended cursors.
If an extended-cursor-name is specified in a DELETE CURRENT statement, it
specifies the name of a host variable whose value is the name of the cursor.

Restrictions
DELETE access to the table or view identified by table-name is required when the
cursor used for the DELETE CURRENT statement is opened. If DELETE access is not held,
the cursor may be opened but DELETE CURRENT statements will fail.
A row indicated by a WITH HOLD cursor must have been fetched in the same transaction.
The DELETE CURRENT statement may not be used for read-only cursors.
A cursor cannot be identified by specifying extended-cursor-name in a procedural
usage context.
In a procedural usage context, the DELETE CURRENT statement is only permitted if the
procedure access-clause is MODIFIES SQL DATA, see CREATE PROCEDURE on
page 271.

Notes
The table name given in the DELETE CURRENT statement must be the same as that
specified in the FROM clause of the cursor declaration. If a synonym is used in one of the
statements, the same synonym must also be used in the other.

320 Chapter 12 SQL Statements
DELETE CURRENT

If the table name addressed by the DELETE CURRENT statement is subject to any
referential constraints, the delete operation must not create a situation where these
constraints are violated. The effect of the delete operation on any referential constraints
depends on the delete-rule in effect for each constraint, see CREATE TABLE on
page 285 for a description of the delete-rule options.
If an error occurs during execution of a DELETE CURRENT statement, the row is not
deleted.

Example
exec sql FETCH cur1 INTO :ival;
if (ival < 0) {
 exec sql DELETE FROM tab1 WHERE CURRENT OF cur1;
 …
}
else…

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 321
SQL Reference Manual

DELETE STATISTICS
Deletes the statistics recorded for all tables in the database, a specified list of tables, all
tables in a specified list of schemas or all the tables belonging to the schemas owned by
a specified list of idents.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The default operation is to delete statistics for all tables, including data dictionary tables,
in the database.
It is possible to delete statistics for a specified list of tables by using the FOR TABLE
option, for all tables belonging to a specified list of schemas by using the FOR SCHEMA
option or for all the tables belonging to the schemas created by a specified list of idents
by using the FOR IDENT option.

Restrictions
The current ident must be the creator of all the tables involved or must have STATISTICS
privilege.

Notes
The DELETE STATISTICS statement can be used concurrently with other SQL
statements.

Example
DELETE STATISTICS FOR IDENT joe;

For more information, see the Mimer SQL System Management Handbook, Chapter 11,
Database Statistics.

322 Chapter 12 SQL Statements
DELETE STATISTICS

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The DELETE STATISTICS statement is a Mimer
SQL extension.

Mimer SQL Version 11.0 323
SQL Reference Manual

DESCRIBE
DESCRIBE gathers information on the result set or dynamic variable specifications in a
prepared statement and places the information in an SQL descriptor area.

Usage
Embedded, Module.

Description
Information concerning the prepared statement identified by statement-name is placed
in the named SQL descriptor area.
The DESCRIBE statement and the DESCRIBE OUTPUT statement are equivalent, and
gather information on the items in the result set of the statement and places it in the SQL
descriptor area.
The DESCRIBE INPUT statement describes the statement’s input and output variables.
The DESCRIBE OUTPUT statement describes the result set returned by the statement (a
SELECT or a CALL to a result set procedure).
If descriptions of both the result set and the input variables are required for a prepared
statement, the statement must be described separately with each form of DESCRIBE.
The descriptor-name is identified by a host variable or a literal.
WITHOUT NESTING is implicit.
See ALLOCATE DESCRIPTOR on page 198 for a description of the SQL descriptor area.
See ALLOCATE CURSOR on page 196 for a description of extended statements.
See also, GET DESCRIPTOR on page 344.

Restrictions
The DESCRIBE statement is only applicable to dynamically prepared SQL statements.

324 Chapter 12 SQL Statements
DESCRIBE

Examples
exec sql ALLOCATE DESCRIPTOR 'DescrIn';
exec sql ALLOCATE DESCRIPTOR 'DescrOut';
sqlstr = 'SELECT * FROM tab1 WHERE col1 = ? and col2 = ?';
exec sql PREPARE 'stmt X1' FROM :sqlstr;
exec sql DESCRIBE INPUT 'stmt X1' USING SQL DESCRIPTOR 'DescrIn';
exec sql DESCRIBE OUTPUT 'stmt X1' USING SQL DESCRIPTOR 'DescrOut';

sqlstr = 'CALL proc(?, ?, ?)';
exec sql PREPARE stmt2 FROM :sqlstr;
exec sql DESCRIBE INPUT stmt2 USING SQL DESCRIPTOR :SQLA1;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 4, Describing
Prepared Statements.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature B031, “Basic dynamic SQL”.

Mimer SQL Version 11.0 325
SQL Reference Manual

DISCONNECT
Disconnects a user from the specified connection.

Usage
Embedded, Interactive, Module.

Description
The specified connection is disconnected. Any current transaction is rolled back, cursors
are closed, and compiled statements are destroyed. No further access to the database using
that connection is possible.
If the specified connection is not the current connection the application still has access to
the current connection. Otherwise, to continue with another connection the application
must either perform a SET CONNECTION or a CONNECT statement.
The connection is not case-sensitive and may be specified as a literal value or by using
a host variable.
If no disconnect option is specified, CURRENT is assumed by default.
The DISCONNECT statement may not be issued within a transaction. The transaction must
first be ended using COMMIT or ROLLBACK, before DISCONNECT can be performed.

Example
DISCONNECT 'connection 1';

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature F771, “Connection management”.

Mimer SQL
extension

Support for DISCONNECT without any option is a
Mimer SQL extension.

326 Chapter 12 SQL Statements
DROP

DROP
Drops an object from the database.

where routine-specification is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Mimer SQL Version 11.0 327
SQL Reference Manual

Description
The named object is deleted from the database. The object name is free to be reused for
other objects.
The CASCADE and RESTRICT keywords specify the action to be taken if other objects
exist that are dependent on the object being dropped. If CASCADE is specified, such
objects will be dropped as well. If RESTRICT is specified, an error is returned if other
objects are affected, and no objects are dropped.
If neither RESTRICT nor CASCADE is specified, then RESTRICT is implicit.

Restrictions
A database object can only be dropped by its creator, unless it is implicitly dropped
because of cascade effects when another object is dropped, see the Notes section below.
You must have exclusive use of a table to drop the table or an index on the table, and of
a databank to drop the databank.
DROP SHADOW is only for use with the optional Mimer SQL Shadowing module, and
requires SHADOW privilege.
The databank for which the shadow exists cannot be used by any other user while the
shadow is being dropped.
Only the creator of a STATEMENT can drop it. Neither RESTRICT nor CASCADE is
supported, since DROP STATEMENT will never cause any cascading effects to occur.

Notes

DROP COLLATION
You can drop a collation only if there are no dependencies.

DROP COMMENT
Comments may not be dropped from the data dictionary, but they may be replaced by
blank comments, see COMMENT on page 239.

DROP DATABANK
When a databank is dropped, all tables and sequences in the databank are dropped. All
shadows defined on the databank are also dropped. An attempt is made to delete the
physical file in which the databank is stored. If the file deletion is unsuccessful for any
reason (e.g. the disk is not mounted), the databank is dropped from the database but the
file remains.
If the databank is OFFLINE, no attempt is made to delete the physical databank file or any
shadow file(s).

DROP DOMAIN
When a domain is dropped, existing columns defined using the domain retain all the
properties of the domain. No new columns may however use the domain. All routines,
triggers or views whose definitions contain a CAST involving the domain will be dropped.

328 Chapter 12 SQL Statements
DROP

DROP FUNCTION
When a function is dropped with the CASCADE option in effect, all constraints, functions,
procedures, triggers or views invoking it will be dropped. Dropping any object referenced
from the SQL statements in the body of a function will drop the function when the
CASCADE option is in effect.

DROP IDENT
When an ident is dropped, all objects owned by the ident are dropped, and all privileges
granted by the ident are revoked. (Remember that revocation of privileges, in particular,
may have recursive effects on other objects.)

DROP INDEX
When an index is dropped and CASCADE is in effect, all the objects (i.e. functions,
procedures, statements, triggers and views) explicitly referencing the index are also
dropped.

DROP MODULE
When a module is dropped, all the routines belonging to the module are also dropped.

DROP PROCEDURE
When a procedure is dropped with the CASCADE option in effect, all other routines or
triggers calling it will be dropped. Dropping any object referenced from the SQL
statements in the body of a procedure will drop the procedure when the CASCADE option
is in effect.

DROP SCHEMA
When a schema is dropped and CASCADE is in effect, all the objects belonging to the
schema are also dropped. If RESTRICT is in effect, the schema will be dropped only if it
is empty.

DROP SEQUENCE
When a sequence is dropped and CASCADE is in effect, all the objects (i.e. domains,
functions, procedures, table columns, triggers and views) referencing the sequence are
also dropped.

DROP SHADOW
DROP SHADOW deletes the named shadow from the data dictionary.
An attempt is made to delete the physical shadow file in the same way as for dropping a
databank. If the shadow or the master databank is OFFLINE however, no attempt is made
to delete the physical shadow file.

DROP STATEMENT
A statement may not be dropped when it is in use.

Mimer SQL Version 11.0 329
SQL Reference Manual

DROP SYNONYM
There are no cascade effects when a synonym is dropped because it is resolved to the
associated table or view when an SQL statement containing the synonym is executed.
Thus, it is a table or view reference that is actually stored in the database, not the synonym
reference. Once dropped, of course, the synonym can no longer be used in new SQL
statements.

DROP TABLE
When a table is dropped, all views based on that table and all triggers created on it are
also dropped.
When a table referenced from within a routine, trigger or statement is dropped with the
CASCADE option in effect, the routine, trigger or statement will also be dropped, see also
the notes above for Function, Module, Procedure and Trigger for full cascade
implications.
If a table used as a REFERENCES table in a FOREIGN KEY clause is dropped, the
referential integrity constraint is lost from the table with the foreign key clause.
All cursors defined for a table must be closed before the table can be dropped.

DROP TRIGGER
If a trigger has been created on a non-updatable view, the creator of the trigger implicitly
gets the appropriate privilege for the trigger event on that view, with WITH GRANT
OPTION.
The creator of the trigger may then have granted the privilege to other idents or may have
used the privilege to perform updates on the view in one or more routines subsequently
created.
If the trigger is then dropped, with the CASCADE option in effect, any routines using the
privilege to update the view will be dropped and the privilege will be revoked from any
idents to whom the trigger creator granted it.

DROP VIEW
When a view is dropped, all other views based on that view and all triggers created on it
are also dropped.
When a view referenced from within a routine, trigger or statement is dropped with the
CASCADE option in effect, the routine, trigger or statement will also be dropped, see also
the notes above for Function, Procedure and Module for full cascade implications.

Example
DROP IDENT joe CASCADE;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

330 Chapter 12 SQL Statements
DROP

SQL-2016 Features
outside core

Feature F032, “CASCADE drop behavior” support for
the cascade option.
Feature F251, “Domain support” support for drop
domain statement.
Feature F690, “Collation support” support for drop
collation statement.
Feature T211, “Basic trigger capability” support for
drop trigger statement.

Mimer SQL
extension

DROP DATABANK, DROP IDENT, DROP INDEX,
DROP STATEMENT, DROP SHADOW and DROP
SYNONYM are Mimer SQL extensions.
Optional CASCADE or RESTRICT is a Mimer SQL
extension.

Standard Compliance Comments

Mimer SQL Version 11.0 331
SQL Reference Manual

ENTER
Connects a PROGRAM ident to the system.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The specified ident becomes the current ident, provided that the password is correct.
The ident and the password can be specified either as a host variable or as a literal.
A PROGRAM ident is set up to have certain privileges and access to the database which
apply after the ENTER statement has been used and replace those that apply to the ident
executing the ENTER statement.

Restrictions
The ENTER statement may only be issued for idents of type PROGRAM.
ENTER may not be used to log on to the system.
To perform an ENTER operation for a PROGRAM ident, the current ident must have
EXECUTE privilege on that ident.
The ENTER statement may not be issued inside a transaction.

Notes
When the ENTER operation is successfully performed, the privileges granted to the new
current ident apply and those granted to the previous current ident are suspended until the
PROGRAM ident is left, see LEAVE (PROGRAM ident) on page 375.

Example
ENTER 'TSTPRG' USING 'secret';

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

Support for the ENTER statement is a Mimer SQL
extension.

332 Chapter 12 SQL Statements
EXECUTE

EXECUTE
Associates parameter values with a previously prepared SQL statement and executes the
statement.

Usage
Embedded, Module.

Description
The prepared statement identified by the statement name is executed.
If the source form of the prepared statement contains parameter markers, the EXECUTE
statement must be used with the USING clause to correctly associate the statement
parameters with the allocated SQL descriptor area or an appropriate number of host
variables.
Use INTO for a singleton SELECT statement where the result set consists of only one row.
For example: SELECT COUNT(*)
The DESCRIBE INPUT statement can be used to determine the PARAMETER_MODE of
each of the parameters in the prepared statement.
If parameter markers are present, the USING clause must be used to specify an SQL
descriptor area or a list of host variables for these parameters. There must be one variable
in the host variables list or ‘referenced’ in the SQL descriptor area for each parameter in
the prepared statement. The variables are associated with the parameter markers in a left
to right manner as they appear in the prepared statement.
The data types of the variables must be compatible with their usage in the source
statement.
The descriptor-name is identified by a host variable or a literal.
See ALLOCATE CURSOR on page 196 for a description of extended statements.
For a fuller discussion of the use of EXECUTE statements in dynamic application
programs, see the Mimer SQL Programmer’s Manual, Chapter 4, Dynamic SQL.

Mimer SQL Version 11.0 333
SQL Reference Manual

Restrictions
The EXECUTE statement may only be used for dynamically prepared statements.
Dynamically prepared SELECT statements and calls to result set procedures may not be
executed. These should be performed using a sequence of OPEN, FETCH and CLOSE
statements, i.e. using a cursor.
Note: You can use singleton SELECT statements or calls to result set procedures if the

result set will contain only one row.
See the Mimer SQL Programmer’s Manual, Chapter 4, Communicating with the
Application Program for information on the format of the host variable.

Example
exec sql PREPARE 'stmt 1' FROM :sqlstr;
exec sql ALLOCATE DESCRIPTOR 'DescrIn';
exec sql DESCRIBE INPUT 'stmt 1' USING SQL DESCRIPTOR 'DescrIn';
...
exec sql EXECUTE 'stmt 1' USING SQL DESCRIPTOR 'DescrIn';

For more information, see the Mimer SQL Programmer’s Manual, Chapter 4, Executable
Statements.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature B031, “Basic dynamic SQL”.

334 Chapter 12 SQL Statements
EXECUTE IMMEDIATE

EXECUTE IMMEDIATE
Prepares and executes a dynamically submitted SQL statement.

Usage
Embedded, Module.

Description
The SQL source statement contained in the host variable is prepared and executed.
For a fuller discussion of the use of EXECUTE statements in dynamic application
programs, see the Mimer SQL Programmer’s Manual, Chapter 4, Dynamic SQL.

Restrictions
The EXECUTE IMMEDIATE statement may only be used for dynamically submitted
statements with no parameter markers.
Dynamically submitted SELECT statements may not be executed with EXECUTE
IMMEDIATE, these should be performed using a sequence of OPEN, FETCH and CLOSE
statements.
Note: You can use singleton SELECT statements, or calls to result set procedures if

the result set will contain only one row.

Example
strcpy(sqlstr,"DELETE FROM sometable WHERE id IS NULL");
exec sql EXECUTE IMMEDIATE :sqlstr;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 4, Executable
Statements.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature B031, “Basic dynamic SQL”.

Mimer SQL Version 11.0 335
SQL Reference Manual

EXECUTE STATEMENT
Executes a precompiled statement.

Usage
Embedded, Interactive, Module, ODBC, JDBC

Description
The precompiled statement specified is executed. That is, the precompiled statement
identified by statement-name is executed.
In dynamic SQL the application can inquire about the type of statement and information
about input and output host variables. I.e. the precompiled statement is handled like any
other statement where the actual content of the SQL statement is not known.
A precompiled statement belongs to a schema.

Restrictions
The ident executing the EXECUTE STATEMENT command must have execute privilege on
the precompiled statement.

Examples

Interactive
EXECUTE STATEMENT user2.seltaba;

updtaba;

Embedded SQL
exec sql EXECUTE STATEMENT user2.seltaba;

exec sql updtaba;

ODBC
SQLPrepare(hStmt, "EXECUTE STATEMENT user2.seltaba", SQL_NTS);
…

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The EXECUTE STATEMENT command is a Mimer
SQL extension.

336 Chapter 12 SQL Statements
EXPLAIN

EXPLAIN
Returns explain information for a statement.

Usage
Embedded, Interactive, ODBC, JDBC

Description
Explain information for a SELECT, UPDATE, INSERT or DELETE statement is returned as
a result set.
The actual SELECT, UPDATE, INSERT or DELETE statement is not executed.
The EXPLAIN output is typically used to help in the process of constructing efficient
queries.

Notes
Mimer SQL generates XML-based explain data. The EXPLAIN command can be used to
read this data. Other ways are DbVisualizer Pro which has a graphical explain, and
BSQL’s explain that returns the raw XML-based output. See Mimer SQL User’s Manual,
Appendix A, Mimer SQL Explain for more information about these alternatives, and how
to read and interpret the explain data.

Mimer SQL Version 11.0 337
SQL Reference Manual

Example
SQL>explain
SQL&select cou.country, cur.currency from currencies cur, countries cou
SQL&where cou.country in ('Belgium', 'Norway')
SQL&and cou.currency_code = cur.code;
 ID PARENT OPERATION
OPERATIONTYPE SCANORDER ACC_COST
 HITS VISITS
TABLE
ALIAS
INDEX
INDEXONLY
==
 1 0 select
- - 6
 2 6
-

-

-

-
===
 2 1 inner join
- - 6
 2 6
-

-

-

-
===
 3 2 index scan, table lookup
leading keys 1 4
 2 4
countries

cou

cnt_country_exists

FALSE
===
 4 2 table lookup
unique 2 1
 1 1
currencies

cur

SQL_PRIMARY_KEY_0000023475

-
===

 4 rows found

The above output tells it’s a SELECT statement. SCANORDER 1 shows that the countries
table is read first. The unique key cnt_country_exists index is used to scan the table. We
have a condition on the first column in the index (cou.country = 'Belgium'), which
is why the scan is leading keys.
The index cnt_country_exists has both the country column and the primary key code
column. The VISITS count is 4 because two rows are read in the index, and two rows
from the base table. This will result in a HITS count of 2 rows.
The join node contains the cost of processing the two tables.
When there are no temporary tables involved the cost is equal to the total number of visits.

338 Chapter 12 SQL Statements
EXPLAIN

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The EXPLAIN command is a Mimer SQL extension.

Mimer SQL Version 11.0 339
SQL Reference Manual

FETCH
Positions a cursor on a specified row in the result set addressed by the cursor, and assigns
values from the row to host variables.

Usage
Embedded, Procedural.

Description
The named cursor is positioned on the specified row in the result set defined by the cursor
declaration. This row becomes the current row for the cursor.
There are two imaginary row positions for a cursor: ‘one row prior to FIRST and ‘one row
after LAST’. The cursor will be positioned on these rows if any of the orientation
specifications cause the cursor position to move before the FIRST row or after the LAST
row of the result set respectively. Once the cursor position reaches one of the imaginary
rows it will not advance any further in that direction.
The descriptor-name is identified by a host variable or a literal.
See ALLOCATE CURSOR on page 196 for a description of extended cursors.
When using a scrollable cursor, the position of the cursor can be specified with an
orientation specification.
The orientation can be specified in one of the following ways:
NEXT – Position the cursor on the row next to the current row
PRIOR – Position the cursor on the row prior to the current row
FIRST – Position the cursor on the first row in the result set
LAST – Position the cursor on the last row in the result set

340 Chapter 12 SQL Statements
FETCH

ABSOLUTE – Position the cursor on the row with a specified absolute row number in the
result set. Row zero does not exist and will return NOT FOUND. Negative numbers count
from the end of the result set (i.e. -1 = LAST.)
RELATIVE – Position the cursor on the row specified with a row number relative to the
current row in the result set. Zero is the current row, positive numbers count toward the
end of the result set and negative numbers toward the beginning.
Values from the current row are assigned to target variables as listed in the INTO clause
or specified in the named SQL descriptor area. The form FETCH… USING SQL
DESCRIPTOR is used when an appropriate SQL descriptor area has been established. See
the Mimer SQL Programmer’s Manual, Chapter 4, SQL Descriptor Area, for a
discussion of the use of SQL descriptor areas.
The columns retrieved from the database are defined by the SELECT clause in the cursor
declaration. The value from the first column in the SELECT clause is assigned to the first
variable, that from the second column to the second variable, and so on. The data type of
each variable must be assignment-compatible with the value in the corresponding
column.
The number of columns in a row must be the same as the number of variables specified
in the INTO clause.
If there is no next row in the set of rows, the cursor is placed ‘after the last row’, no new
values are assigned to the variables and a NOT FOUND condition code is returned, see
Appendix E Return Status and Conditions.

Language Elements
target-variable, see Target Variables on page 43.

Restrictions
SELECT access to the table or view addressed by the table reference is checked when the
cursor used for the FETCH statement is opened. Access to the base table is not required
for a FETCH operation on a view.
The cursor cannot be identified by specifying extended-cursor-name in a procedural
usage context. The INTO SQL DESCRIPTOR clause cannot be used in a procedural usage
context.

Notes
If the cursor is not declared as scrollable, the FETCH operation always positions the cursor
at the next row in the result set. For such a cursor, orientation specification is not allowed
(except for NEXT).
If the orientation specification is omitted for a scrollable cursor, NEXT is implicit.
If the cursor that is used by the FETCH statement is not declared with an ORDER BY clause,
the sort order for the result set is undefined, even if the cursor is defined as scrollable. This
means that the sort order may change if new indexes are created, if indexes are dropped,
if new statistics are gathered, or if a new version of the SQL optimizer is installed. To
assure a specific sort order, ORDER BY must be used.
If a data conversion error occurs in assigning a value to a variable, an error code is
returned and the execution of the FETCH statement is terminated. All variables
successfully assigned before the error occurred retain their assigned values.

Mimer SQL Version 11.0 341
SQL Reference Manual

Examples

Embedded SQL example:
exec sql FETCH 'Cursor1' INTO SQL DESCRIPTOR 'DescrOut';
if (strcmp(SQLSTATE,"00000") == 0) {
 exec sql GET DESCRIPTOR 'DescrOut' VALUE 1 :ival = DATA;
 …

PSM example:
…
FETCH c_2
 INTO Data;
RETURN (Data.Title, Data.Artist, Data.Format, Data.Price,
 Data.Item_ID, Data.Artist_ID, '***');
…

For more information on how you can use the FETCH statement, see the Mimer SQL
Programmer’s Manual, Chapter 11, Mimer SQL Stored Procedures.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F431, “Read-only scrollable cursors”.

342 Chapter 12 SQL Statements
FETCH

FOR
Execute statements for each row of a result set.

Usage
Procedural.

Description
The result set defined by the query expression is iterated and for each row found the list
of procedural-sql-statements in the for body is executed. All columns of the result set are
available as variables within the for body. This means that all items in the select list must
have a unique name. If a for-name is given, this can be used to qualify variable
references within the for body.
The query expression can be a call to a result set procedure in which case the names in
result-set-clause is used as variable names.
For a list of procedural-sql-statements, see Procedural SQL Statements on
page 193.

Restrictions
If labels are specified at both the beginning and the end of the FOR statement, they must
be the same.
If a label is specified at the end it must also be specified at the beginning.
The for-name may not be the same as the name of a label for any compound statement
within the scope of the for statement.
The body of a FOR statement is atomic which means that it cannot contain a COMMIT,
ROLLBACK, or START statement.

Notes
A FOR statement may be terminated by a LEAVE statement using label.

Examples
FOR SELECT code, country, currency_code FROM countries DO
 RETURN (code, country, currency_code);
END FOR;

Mimer SQL Version 11.0 343
SQL Reference Manual

FOR st AS CALL mimer_store_web.view_basket(session_number) DO
 IF st.title = 'American splendour' THEN
 ...
 ELSE
 ...
 END IF;
END FOR;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11, Iterating
through a result set - FOR loop.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

Mimer SQL
extension

The support for CALL is a Mimer SQL extension.

344 Chapter 12 SQL Statements
GET DESCRIPTOR

GET DESCRIPTOR
Gets values from an SQL descriptor area.

where item-information is:

Mimer SQL Version 11.0 345
SQL Reference Manual

Usage
Embedded, Module.

Description
Values are retrieved from the specified SQL descriptor area. The GET DESCRIPTOR
statement can be used in two forms:
• To determine the number of active item descriptor areas for the specified SQL

descriptor, the form …host-variable = COUNT is used. TOP_LEVEL_COUNT is
used to determine the top level columns (or parameters).

• The VALUE form is used to retrieve SQL descriptor field values from the item
descriptor area specified by item-number.

When using GET DESCRIPTOR with DESCRIBE OUTPUT, if COUNT > 0, the output is a
result set and a cursor should be used to retrieve data.
The descriptor-name is identified by a host variable or a literal.

Item Descriptor Area
An item descriptor area contains the following fields:

Field name Description

CHARACTER_SET_CATALOG catalog name for the character set which the
described item is using.

CHARACTER_SET_SCHEMA A character string containing the schema name
for the character set which the described item
is using.

CHARACTER_SET_NAME A character string containing the name of the
character set which the described item is using.

COLLATION_CATALOG A character string containing the catalog name
for the collation which the described item is
using.

COLLATION_SCHEMA A character string containing the schema name
for the collation which the described item is
using.

COLLATION_NAME A character string containing the name of the
collation which the described item is using.

DATA If the INDICATOR field does not indicate a null
value, this field contains an input (OPEN or
EXECUTE) or output (FETCH or EXECUTE)
value with the data type specified by the TYPE
field, and with the attributes specified by the
applicable fields in the item descriptor area.

346 Chapter 12 SQL Statements
GET DESCRIPTOR

DATETIME_INTERVAL_CODE If the TYPE field contains 9 or 10 (i.e. for
DATETIME and INTERVAL data types), this
column will contain an exact numeric value
with scale 0 which specifies the DATETIME or
INTERVAL subtype.
See below for descriptions of the codes that
apply to these two data types.

DATETIME_INTERVAL_PRECISION An exact numeric value with scale 0, which
specifies the leading field precision for the
INTERVAL data type (i.e. when the TYPE value
is 10).

INDICATOR An exact numeric value with scale 0, used as a
null indicator for input (OPEN or EXECUTE) or
output (FETCH or EXECUTE with an INTO
clause) values.
INDICATOR=-1 indicates a null value, and
INDICATOR=0 indicates a non-null value.
If INDICATOR is > 0 after a FETCH
operation or an EXECUTE operation with INTO
clause, it indicates that a truncation occurred
and the value of INDICATOR is the required
length.

LENGTH An exact numeric value with scale 0,
containing the string length of a character or
binary string data type.
Terminating null bytes are excluded.

LEVEL An exact numeric value with scale 0, which
identifies the item descriptor area’s level.
Level 0 is the top level.

NAME A character string containing the column
name, returned by DESCRIBE OUTPUT.
After DESCRIBE INPUT this field contains a
question mark (?).

NULLABLE An exact numeric value with scale 0,
indicating whether a resulting column can
contain null or not.
NULLABLE=1 indicates that null is allowed.
NULLABLE=0 indicates that null is not
allowed.

OCTET_LENGTH An exact numeric value with scale 0,
containing the number of octets of a character
or binary string data type.
Terminating null bytes are excluded.

Field name Description

Mimer SQL Version 11.0 347
SQL Reference Manual

PARAMETER_MODE An exact numeric value with scale 0, which
specifies the MODE of a routine parameter.
See below for a description of the code values
for this field.

PARAMETER_ORDINAL_POSITION An exact numeric value with scale 0,
indicating the ordinal position of the parameter
in the parameter list of the routine definition.

PARAMETER_SPECIFIC_CATALOG A character string representing the catalog
name for the invoked procedure, if the
prepared statement is a call statement.

PARAMETER_SPECIFIC_SCHEMA A character string representing the schema
name for the invoked procedure, if the
prepared statement is a call statement.

PARAMETER_SPECIFIC_NAME A character string representing the name of the
invoked procedure, if the prepared statement is
a call statement.

PRECISION An exact numeric value with scale 0,
specifying the precision for a numeric data
type value.
For the data types:
INTERVAL DAY TO SECOND
INTERVAL HOUR TO SECOND
INTERVAL MINUTE TO SECOND
INTERVAL SECOND

TIME and TIMESTAMP, the value in this field
describes the precision of the fractional
SECONDS component.

RETURNED_LENGTH An exact numeric value with scale 0, set by
FETCH or EXECUTE with an INTO clause,
which returns the actual length of a VARCHAR
or VARBINARY output value.

RETURNED_OCTET_LENGTH An exact numeric value with scale 0, set by
FETCH or EXECUTE with an INTO clause,
which returns the actual number of octets of a
VARCHAR or VARBINARY output value.

SCALE An exact numeric value with scale 0,
specifying the scale for a numeric data type
value.

TYPE An exact numeric value with scale 0,
containing a coded representation of the data
type.
See below for a description of the codes.

Field name Description

348 Chapter 12 SQL Statements
GET DESCRIPTOR

TYPE Fields in the Item Descriptor Area
The TYPE field in the item descriptor area can contain one of the following values:

UNNAMED An exact numeric value with scale 0,
indicating whether NAME contains an actual
column or parameter name, or not.
UNNAMED=0 indicates that NAME contains an
actual name.
UNNAMED=1 means that NAME does not contain
an actual name.

Field name Description

Code SQL data type

1 CHARACTER

2 NUMERIC

3 DECIMAL

4 INTEGER

5 SMALLINT

6 FLOAT

7 REAL

8 DOUBLE PRECISION

9 DATETIME

10 INTERVAL

12 VARCHAR

16 BOOLEAN

25 BIGINT

30 BLOB

40 CLOB

60 BINARYa

a.Null padding is applied to the fixed size BINARY data type.

61 BINARY VARYING

-8 NCHAR

-9 NCHAR VARYING

-11 INTEGER(p)b

b.INTEGER(p) is a Mimer SQL specific data type used for integer data with a
specified precision.

-40 NCLOB

Mimer SQL Version 11.0 349
SQL Reference Manual

DATETIME Data Types in the Item Descriptor Area
For DATETIME data types, the DATETIME_INTERVAL_CODE field in the item descriptor
area can contain one of the following values:

INTERVAL Data Types in the Item Descriptor Area
For INTERVAL data types, the DATETIME_INTERVAL_CODE field in the item descriptor
area can contain one of the following values:

Parameters in the Item Descriptor Area
For routine parameters, the PARAMETER_MODE field in the item descriptor area can
contain one of the following values:

Code DATETIME subtype

1 DATE

2 TIME

3 TIMESTAMP

Code INTERVAL subtype

1 YEAR

2 MONTH

3 DAY

4 HOUR

5 MINUTE

6 SECOND

7 YEAR TO MONTH

8 DAY TO HOUR

9 DAY TO MINUTE

10 DAY TO SECOND

11 HOUR TO MINUTE

12 HOUR TO SECOND

13 MINUTE TO SECOND

Code PARAMETER_MODE

1 PARAMETER_MODE_IN

2 PARAMETER_MODE_INOUT

4 PARAMETER_MODE_OUT

350 Chapter 12 SQL Statements
GET DESCRIPTOR

Notes
The value of the DATA field is undefined if the INDICATOR field indicates the null value.
The data type of the host variables must be compatible with the data type of the associated
field name.

Examples
exec sql GET DESCRIPTOR 'SQLA' :cnt = COUNT;

exec sql GET DESCRIPTOR 'SQLA' VALUE 1 :hostvar1 = DATA;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 4, SQL
Descriptor Area.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature B031, “Basic dynamic SQL”.
Feature B032, “Extended dynamic SQL” support of
dynamic descriptor names.

Mimer SQL Version 11.0 351
SQL Reference Manual

GET DIAGNOSTICS
Gets statement or condition information from the diagnostics area.

where statement-information is:

352 Chapter 12 SQL Statements
GET DIAGNOSTICS

and condition-info is:

Usage
Embedded, Procedural.

Description
Selected status information from the diagnostics area is retrieved. The diagnostics area
holds information about the most recently executed SQL statement. There is only one
diagnostics area for each application, independent of the number of connections that the
application holds. Observe that the GET DIAGNOSTICS statement itself does not change
the diagnostics area, apart from setting SQLSTATE.
The GET DIAGNOSTICS statement can be in two forms: the first form retrieves statement
information about the most recent SQL statement executed. The second form of GET
DIAGNOSTICS is the CONDITION form, which retrieves condition information for the
most recently executed SQL statement. The ordinal number of the condition to be
returned is specified immediately following the keyword CONDITION.

Mimer SQL Version 11.0 353
SQL Reference Manual

statement-information Information Items
The information items for statement-information are described in the following
table:

condition-info Information Items
The information items for condition-info are described in the following table:

Information item Data type Description

COMMAND_FUNCTION NCHAR
VARYING(128)

A string identifying the preceding
embedded SQL statement executed.

DYNAMIC_FUNCTION NCHAR
VARYING(128)

A string identifying the preceding
prepared SQL statement executed.

MORE CHAR(1) Indicates if there are any conditions for
which no condition information has
been stored.
N if all detected conditions are stored in
the diagnostics area, otherwise Y.

NUMBER INTEGER The number of condition messages
stored for the most recently executed
SQL statement.

ROW_COUNT INTEGER The number of rows inserted, updated
or deleted if the last statement was
INSERT, searched UPDATE or searched
DELETE.

TRANSACTION_ACTIVE INTEGER Indicates if a transaction is active or
not.
0 = transaction not active
1 = transaction is active.

Information item Data type Description

CATALOG_NAME NCHAR
VARYING(128)

The catalog name of the schema
containing the table on which the
violated constraint is defined,
always an empty string ("").

CLASS_ORIGIN NCHAR
VARYING(128)

The defining source of the two
first characters (the class portion)
of the SQLSTATE value.

COLUMN_NAME NCHAR
VARYING(128)

The name of the table column on
which the violated constraint is
defined. If the constraint involves
more than one column or the data
change operation causing the
condition is not in the table on
which the constraint is defined,
this will be an empty string ("").

354 Chapter 12 SQL Statements
GET DIAGNOSTICS

CONDITION_IDENTIFIER NCHAR
VARYING(128)

The value specified for
condition-name in the
DECLARE CONDITION
statement declaring the condition
as a named condition. This will be
the empty string ("") if the
condition has not been declared as
a named condition.

CONDITION_NUMBER INTEGER The ordinal number of the
condition on the diagnostics
condition stack.

CONNECTION_NAME NCHAR
VARYING(128)

The connection name specified in
a CONNECT, DISCONNECT or SET
CONNECTION statement. The
name of the current connection for
all other statements.

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The catalog name of the schema
containing the violated constraint,
always an empty string ("").

CONSTRAINT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the violated constraint.

CONSTRAINT_NAME NCHAR
VARYING(128)

The name of the violated
constraint.

CURSOR_NAME NCHAR
VARYING(128)

The name of the cursor which is in
an invalid state, when the
condition: 24000 - 'Invalid
Cursor State' is raised.

ERROR_LENGTH INTEGER The length in characters of the
relevant part the SQL statement,
starting at ERROR_POSITION.

ERROR_POSITION INTEGER The position in the SQL statement
where the specified condition
occurred.
Value < 1 means unknown
position.

MESSAGE_LENGTH INTEGER The length of the message text for
the specified condition.

MESSAGE_OCTET_LENGTH INTEGER Currently the same as
MESSAGE_LENGTH.

MESSAGE_TEXT NCHAR
VARYING(254)

The descriptive message text for
the specified condition.

Information item Data type Description

Mimer SQL Version 11.0 355
SQL Reference Manual

NATIVE_ERROR INTEGER The internal Mimer SQL return
code relating to the condition. See
the Mimer SQL Programmer’s
Manual, Appendix B, Return
Codes.

PARAMETER_NAME NCHAR
VARYING(128)

The name of the routine parameter
causing the condition.

RETURNED_SQLSTATE CHAR(5) Value of SQLSTATE for the
specified condition.

ROUTINE_CATALOG NCHAR
VARYING(128)

The catalog name of the schema
containing the function or
procedure in which the condition
was raised, always an empty string
("").

ROUTINE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the function or
procedure in which the condition
was raised.

ROUTINE_NAME NCHAR
VARYING(128)

The name of the function or
procedure in which the condition
was raised.

SCHEMA_NAME NCHAR
VARYING(128)

The name of the schema
containing the table on which the
violated constraint is defined. If
the data change operation causing
the condition is not in the table on
which the constraint is defined,
this will be an empty string ("").

SERVER_NAME NCHAR
VARYING(128)

The database name specified in a
CONNECT, DISCONNECT or SET
CONNECTION statement. The
current database name for all other
statements.

SPECIFIC_NAME NCHAR
VARYING(128)

Specific name of the procedure or
function in which the condition
was raised.

SUBCLASS_ORIGIN NCHAR
VARYING(128)

The defining source of the three
last characters (the subclass
portion) of the SQLSTATE value.

Information item Data type Description

356 Chapter 12 SQL Statements
GET DIAGNOSTICS

Values for COMMAND_FUNCTION and DYNAMIC_FUNCTION
The COMMAND_FUNCTION and DYNAMIC_FUNCTION information items can contain any
of the following values:

TABLE_NAME NCHAR
VARYING(128)

The name of the table on which the
violated constraint is defined. If
the data change operation causing
the condition is not in the table on
which the constraint is defined,
this will be an empty string ("").

TRIGGER_CATALOG NCHAR
VARYING(128)

The catalog name of the schema
containing the table supporting the
trigger in which the condition was
raised, always an empty string
("").

TRIGGER_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table supporting the
trigger in which the condition was
raised.

TRIGGER_NAME NCHAR
VARYING(128)

The name of the trigger in which
the condition was raised.

Information item Data type Description

ALLOCATE CURSOR DROP STATEMENT

ALLOCATE DESCRIPTOR DROP SYNONYM

ALTER DATABANK DROP TABLE

ALTER DATABANK RESTORE DROP TRIGGER

ALTER IDENT DROP TYPE

ALTER SHADOW DROP VIEW

ALTER STATEMENT DYNAMIC CLOSE

ALTER TABLE DYNAMIC DELETE CURSOR

ALTER TYPE DYNAMIC FETCH

ASSIGNMENT DYNAMIC OPEN

CALL DYNAMIC UPDATE CURSOR

CLOSE CURSOR ENTER

COMMENT EXECUTE

COMMIT WORK EXECUTE IMMEDIATE

CONNECT FETCH

CREATE BACKUP GET DESCRIPTOR

CREATE COLLATION GET DIAGNOSTICS

Mimer SQL Version 11.0 357
SQL Reference Manual

CREATE DATABANK GRANT

CREATE DOMAIN GRANT OBJECT PRIVILEGE

CREATE FUNCTION GRANT SYSTEM PRIVILEGE

CREATE IDENT INSERT

CREATE INDEX LEAVE

CREATE METHOD LEAVE RETAIN

CREATE MODULE OPEN

CREATE PROCEDURE PREPARE

CREATE SCHEMA REVOKE

CREATE SEQUENCE REVOKE OBJECT PRIVILEGE

CREATE SHADOW REVOKE SYSTEM PRIVILEGE

CREATE STATEMENT ROLLBACK WORK

CREATE SYNONYM SELECT

CREATE TABLE SET CONNECTION

CREATE TRIGGER SET DATABANK

CREATE TYPE SET DATABASE

CREATE VIEW SET DESCRIPTOR

DEALLOCATE DESCRIPTOR SET SESSION DIAGNOSTIC SIZE

DEALLOCATE PREPARE SET SESSION ISOLATION LEVEL

DELETE CURSOR SET SESSION READ ONLY

DELETE WHERE SET SESSION READ WRITE

DESCRIBE SET SESSION START EXPLICIT

DISCONNECT SET SESSION START IMPLICIT

DROP COLLATION SET SHADOW

DROP DATABANK SET TRANSACTION DIAGNOSTIC SIZE

DROP DOMAIN SET TRANSACTION ISOLATION LEVEL

DROP FUNCTION SET TRANSACTION READ ONLY

DROP IDENT SET TRANSACTION READ WRITE

DROP INDEX SET TRANSACTION START EXPLICIT

DROP METHOD SET TRANSACTION START IMPLICIT

DROP MODULE START TRANSACTION

DROP PROCEDURE UPDATE CURSOR

DROP SCHEMA UPDATE STATISTICS

358 Chapter 12 SQL Statements
GET DIAGNOSTICS

Language Elements
target-variable, see Target Variables on page 43.

Notes
The condition requested by the GET DIAGNOSTICS CONDITION form must be one of
the conditions that exist in the diagnostics area, i.e. the condition number must be in the
range from 1 up to the value of NUMBER.

Example
…
exec sql GET DIAGNOSTICS :cnt = NUMBER;
for (int i = 1; i <= cnt; i++) {
 exec sql GET DIAGNOSTICS CONDITION :i
 :sqlstatestr = RETURNED_SQLSTATE,
 :errmsgstr = MESSAGE_TEXT,
 :errmsglen = MESSAGE_LENGTH;
 …
}
…

Standard Compliance

DROP SEQUENCE UPDATE WHERE

DROP SHADOW

Standard Compliance Comments

SQL-2016 Features
outside core

Feature F121, “Basic diagnostics management”.

Mimer SQL
extension

The support for NATIVE_ERROR,
ERROR_LENGTH and ERROR_POSITION is a
Mimer SQL extension.

Mimer SQL Version 11.0 359
SQL Reference Manual

GRANT ACCESS PRIVILEGE
Grants one or more access privileges on a table or view.

where access is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The specified access privileges are granted to the ident(s) listed. When WITH GRANT
OPTION is specified, the ident may in turn grant the specified access privileges to another
ident. If the privileges are granted to a GROUP ident, all members of the group receive the
privileges.

Access Privileges
The access privileges are as follows:
• DELETE

allows the ident to delete rows from the table or view identified by table-name. If
a selective delete is specified, involving a WHERE clause, appropriate privileges must
also to held to permit execution of the search-condition, otherwise the delete
operation will fail.

• INSERT

allows the ident to insert new rows into the table or view identified by table-name.
If a column-name list is supplied, the access is restricted to the specified columns,
otherwise the access applies to the entire table (including any new columns
subsequently added).

360 Chapter 12 SQL Statements
GRANT ACCESS PRIVILEGE

• REFERENCES

allows the ident to use the table identified by table-name in the FOREIGN KEY
clause of a CREATE TABLE statement. REFERENCES access may only be granted on
a base table, not on a view. If a column-name list is supplied, the access is restricted
to the specified columns, otherwise the access applies to the entire table (including
any new columns subsequently added).

• SELECT

Allows the ident to select rows from the table or view identified by table-name.
• UPDATE

Allows the ident to update the table or view identified by table-name. If a
column-name list is supplied, the access is restricted to the specified columns,
otherwise the access applies to the entire table (including any new columns
subsequently added). If a selective update is specified, involving a WHERE clause,
appropriate privileges must also to held to permit execution of the search-condition,
otherwise the update operation will fail.

Access privileges may be granted in any combination. Specification of the keyword ALL
(followed by the optional keyword PRIVILEGES) instead of an explicit list of access
privileges results in all applicable privileges being granted to the specified ident(s) (i.e.
all privileges which the grantor is authorized to grant).

Restrictions
The grantor must have grant option on the access privilege.

Notes
If the grantor loses WITH GRANT OPTION, any access privileges he has granted using it
are automatically revoked.
An ident may not grant access privileges to himself.

Example
The following example is taken from the Mimer SQL User’s Manual, Chapter 8,
Granting Access Privileges.

GRANT SELECT, UPDATE(exchange_rate) ON currencies TO mimer_admin_group;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F731, “INSERT column privileges” support
for granting insert on individual columns.

Mimer SQL
extension

The keyword PRIVILEGES is optional and not
mandatory in Mimer SQL.

Mimer SQL Version 11.0 361
SQL Reference Manual

GRANT OBJECT PRIVILEGE
Grants object privileges to one or more idents.

where routine-specification is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

362 Chapter 12 SQL Statements
GRANT OBJECT PRIVILEGE

Description
The specified object privilege is granted to the ident(s) listed. When WITH GRANT
OPTION is specified, the ident may in turn grant the specified privilege to another ident.
If the privilege is granted to a GROUP ident, all members of the group receive the specified
privilege.

Object Privileges
The object privileges are as follows:
• EXECUTE

Allows the ident to invoke the specified function, procedure or precompiled
statement, or to enter the specified PROGRAM ident.

• MEMBER

Specifies that the ident is a member of the stated group. All privileges granted to the
group are held by all members of the group.

• SEQUENCE

Allows the ident to create new sequences in the specified databank.
• TABLE

Allows the ident to create new tables in the specified databank.
• USAGE

Grant usage on a domain or user defined type allows the ident(s) to use the domain
or the user defined type where a data type would normally be specified. This
includes, amongst others, table definitions, routine definitions and cast expression.
When a grant usage on type statement is executed, this will also incur that the
ident(s) will receive execute on all functions, on which the grantor has execute
privilege with grant option, that were created implicitly when the user defined type
was created.
Grant usage on a sequence allows the ident(s) to use the specified sequence in the
next value for and current value for expressions.

Restrictions
The grantor must have grant option on the privilege.

Notes
If the grantor loses his grant option, any privileges he has granted using the option are
automatically revoked.
An ident may not grant privileges to himself.

Example
GRANT EXECUTE ON FUNCTION capitalize TO mimer_admin_group;

Mimer SQL Version 11.0 363
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F251, “Domain support” support for grant
usage on domain.
Feature F690, “Collation support” support for grant
usage on collation.

Mimer SQL
extension

Support for use of MEMBER, EXECUTE (on
STATEMENT and PROGRAM), SEQUENCE and
TABLE are Mimer SQL extensions.

364 Chapter 12 SQL Statements
GRANT SYSTEM PRIVILEGE

GRANT SYSTEM PRIVILEGE
Grants system privileges to one or more idents.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The specified system privilege is granted to the ident(s) listed. When WITH GRANT
OPTION is specified, the ident may in turn grant the specified privilege to another ident.
If the privilege is granted to a GROUP ident, all members of the group receive the specified
privilege.

System Privileges
The system privileges are as follows:
• BACKUP

Enables the ident to perform databank backup and restore operations.
• DATABANK

Enables the ident to create new databanks. The databank file is created by the Mimer
SQL system. The privilege authorizes the ident to create files, using the file access
used by the database server process, in the operating system.

• IDENT

Enables the ident to create new Mimer SQL idents and schemas.
• SCHEMA

Enables the ident to create new schemas.
• SHADOW

Enables the ident to create and perform operations on databank shadows.
• STATISTICS

Enables the ident to execute the UPDATE STATISTICS and DELETE STATISTICS
statements.

Mimer SQL Version 11.0 365
SQL Reference Manual

Restrictions
The grantor must have grant option on the privilege.

Notes
An ident may not grant privileges to himself.

Example
GRANT IDENT TO mimer_adm WITH GRANT OPTION;

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The grant system privileges is a Mimer SQL
extension.

366 Chapter 12 SQL Statements
IF

IF
Provides conditional execution based on the truth value of a conditional expression.

Usage
Procedural.

Description
The IF statement allows a sequence of procedural-sql-statements to be
conditionally executed depending on the truth value of a search-condition.
For a list of procedural-sql-statements, see Procedural SQL Statements on
page 193.
All of the predicates supported by Mimer SQL may be used in the search-condition,
see Predicates on page 153.
In a basic IF statement, the sequence of procedural-sql-statements in the THEN
clause will be executed if search-condition evaluates to true, otherwise the sequence
of procedural-sql-statements in the ELSE clause will be executed.
One or more IF statements can be nested by using the ELSEIF clause in place of an ELSE
clause containing another IF statement.

Language Elements
search-condition, see Search Conditions on page 165.

Notes
If the search-condition equals null or directly includes the null value, it evaluates to
unknown and its treated as false. If it is required that the conditional expression test for
the null value, then the correct behavior is achieved by using the IS NULL predicate, see
The NULL Predicate on page 159.

Mimer SQL Version 11.0 367
SQL Reference Manual

Example
if X > 50 then

SET X = 50;
SET Y = 1;

else
SET Y = 0;

end if;

declare bookExists boolean;

set bookExists = exists (select * from books where ...);

if bookExists then
 ...
end if;

declare bookTitle row(ISBN varchar(20), Title varchar(50));
...

if booktitle = ('0-201-43328-1','JDBC API Tutorial and Reference') then
 ...
end if;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11,
Conditional Execution Using IF.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

368 Chapter 12 SQL Statements
INSERT

INSERT
Inserts one or more rows into a table or view.

where columns-values-specification is:

Usage
Embedded, Interactive, Module, ODBC, Procedural, JDBC.

Description
One or more new rows are inserted into the table or view specified in table-name.
If a list of column names is given in columns-values-specification, only the
specified columns are assigned values in accordance with the INSERT statement.
The columns not listed are assigned their default value or the null value in accordance
with the column definition, see CREATE TABLE on page 285. If table-name specifies
a view, any columns in the base table which are excluded from the view are also assigned
their default value or the null value in the same way.
If the column name list is omitted, all columns in the table or view are implicitly specified
in the order in which they are defined in the table or view. This practice is, however, not
recommended when INSERT statements are embedded in application programs, since the
semantics of the statement will change if the table or view definition is changed.
Specification of a DEFAULT VALUES clause inserts a single row into the table with the
column default value specified for each column in the table.
Values are assigned in order from the items in the VALUES clause or the
select-specification to the columns that have been explicitly or implicitly specified. The
number of values specified must be the same as the number of columns and the data type
of each value must be assignment-compatible with the column into which it is to be
inserted.

Mimer SQL Version 11.0 369
SQL Reference Manual

Specification of a VALUES clause inserts a single row into the table or view. The keyword
NULL or DEFAULT can be specified in the VALUES clause to insert the null value or the
column default value, respectively, into the corresponding column.
Specification of a select-specification instead of a VALUES clause inserts the set of rows
resulting from the select-specification into the target table or view. If the set of rows
resulting from the select-specification is empty, a NOT FOUND condition code is returned,
see Appendix E Return Status and Conditions.

Language Elements
expression, see Chapter 9, Expressions and Predicates.
select-specification, see Chapter 11, The SELECT Expression.
with-clause, see The WITH Clause on page 179.

Restrictions
INSERT access is required on the table or view specified in the INTO clause.
If a select-specification is specified, SELECT access is required on the table(s) from which
the selection is performed.
In a procedural usage context, the INSERT statement is only permitted if the procedure
access-clause is MODIFIES SQL DATA, see CREATE PROCEDURE on page 271.

Notes
Expressions used in the VALUES clause cannot refer to column names or set functions.
If the row or rows inserted do not conform to constraints imposed on the table, no rows
are inserted. Constraints are as follows:
• Values in the primary key and unique keys of the base table may not be duplicated.

This also applies to unique secondary indexes.
• FOREIGN KEY constraints must be observed.
• CHECK constraints in table, column and domain definitions must be observed for

insertions.
• For insertion into views defined WITH CHECK OPTION, inserted values must

conform to the view definition.

Example
INSERT INTO countries (country_code, country, currency_code) VALUES

('CX', 'Christmas Island', 'AUD');

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

370 Chapter 12 SQL Statements
INSERT

SQL-2016 Features
outside core

Feature F222, “INSERT statement: Default values
clause.”
Feature F781, “Self referencing operations” the table
in the insert clause may occur in the query
specification.

Standard Compliance Comments

Mimer SQL Version 11.0 371
SQL Reference Manual

ITERATE
Continues execution at the beginning of a labeled procedural-sql-statement.

Usage
Procedural.

Description
The ITERATE statement can be used to skip the remaining statements within a labeled
procedural-sql-statement. The execution will continue at the beginning of the
labeled procedural-sql-statement. The statement must be a FOR, LOOP, REPEAT or
WHILE statement.
For a list of procedural-sql-statements, see Procedural SQL Statements on
page 193.
The label is the beginning label of a procedural-sql-statements within the scope
containing the ITERATE statement.

Restrictions
A procedural-sql-statement must have a beginning label if ITERATE is to be used.

Notes
If the ITERATE statement is contained in any compound statements which are enclosed
in the procedural-sql-statement defined by the label the following actions will
take place:
• Every open cursor declared in the compound statements is closed.
• All variables, cursors and handlers declared in the compound statements are

destroyed.
• All condition names declared in the compound statements cease to be defined.

Example
L1:
LOOP
 ...

 ITERATE L1;
 ...
END LOOP L1;

For more information, see Mimer SQL Programmer’s Manual, Chapter 11, Iteration.

372 Chapter 12 SQL Statements
ITERATE

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

Mimer SQL Version 11.0 373
SQL Reference Manual

LEAVE
Leaves a labeled procedural-sql-statement.

Usage
Procedural.

Description
The LEAVE statement can be used to terminate the execution of a procedural-sql-
statement. For a list of procedural SQL statements, see Procedural SQL Statements on
page 193.
The label is the beginning label of a procedural-sql-statement within the scope
containing the LEAVE statement.

Restrictions
A procedural-sql-statement must have a beginning label if LEAVE is to be used to
terminate its execution.

Notes
All intervening compound statements between the statement identified by the label and
the leave statement will be left. The following actions occur before execution of the
compound statements is terminated, after the LEAVE statement is executed:
• Every open cursor declared in the compound statements is closed.
• All variables, cursors and handlers declared in the compound statements are

destroyed.
• All condition names declared in the compound statements cease to be defined.
If the LEAVE statement is executed within a compound statement forming the body of a
procedure, execution of the procedure will be terminated.

374 Chapter 12 SQL Statements
LEAVE

Example
CREATE PROCEDURE procedure_name(INOUT Y INTEGER)
CONTAINS SQL
S0:
BEGIN
 ...
 S1:
 BEGIN
 IF Y < 0 THEN
 SET Y = 0;
 LEAVE S0;
 END IF;
 ...
 END S1;
 ...
END S0;

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

Mimer SQL Version 11.0 375
SQL Reference Manual

LEAVE (PROGRAM ident)
Leaves a PROGRAM ident and restores the state of the previous ident.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The current PROGRAM ident is left and the saved environment of the previous ident is
restored.
If RETAIN is specified, resources allocated to the ident being left are kept, i.e. cursor
declarations. The cursors are however inactivated, and may not be used in any statement
until the same ident is re-entered.

Restrictions
The LEAVE statement may not be issued within a transaction.

Example
ENTER 'program_name' USING 'secret';
LEAVE RETAIN;

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The LEAVE (program) statement is a Mimer SQL
extension.

376 Chapter 12 SQL Statements
LOOP

LOOP
Allows one or more procedural-sql-statements to be iteratively executed.

Usage
Procedural.

Description
The LOOP statement can be used to iteratively execute a sequence of one or more
procedural SQL statement.
For information on procedural-sql-statements, see Procedural SQL Statements
on page 193.

Restrictions
If label appears at the beginning and at the end of the LOOP statement, the same value
must be specified in both places.
Specifying label is optional, however, if label appears at the end of the LOOP
statement, it must also appear at the beginning.
A label is required at the beginning if the LEAVE statement is to be used to terminate the
LOOP statement.

Notes
The LOOP statement itself does not include a mechanism for terminating the iteration.
The LOOP statement can be terminated by executing the LEAVE statement. The LOOP
statement will also terminate if an exception condition is raised, in accordance with the
normal exception handling process.
The LOOP statement does not establish any form of local scope, as the compound
statement does, the label is only specified to allow the LEAVE statement to be used to
terminate the iteration.

Mimer SQL Version 11.0 377
SQL Reference Manual

Example
L1:
LOOP
 ...

 LEAVE L1;
 ...
END LOOP L1;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11, Iteration

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

378 Chapter 12 SQL Statements
OPEN

OPEN
Opens a cursor.

Usage
Embedded, Procedural.

Description
The cursor is opened and references a set of rows in accordance with the definition of the
cursor. The result set is defined when the OPEN statement is executed, any inserts, updates
or deletes occurring after the open will not be reflected in the result set. The cursor is
placed ‘before’ the first row in the addressed set.
The descriptor-name is identified by a host variable or a literal.
See ALLOCATE CURSOR on page 196 for a description of extended cursors.
If the cursor is declared for a dynamically prepared SELECT statement, the source form
of which contains parameter markers, the OPEN statement must include a USING clause.
The first variable in the variable list or referenced in the descriptor area takes the place of
the first parameter marker, the second variable takes the place of the second marker, and
so on.
The number of variables provided in the USING clause must be equal to the number of
parameter markers in the source statement, and the data types of the variables must be
assignment-compatible with their usage in the source statement. See the Mimer SQL
Programmer’s Manual, Chapter 4, Dynamic SQL, for a more detailed description of the
use of dynamically prepared statements.
Open cursors can be closed using one of the statements CLOSE, COMMIT or ROLLBACK,
except for cursors declared WITH HOLD which remain open after COMMIT.
An open cursor must be closed before it can be opened again, unless it is declared as
REOPENABLE.
A cursor declared as REOPENABLE can have several open instances of a cursor. The state
of the current instance is stored on a cursor stack when a new instance is opened. The state
of the preceding cursor instance is restored when a cursor is closed, see CLOSE on
page 237. In this context, the state of a cursor instance includes both the set of rows
addressed by the cursor and the position of the cursor within the set.

Mimer SQL Version 11.0 379
SQL Reference Manual

Restrictions
SELECT access is required to the table(s) or view(s) addressed by the cursor.
EXECUTE access is required to the result set procedure addressed by the cursor.
In a procedural usage context, extended-cursor-name cannot be used to identify the
cursor and neither of the USING options may be used.

Notes
A cursor must be declared with a DECLARE CURSOR statement or allocated with an
ALLOCATE CURSOR statement before it may be opened.
All access rights that the current ident holds to the table(s) or view(s) addressed by the
cursor are checked when the cursor is opened.
If SELECT access is lacking, the OPEN statement will fail.
If UPDATE or DELETE access is lacking, the cursor may be opened but any corresponding
UPDATE CURRENT or DELETE CURRENT statements will fail.
Only cursors declared for dynamically prepared statements may be opened with a USING
clause.

Example
DECLARE c_1 CURSOR FOR SELECT product, producer, format,
 extract_date(release_date), price, item_id
 FROM product_details
…
…
OPEN c_1;
LOOP
 FETCH c_1 INTO c1_row;
…
END LOOP;
CLOSE c_1;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11, Using
Cursors.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

380 Chapter 12 SQL Statements
PREPARE

PREPARE
Prepares an SQL statement contained in a host string variable for execution.

Usage
Embedded, Module.

Description
The SQL statement contained in the host variable is prepared for execution. This function
is equivalent to pre-processing and compiling an embedded SQL statement, but is
performed at run-time. The (internal) output form of the statement is identified by the
statement-name parameter.
See ALLOCATE CURSOR on page 196 for a description of extended statements.
See also, DESCRIBE on page 323.
The following SQL statements can be used with the PREPARE statement:

Notes
The source form of the SQL statement to be prepared is not preceded by the identifier
EXEC SQL or terminated by the language-specific delimiter.
The source statement may contain question marks as parameter markers to represent
variables to be used when the prepared statement is executed. See the Mimer SQL
Programmer’s Manual, Chapter 4, Dynamic SQL, for more details.

ALTER EXECUTE STATEMENT SET DATABASE

CALL GRANT SET SESSION

COMMENT INSERT SET SHADOW

COMMIT LEAVE SET TRANSACTION

CREATE REVOKE START

DELETE ROLLBACK UPDATE

DELETE CURRENT SELECT UPDATE CURRENT

DROP SET

ENTER SET DATABANK

Mimer SQL Version 11.0 381
SQL Reference Manual

Example
...
EXEC SQL BEGIN DECLARE SECTION;
 CHARACTER SQL_TXT(255);
...
EXEC SQL END DECLARE SECTION;
...
SQL_TXT := "DELETE FROM products WHERE product_search LIKE ?";
EXEC SQL PREPARE statement1 FROM :SQL_TXT;
...

For more information, see the Mimer SQL Programmer’s Manual, Chapter 4, Preparing
Statements.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature B031, “Basic dynamic SQL”.

382 Chapter 12 SQL Statements
REPEAT

REPEAT
Allows one or more procedural-sql-statements to be iteratively executed.

Usage
Procedural.

Description
The REPEAT statement can be used to iteratively execute a sequence of one or more
procedural-sql-statements.
The iteration continues until the search-condition evaluates to true.
For information on procedural-sql-statements, see Procedural SQL Statements
on page 193.

Restrictions
If label appears at the beginning and at the end of the REPEAT statement, the same value
must be specified in both places.
Specifying label is optional, however, if label appears at the end of the REPEAT
statement, it must also appear at the beginning.
A label is required at the beginning if the LEAVE statement is to be used to terminate the
REPEAT statement.

Notes
The REPEAT statement may be terminated by executing the LEAVE statement using
label. It will also terminate if an exception condition is raised, in accordance with the
normal exception handling process.

Example
SET I = 0;
L1:
REPEAT
 ...
 SET I = I + 1;
UNTIL I > 10
END REPEAT L1;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11, Iteration
Using REPEAT.

Mimer SQL Version 11.0 383
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

384 Chapter 12 SQL Statements
RESIGNAL

RESIGNAL
Raises the current, or the specified, exception condition.

where signal-information is:

Usage
Procedural.

Description
The RESIGNAL statement has the effect of raising the current exception condition, if
specified without an argument, or an alternative exception condition specified by either
an SQLSTATE value or a condition name.
If a condition identifier is used in the statement the associated SQLSTATE value is raised.
If the condition identifier is declared without an SQLSTATE value, the SQLSTATE 45000
is raised. If there is an appropriate exception handler for this SQLSTATE, this handler will
be invoked otherwise the SQLSTATE is propagated to the calling environment.
It is possible to provide diagnostics information with the resignal statement. This
diagnostics information can be retrieved where the exception is handled. This can be used
to customize error messages for an application. The signal-information fields are
described in the GET DIAGNOSTICS section condition-info Information Items on
page 353.
Note that an SQLSTATE value corresponding to a warning condition that is not catched by
an exception handler will not be propagated to the calling environment.

Mimer SQL Version 11.0 385
SQL Reference Manual

Restrictions
The RESIGNAL statement may only be used within an exception handler, see DECLARE
HANDLER on page 312, to force re-propagation of an exception condition to the scope
or calling environment enclosing the scope supporting the exception handler.

Notes
See DECLARE CONDITION on page 307 for a description of how to declare a condition
name.

Example
RESIGNAL SQLSTATE 'UE456';

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11,
RESIGNAL Statements.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

386 Chapter 12 SQL Statements
RETURN

RETURN
Returns the specified value(s) from a result set procedure or a function.

Usage
Procedural.

Description
The RETURN statement is used in a function to return the single value of the function.
The SQL statements in the body of the function are executed until a RETURN statement is
executed. If the end of the function is encountered (because no RETURN statement has
been executed) an exception is raised.
The RETURN statement is used in a result set procedure to return the value(s) of a row of
the result set to the calling cursor when FETCH is executed for it.
When a FETCH is executed for a cursor calling a result set procedure, the SQL statements
in the body of the result set procedure are executed until a RETURN statement is executed,
then execution within the result set procedure is suspended until the next FETCH.
Note: An array FETCH will cause more than one RETURN statement to be executed, so

there is not necessarily a 1:1 correspondence between the number of FETCH
statements executed and the number of RETURN statements executed.

If, following a FETCH, the end of the result set procedure is encountered instead of a
RETURN statement, the NOT FOUND exception is raised to indicate the end of the result set.

Restrictions
If the RETURN statement is used in a procedure, it must be a result set procedure, see the
Mimer SQL Programmer’s Manual, Chapter 11, Result Set Procedures.

Notes
If only one value expression is being returned, the parentheses are optional.

Example
CREATE FUNCTION SQUARE_INTEGER(ROOT INTEGER)
RETURNS INTEGER
CONTAINS SQL
BEGIN
 RETURN ROOT*ROOT;
END

Mimer SQL Version 11.0 387
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

388 Chapter 12 SQL Statements
REVOKE ACCESS PRIVILEGE

REVOKE ACCESS PRIVILEGE
Revokes access privileges on a table or view, from one or more idents.

where access is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The specified access privileges are revoked from the ident(s) listed. If the privileges are
revoked from a GROUP ident, all members of the group lose the privileges.
The access privileges are described under GRANT ACCESS PRIVILEGE.
The access privileges may be revoked in any combination. Specification of the keyword
ALL (followed by the optional keyword PRIVILEGES) instead of an explicit list of
privileges results in all access privileges on the table or view being revoked from the
specified ident(s).
The GRANT OPTION FOR clause specifies that only the WITH GRANT OPTION is to be
revoked from the specified instance(s) of the privilege(s).
The keywords CASCADE and RESTRICT specify whether the REVOKE statement will
allow the recursive effects that cause views to be dropped or FOREIGN KEY constraints
to be removed, as a result of the REVOKE statement. Refer to the Notes section below for
details of the recursive effects. If CASCADE is specified, such recursive effects will be
allowed. If RESTRICT is specified, the REVOKE statement will return an error if it would
cause such recursive effects and then no access privileges will be revoked.
If neither CASCADE nor RESTRICT is specified, then RESTRICT is implicit.

Mimer SQL Version 11.0 389
SQL Reference Manual

Restrictions
Privileges may only be revoked explicitly by the grantor.

Notes
If an access privilege has been granted to the same ident more than once (by different
grantors), the REVOKE statement will only revoke (or will revoke the WITH GRANT
OPTION from) the single instance of the privilege that was granted by the current ident.
The access rights attached to the privilege (or the WITH GRANT OPTION) will only be
lost when the last instance of the privilege has been revoked.
Revoking access privileges has recursive effects.
When SELECT access on a table or view is revoked, views based on that table or view and
created under the authorization of that access, are recursively dropped.
When UPDATE, INSERT, DELETE or REFERENCES access on a table or view is revoked,
the same privilege on views based on that table or view and created under the
authorization of the access are recursively revoked.
When REFERENCES access on an entire table or on one or more explicitly specified
columns of the table is revoked, any FOREIGN KEY constraints in tables created by that
ident under the authorization of that privilege are removed.
When INSERT, REFERENCES or UPDATE access is revoked from one or more explicitly
specified columns of a table or view, the same privilege on columns of views based on
that table or view and created under the authorization of the access are recursively
revoked.
Revoking INSERT, REFERENCES or UPDATE access from one or more explicitly specified
columns of a table or view will not affect access held on other column(s) of that table or
view. If the original access was granted on the entire table or view, the access will stay in
effect at the table level and will, therefore, apply to any new columns added to the table.
When the last instance of the required access held by the creator of a routine or trigger on
a table is revoked, any routines or triggers created by that ident which contain references
to the table will be dropped.
When the last instance of a privilege WITH GRANT OPTION is revoked, all instances of
the privilege granted by the ident under that authorization are recursively revoked.
An ident may not revoke access privileges from itself.

Example
REVOKE INSERT ON countries FROM joe RESTRICT;

For more information, see the Mimer SQL User’s Manual, Chapter 8, Revoking Access
Privileges,

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

390 Chapter 12 SQL Statements
REVOKE ACCESS PRIVILEGE

SQL-2016 Features
outside core

Feature F034, “Extended REVOKE statement”
support for REVOKE CASCADE and REVOKE
GRANT OPTION FOR.

Mimer SQL
extension

The keywords RESTRICT/CASCADE are optional
in Mimer SQL.

Standard Compliance Comments

Mimer SQL Version 11.0 391
SQL Reference Manual

REVOKE OBJECT PRIVILEGE
Revokes object privileges from one or more idents.

where routine-specification is:

Usage
Embedded, Interactive, Module, ODBC, JDBC.

392 Chapter 12 SQL Statements
REVOKE OBJECT PRIVILEGE

Description
The specified object privilege is revoked from the ident(s) listed. If the privilege is
revoked from a GROUP ident, all members of the group lose the privilege.
The object privileges are described under GRANT OBJECT PRIVILEGE.
The GRANT OPTION FOR clause specifies that only the WITH GRANT OPTION is to be
revoked from the specified instance(s) of the privilege(s).
The keywords CASCADE and RESTRICT specifies whether the REVOKE statement will
allow recursive effects that causes views to be dropped or FOREIGN KEY constraints to
be removed, because access privileges are revoked as a result of a REVOKE MEMBER
statement. See the Notes section for REVOKE ACCESS PRIVILEGE on page 388 for a
description of when views are dropped and FOREIGN KEY constraints are removed due
to recursive effects.
If CASCADE is specified, such recursive effects will be allowed.
If RESTRICT is specified, the REVOKE statement will return an error if it would cause such
recursive effects, and no access privileges will be revoked.
If neither CASCADE nor RESTRICT is specified, then RESTRICT is implicit.

Restrictions
Privileges may only be explicitly revoked by the grantor.

Notes
If an object privilege has been granted to the same ident more than once (by different
grantors), the REVOKE statement will only revoke (or will revoke the WITH GRANT
OPTION from) the single instance of the privilege that was granted by the current ident.
The object rights attached to the privilege (or the WITH GRANT OPTION) will only be lost
when the last instance of the privilege has been revoked.
Revoking object privileges has recursive effects. Privileged actions are performed under
the authorization of the most recently granted instance of the access.
When the last instance of a privilege WITH GRANT OPTION is revoked, all instances of
the privilege granted by the ident under that authorization are recursively revoked.
If MEMBER privilege on a group is revoked from an ident, all privileges granted through
the group are revoked from the ident.
An ident may not revoke privileges from himself.
Revoking TABLE privilege does not drop the tables created when the privilege was held.
Revoking SEQUENCE privilege does not drop the sequences created when the privilege
was held.
Revoking USAGE privilege on a domain, user defined type or sequence preserves the uses
of the domain, user defined type or sequence which were set up when the privilege was
held, however, new instances of usage of the domain, user defined type or sequence are
prevented.

Mimer SQL Version 11.0 393
SQL Reference Manual

Revoking USAGE privilege on a user defined type will also revoke EXECUTE privilege on
any function for which EXECUTE was granted implicitly in conjunction with executing a
GRANT USAGE ON TYPE statement. (See GRANT OBJECT PRIVILEGE on page 361.)
Revoking EXECUTE privilege immediately prevents the ident from invoking the routine
or entering the PROGRAM ident.

Example
REVOKE EXECUTE ON PROCEDURE coming_soon FROM joe, jane;

For more information, see the Mimer SQL User’s Manual, Chapter 8, Revoking Object
Privileges.

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F034, “Extended REVOKE statement”
support for REVOKE CASCADE and REVOKE
GRANT OPTION FOR.
Feature F251, “Domain support” support for revoke
usage on domain.
Feature F690, “Collation support” support for revoke
usage on collation.

Mimer SQL
extension

Revoke MEMBER, revoke SEQUENCE, revoke
TABLE and revoke EXECUTE (on statement and
program) are Mimer SQL extensions

394 Chapter 12 SQL Statements
REVOKE SYSTEM PRIVILEGE

REVOKE SYSTEM PRIVILEGE
Revokes system privileges from one or more idents.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The specified system privilege is revoked from the ident(s) listed. If the privilege is
revoked from a GROUP ident, all members of the group lose the privilege.
The system privileges are described under GRANT SYSTEM PRIVILEGE.
The GRANT OPTION FOR clause specifies that only the WITH GRANT OPTION is to be
revoked from the specified instance(s) of the privilege.
The keywords CASCADE and RESTRICT specifies whether the REVOKE statement will
allow recursive effects if the privilege was given with grant option. If CASCADE is
specified recursive effects will be allowed, else an error will be returned and the privilege
is not revoked.
If neither CASCADE nor RESTRICT is specified, then RESTRICT is implicit.

Restrictions
Privileges can only be revoked explicitly by the grantor.

Notes
If a system privilege has been granted to the same ident more than once (by different
grantors), the REVOKE statement will only revoke (or will revoke the WITH GRANT
OPTION from) the single instance of the privilege that was granted by the current ident.
The system rights attached to the privilege (or the WITH GRANT OPTION) will only be
revoked when the last instance of the privilege has been revoked.
Revoking system privileges has recursive effects on instances of the privilege being
granted to other idents by virtue of the WITH GRANT option.
When the last instance of a privilege WITH GRANT OPTION is revoked, all instances of
the privilege granted by the ident under that authorization are recursively revoked.

Mimer SQL Version 11.0 395
SQL Reference Manual

Databanks, idents, shadows or schemas created while the privilege was held are not
dropped when the privilege is revoked.
An ident may not revoke privileges from itself.

Example
REVOKE DATABANK FROM joe, jane RESTRICT;

For more information, see the Mimer SQL User’s Manual, Chapter 8, Revoking System
Privileges.

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

Revoke system privileges is a Mimer SQL extension.

396 Chapter 12 SQL Statements
ROLLBACK

ROLLBACK
Aborts the current transaction.

Usage
Embedded, Interactive, Module, Procedural.

Description
The current transaction is aborted. No database alterations requested in the transaction
build-up are executed.
All cursors opened by the current connection are closed, even those declared as WITH
HOLD.
If there is no currently active transaction, any cursors opened by the current ident are
closed, but the ROLLBACK statement is otherwise ignored. No error code is returned in this
case.
When a BACKUP transaction is rolled back, all files created with CREATE BACKUP are
deleted.

Restrictions
The ROLLBACK statement cannot be used in a result set procedure.
The ROLLBACK statement cannot be used within an atomic compound SQL statement, see
COMPOUND STATEMENT on page 243.
The ROLLBACK BACKUP statement must be used to abort a BACKUP transaction.
The ROLLBACK BACKUP statement is not supported in procedural usage contexts.

Notes
See the Mimer SQL Programmer’s Manual, Chapter 9, Transaction Handling and
Database Security, for a more detailed discussion of transaction handling.

Example
exec sql INSERT INTO sometable VALUES (:hv1, :hv2...);
if SQLSTATE = "00000" then
 exec sql COMMIT;
else
 exec sql ROLLBACK;
end if;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 9,
Transaction Control Statements.

Mimer SQL Version 11.0 397
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL
extension

The use of the keywords BACKUP and
TRANSACTION is a Mimer SQL extension.

398 Chapter 12 SQL Statements
SELECT

SELECT
Retrieves data from the tables in the database.

Usage
Embedded, Interactive, Module, ODBC, Procedural, JDBC.
In ESQL, the SELECT statement may only be used to declare a cursor or as input to a
PREPARE statement.
In a procedural usage context, the SELECT statement may only be used to declare a cursor.
In interactive SQL, the SELECT statement is used for interactive data retrieval. See the
Mimer SQL User’s Manual, Chapter 3, Retrieving Data for more details.

Description

SELECT Statements
Simple SELECT statements are built from a select-expression, see Chapter 11, The
SELECT Expression, optionally followed by a FOR UPDATE OF clause.
SELECT statements are used in embedded SQL (including procedural usage contexts) to
define cursors and as the input to dynamic PREPARE statements.
The embedded SELECT statement is syntactically equivalent to the interactive data
retrieval SELECT statement. In embedded contexts however, the statement cannot be used
to retrieve data directly but must be implemented through a cursor.

The FOR UPDATE Clause
If the SELECT statement defines a cursor intended for UPDATE CURRENT statements, the
for-update clause must be specified. If the FOR UPDATE OF version is used, it must
include all the columns to be updated.
Each column specified in the for-update-of must belong to the table or view named
in the from clause of the SELECT statement, although the columns in FOR UPDATE OF
do not need to be specified in the select clause. No column may be named more than
once in the for-update-of clause.
Column names in the for-update-of clause may not be qualified by the name of the
table or view. They are implicitly qualified by the table reference in the from clause of
the select specification.
FOR UPDATE OF may not be specified if the statement defines a read-only result set,
see Updatable Result Sets on page 399.

Mimer SQL Version 11.0 399
SQL Reference Manual

Updatable Result Sets
A result set is only updatable if all of the following conditions are true (otherwise the
result set is read-only):
• the keyword DISTINCT is not specified
• there are no set-functions in the SELECT list (AVG, COUNT, MAX, MIN, SUM)
• the FROM clause specifies exactly one table reference and that table reference refers

either to a base table or an updatable view
• the result set is not the product of an explicit INNER or OUTER JOIN
• the GROUP BY clause is not included
• the HAVING clause is not included
• the keyword EXCEPT is not included
• the keyword INTERSECT is not included
• the keyword UNION is not included
• the ORDER BY clause is not included
• it is not the result of a call to a result set procedure
• The FOR UPDATE clause has been specified.
A cursor which addresses a read-only result table may not be used for DELETE CURRENT
or UPDATE CURRENT statements.

The FOR READ ONLY Clause
The FOR READ ONLY clause is optional since SELECT statements by default are read-
only.

Examples
SELECT format, category_id
FROM formats
ORDER BY LOWER(format), category_id;

SELECT format AS format_name, category
FROM formats
ORDER BY CASE category WHEN 'ROCK' THEN 1

WHEN 'JAZZ' THEN 2
ELSE 3

END
OFFSET 10 ROWS FETCH FIRST 5 ROWS ONLY;

List all artists and use the FETCH FIRST construction to pick one arbitrary album for each
artist.

SELECT a.artist,
 (SELECT p.product
 FROM mimer_store.products AS p
 JOIN mimer_store.items AS i ON p.product_id = i.product_id
 JOIN mimer_store_music.titles AS t ON i.item_id = t.item_id
 WHERE t.artist_id = a.artist_id
 FETCH FIRST 1 ROW ONLY) AS work_sample
FROM mimer_store_music.artists AS a;

400 Chapter 12 SQL Statements
SELECT

Find the 10 most common starts of artist names, leading ‘The’ excluded:
SELECT strt, count(*) AS cnt
FROM
(

SELECT CASE WHEN artist NOT LIKE 'The %' THEN CAST(artist AS nchar(3))
ELSE SUBSTRING(artist FROM 5 FOR 3)

END AS strt
FROM mimer_store_music.artists

) AS a
GROUP BY str
ORDER BY cnt DESC
FETCH FIRST 10 ROWS ONLY;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F302, “INTERSECT table operator”.
Feature F304, “EXCEPT ALL table operator”.
Feature F851, “<order by clause> in subqueries”.
Feature F855, “Nested <order by clause> in <query
expression>”.
Feature F856,” Nested <fetch first clause> in <query
expression>”.
Feature F857, “Top-level <fetch first clause> in
<query expression>”
Feature F858, “<fetch first clause> in subqueries”.
Feature F860, “dynamic <fetch first row count> in
<fetch first clause>”.
Feature F861, “Top-level <result offset clause> in
<query expression>”.
Feature F862, “<result offset clause> in subqueries”.
Feature F865, “dynamic <offset row count> in
<result offset clause>”.
Feature T551, “Optional keywords for default
syntax” support for the keyword DISTINCT.

Mimer SQL
Extension

Support for host variable in <fetch first clause> and
<result offset clause> is a Mimer SQL extension.

Mimer SQL Version 11.0 401
SQL Reference Manual

SELECT INTO
Selects a single-row result table and assigns the values directly to host variables. Also
known as a singleton SELECT.

Usage
Embedded, Procedural.

Description
Values defined by the SELECT, FROM and WHERE clauses are assigned to target variables
as specified in the INTO clause. The value of the first element in the SELECT clause is
assigned to the first variable, the value of the second element to the second variable, and
so on. The data types of the variables must be assignment-compatible with those of the
corresponding values.

402 Chapter 12 SQL Statements
SELECT INTO

The number of elements in the select-list must be the same as the number of elements in
the target-variable list.
The result table defined by the SELECT INTO statement may not contain more than one
row.
If a table reference or correlation name is used together with an asterisk in the SELECT
clause, all columns are selected from the referred table. Columns listed explicitly in the
SELECT clause need not be prefixed with the table or view name unless the same column
name is used in more than one source table or view.
The whole list of values in the SELECT clause may be replaced by a single asterisk, in
which case all columns from the table(s) or view(s) named in the FROM clause are
selected, in the order in which they are defined in the source table(s) or view(s).
Note: Use of SELECT * is discouraged in are embedded in application programs

(except in EXISTS predicates) since the asterisk is expanded to a column list
when the statement is compiled, and any subsequent alterations in the table or
view definitions may cause the program to function incorrectly.

When set functions are used in the list of values in the SELECT clause, their evaluation is
influenced by the keywords ALL and DISTINCT. If ALL is specified, all rows in the result
table are used in calculating the result of the set function. If DISTINCT is specified,
duplicate rows are eliminated from the result table before the set function is evaluated. If
no keyword is specified, ALL is assumed.

Language Elements
expression, see Expressions on page 141.
search-condition, see Search Conditions on page 165.
target-variable, see Target Variables on page 43.
order-by-clause, see The ORDER BY Clause on page 186.
result-offset-clause, see The RESULT OFFSET Clause on page 186.
fetch-first-clause, see The FETCH FIRST Clause on page 187.

Restrictions
SELECT access is required on all tables and views specified in the statement.
In a procedural usage context, the SELECT INTO statement is only permitted if the
routine access-clause is READS SQL DATA or MODIFIES SQL DATA, see CREATE
FUNCTION on page 258 and CREATE PROCEDURE on page 271.

Notes
Correlation names used in the SELECT or WHERE clause must be defined in the FROM
clause of the same SELECT INTO statement. The same correlation name may not be
defined more than once in one FROM clause.
A SELECT INTO statement may include a GROUP BY or HAVING clause. However, care
must be exercised to ensure that the HAVING clause selects one and only one group, and
that the selected group either contains only one member or is reduced to a single row by
a set function.

Mimer SQL Version 11.0 403
SQL Reference Manual

Examples
Use the SUM aggregate function to make sure exactly one row is returned:

SELECT SUM(quantity * "VALUE") INTO :hv
FROM mimer_store.items AS msi
JOIN mimer_store.order_items AS msoi ON msi.item_id = msoi.item_id
WHERE order_id = :inval;

Use FETCH FIRST 1 ROW ONLY to make sure exactly one row is returned:
SELECT quantity, msi.item_id INTO :hv1, :hv2
FROM mimer_store.items AS msi
JOIN mimer_store.order_items AS msoi ON msi.item_id = msoi.item_id
ORDER BY quantity
FETCH FIRST 1 ROW ONLY;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL
extension

The support for order-by clause, result-offset clause
and fetch-first clause is a Mimer SQL extension.

404 Chapter 12 SQL Statements
SET

SET
Assigns the specified value to a variable or output parameter.

Usage
Procedural, Interactive, Module, Embedded, Module.

Description
The SET statement directly assigns the specified value-expression to one or more
target-variable’s, see Target Variables on page 43. If a target-variable is a
routine parameter, it must have mode OUT or INOUT.

Restrictions
A value-expression must be assignment-compatible with the data type of its
target-variable, see Assignments on page 77.
If multiple target-variables are assigned, the number of items in the row expression on the
right hand of the assignment must be the same as the number of target-variables.

Notes
Where the target of the assignment is a declared variable, its name may be qualified with
a scope label, see the Mimer SQL Programmer’s Manual, Chapter 11, Declaring
Variables.
If the target of the assignment is a variable declared with the ROW data type, a row value
expression may be specified for expression.
If is possible to assign a value to a field of a variable declared with the ROW data type by
using the following syntax to refer to the field: routine-variable.field-name.
See the Mimer SQL Programmer’s Manual, Chapter 11, The ROW Data Type and
Mimer SQL Programmer’s Manual, Chapter 11, Row Value Expression, for more
information.
Assignment of multiple target-variables is not supported.

Examples
SET firstName = 'Moira';

SET pos = position(' ' IN name);

SET book.title = 'Grapes of Wrath';

Mimer SQL Version 11.0 405
SQL Reference Manual

SET bookTitle = ('0-201-43328-1','JDBC API Tutorial and Reference');

SET (CITY, COUNTRY) = ('Uppsala', 'Sweden');

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11,
Assignment Using SET.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.
Feature P006, “Multiple assignment”.

406 Chapter 12 SQL Statements
SET CONNECTION

SET CONNECTION
Sets the current connection.

Usage
Embedded, Interactive, Module.

Description
The specified connection becomes current. The connection must specify an existing
connection name. If it does not, an error code is returned and the connection status
remains unchanged.
connection is case-sensitive.
connection can be specified as a host variable or a literal.

Example
SET CONNECTION 'connection 2';

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature F771, “Connection management”.

Mimer SQL Version 11.0 407
SQL Reference Manual

SET DATABANK
Sets a databank offline or online, with the option of clearing LOGDB records for it.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
Setting a databank OFFLINE makes it unavailable for all users and closes the databank
file. A typical use for this is when taking databank backups using the host file system.
If the databank is being used, an error will be raised and it will not be set offline. When a
databank is set offline, all online shadows will be brought up to date.
When a databank is set ONLINE again, you must specify whether to clear the LOGDB
records for it (using the RESET LOG option), or whether to preserve these (using the
PRESERVE LOG option). The RESET LOG option should be used after a successful backup
has been taken.
It is essential to keep LOGDB in a state consistent with the databank backups, see the
Mimer SQL System Management Handbook, Chapter 5, Backing-up and Restoring Data,
for a discussion of the issues.
Clearing records from LOGDB is handled automatically when CREATE BACKUP is used to
take databank backups.

Restrictions
The current ident must either be the creator of the databank or have BACKUP privilege.

Notes
While a databank is OFFLINE, none of the tables stored in it are accessible and the
updating of all its shadows is suspended. It is possible to use ALTER DATABANK and
ALTER DATABANK RESTORE to change or recover a databank while it is OFFLINE.
If ALTER DATABANK was used to change the location of the databank file while the
databank was OFFLINE, the SET DATABANK statement will verify that the new file
contains a valid copy of the databank when the databank is set ONLINE again (it cannot,
however, check that the contents of the file is up-to-date).
It is possible to use DROP DATABANK to drop an OFFLINE databank.
While a databank is OFFLINE, it is not possible to use ALTER SHADOW on any of its
shadows.
An error will be raised if an attempt is made to set a databank OFFLINE that is already
OFFLINE, or ONLINE when it is already ONLINE.

408 Chapter 12 SQL Statements
SET DATABANK

Example
SET DATABANK usrdb OFFLINE;

For more information, see the Mimer SQL System Management Handbook, Chapter 5,
Backing-up and Restoring Data.

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The SET DATABANK statement is a Mimer SQL
extension.

Mimer SQL Version 11.0 409
SQL Reference Manual

SET DATABASE
Sets the entire database offline or online, with the option of clearing all records from
LOGDB.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
When the database is set OFFLINE, all non-system databanks are closed. During the
process of setting the database OFFLINE, all updated databank pages are forced to disk
and all databank shadows are brought up to date.
A typical use for this is when backing up all databank files in one go using the host file
system utilities.
When the database is set ONLINE again, you must specify whether to clear all the LOGDB
records (using the RESET LOG option), or whether to preserve these (using the PRESERVE
LOG option).
The RESET LOG option should be used only after a complete backup has been taken of
everything in the database.

Restrictions
The current ident must have BACKUP privilege.

Notes
While the database is OFFLINE no connections to it can be established, the database can
only be accessed by a single system administrator ident.
An error will be raised if an attempt is made to set the database OFFLINE when it is
already OFFLINE, or ONLINE when it is already ONLINE.

Example
SET DATABASE OFFLINE;

For more information, see the Mimer SQL System Management Handbook, Chapter 5,
Backing-up and Restoring Data.

410 Chapter 12 SQL Statements
SET DATABASE

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The SET DATABASE statement is a Mimer SQL
extension.

Mimer SQL Version 11.0 411
SQL Reference Manual

SET DESCRIPTOR
Set values in an SQL descriptor area.

where set-item-information is:

Usage
Embedded, Module.

Description
Fields values are assigned in the specified SQL descriptor area. The SET DESCRIPTOR
statement can be used in two forms. The COUNT form sets the number of active item
descriptor areas for the specified SQL descriptor. The VALUE form assigns SQL
descriptor field values for the item descriptor area specified by item-number.
The descriptor-name is identified by a host variable or a literal.
See GET DESCRIPTOR on page 344 for a description of the descriptor fields.

Notes
The data type of the host variables must be compatible with the data type of the associated
field name.
If an item descriptor area is specified for any field other than DATA, the DATA field
becomes undefined.

412 Chapter 12 SQL Statements
SET DESCRIPTOR

When the TYPE field is set, some of the other fields are implicitly set according to the
table below:

Example
exec sql SET DESCRIPTOR 'descrIn' VALUE :n TYPE = :type,

LENGTH = :length;

Standard Compliance

Type Implicitly set fields

BINARY LENGTH set to 1

BINARY VARYING LENGTH set to 1

CHARACTER LENGTH set to 1

VARCHAR LENGTH set to 1

NATIONAL CHARACTER LENGTH set to 1

NCHAR VARYING LENGTH set to 1

BLOB LENGTH set to 1

CLOB LENGTH set to 1

NCLOB LENGTH set to 1

DATETIME PRECISION set to 0

DECIMAL PRECISION set to 15, SCALE set to 0

DOUBLE PRECISION PRECISION set to 16

FLOAT PRECISION set to 16

INTEGER PRECISION set to 10

INTERVAL DATETIME_INTERVAL_PRECISION set to 2

REAL PRECISION set to 7

SMALLINT PRECISION set to 5

Standard Compliance Comments

SQL-2016 Features
outside core

Feature B031, “Basic dynamic SQL.”
Feature B032, “Extended dynamic SQL” support for
dynamic descriptor names.

Mimer SQL Version 11.0 413
SQL Reference Manual

SET SESSION
Set default mode for a session.

Usage
Embedded, Interactive, Module, Procedural.

Description
The default mode specified is set for the current connection and remains until the
connection is closed.

SET SESSION READ
The SET SESSION READ option allows the default SET TRANSACTION READ setting to
be defined. (The SET TRANSACTION READ statement only affects the single next
transaction to be started after it has been used.)
The default SET TRANSACTION READ setting is normally READ WRITE, however, SET
SESSION READ can be used to set whichever default is desired for the current session.

SET SESSION ISOLATION LEVEL
The SET SESSION ISOLATION LEVEL option allows the default SET TRANSACTION
ISOLATION LEVEL setting to be defined. (The SET TRANSACTION ISOLATION LEVEL
statement only affects the single next transaction to be started after it has been used.)
The default SET TRANSACTION ISOLATION LEVEL setting is normally READ
COMMITTED, however, SET SESSION ISOLATION LEVEL can be used to set whichever
default is desired for the current session.
If SET SESSION ISOLATION LEVEL READ UNCOMMITTED is specified, then a default
transaction access mode of READ ONLY is implicit. I.e. transactions performing updates
are not allowed unless a SET TRANSACTION statement changing this default is specified
before doing such a transaction.

414 Chapter 12 SQL Statements
SET SESSION

SET SESSION DIAGNOSTICS SIZE
The SET SESSION DIAGNOSTICS SIZE option allows the default size of the
diagnostics area to be defined. The unsigned-integer value specifies how many
exceptions can be stacked in the diagnostics area, and examined by GET DIAGNOSTICS,
in situations where repeated RESIGNAL operations have effectively been performed. The
default size is 50.

SET SESSION FETCH SIZE
The SET SESSION FETCH SIZE option allows for Embedded SQL (ESQL)
programmers to provide hints about an appropriate block cursor size. ESQL applications
will now, whenever possible, fetch result rows in blocks from the server. In effect this
means that ESQL, whenever the application wants to fetch more data, transfers a number
of rows from the server at once and store these in an internal buffer. Future fetches will
read directly from the internal buffer until it is exhausted, when a new block of rows are
requested from the server.
In most cases, this has a positive effect on performance, applications will communicate
less with the server and thus improving its scalability. Communication overheads are also
reduced. There are, however, a few cases when this might be detrimental to performance.
One situation might be when one want the first result row as fast as possible, while there
can take some time for the server to complete an entire block request. In these situations
ESQL programmers may change the block fetch behavior with the session attribute
FETCH SIZE. This attribute will provide a hint about a suitable fetch size, that is the
number of rows to fetch in each block, to ESQL. ESQL, will whenever possible try to use
the specified fetch size, but it may in practice use a fetch size smaller than specified. If
the value is zero, the hint is ignored. The default value is zero.

Restrictions
The SET SESSION statement may not be issued within a transaction.
A SET SESSION READ setting or a SET SESSION ISOLATION LEVEL setting may not
be changed if there are any holdable cursors remaining open from the previous
transaction.

Examples
Set the default transaction isolation level to repeatable read:

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Ensure that rows are transferred one at a time from the server:
exec sql SET SESSION FETCH SIZE 1;

Set the fetch block size to 24:
exec sql BEGIN DECLARE SECTION;
long fetch_size;
exec sql END DECLARE SECTION;
...
fetch_size = 24;
exec sql SET SESSION FETCH SIZE :fetch_size;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 9,
Transaction Handling and Database Security.

Mimer SQL Version 11.0 415
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

F761, “Session management”.
F111, “Isolation levels other than
SERIALIZABLE”.

Mimer SQL
extension

Optional CHARACTERISTICS AS
TRANSACTION syntax is a Mimer SQL extension.

416 Chapter 12 SQL Statements
SET SHADOW

SET SHADOW
Sets a list of databank shadows offline or online, with the option of clearing the LOGDB
records for them.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
Setting a databank shadow OFFLINE suspends updating of it. A typical use for this is
when taking databank backups from shadows using the host file system.
When a databank shadow is set ONLINE again, you must specify whether:
• to clear the applicable LOGDB records using the RESET LOG option
• or whether to preserve these (using the PRESERVE LOG option).
Use the RESET LOG option after a successful backup has been taken.
Clearing records from LOGDB is handled automatically when CREATE BACKUP is used to
take databank backups.

Restrictions
The current ident must either be the creator of the databank to be shadowed, or have
BACKUP privilege in order to use all the SET SHADOW options.
If the current ident holds SHADOW privilege, the shadow can be set offline and online with
the PRESERVE LOG option, but the RESET LOG option cannot be used.
SET SHADOW cannot be used if the master databank is OFFLINE.

Notes
While a shadow is OFFLINE, updating of it is suspended. It is possible to use ALTER
SHADOW to change the shadow while it is OFFLINE.
If ALTER SHADOW was used to change the location of the shadow file while the shadow
was OFFLINE, the SET SHADOW statement will verify that the new file contains a valid
copy of the shadow when the shadow is set ONLINE again (it cannot, however, check that
the contents of the file is up-to-date).
It is possible to use DROP SHADOW to drop an OFFLINE shadow.
SET SHADOW OFFLINE will succeed with a warning if the shadow exists and is ONLINE,
but the file cannot be accessed for some reason.

Mimer SQL Version 11.0 417
SQL Reference Manual

It is not possible to set more than a single shadow of any given databank OFFLINE at a
time. If the shadow-list contains more than one shadow for a databank, none of the
shadows for that databank will be set OFFLINE, and an error will be raised.
An error will be raised if an attempt is made to set a shadow OFFLINE that is already
OFFLINE, or ONLINE when it is already ONLINE.

Example
SET SHADOW MIMER_STORE$SHADOW_1, MIMER_STORE$SHADOW_2 ONLINE RESET LOG;

For more information, see the Mimer SQL System Management Handbook, Chapter 10,
Mimer SQL Shadowing.

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The SET SHADOW statement is a Mimer SQL
extension.

418 Chapter 12 SQL Statements
SET TRANSACTION

SET TRANSACTION
Sets transaction modes for transactions.

Usage
Embedded, Interactive, Module, Procedural.

Description

SET TRANSACTION READ
The SET TRANSACTION READ setting only affects the single next transaction to be
started.
The default SET TRANSACTION READ setting (READ WRITE or whatever has been
defined to be the default by using SET SESSION) applies unless an alternative is
explicitly set before each transaction.
The SET TRANSACTION READ ONLY option is provided so that transaction performance
can be optimized for those transactions not performing any updates.
It is strongly recommended that SET TRANSACTION READ ONLY be used for each
transaction that does not require update access to the database and that READ WRITE
mode only be used for transactions actually performing updates.
Significant performance gains can be achieved, especially for queries retrieving large
numbers of rows, when the SET TRANSACTION READ options are used as recommended.

SET TRANSACTION ISOLATION LEVEL
The SET TRANSACTION ISOLATION LEVEL options are provided to control the degree
to which the updates performed by a transaction are affected by the updates performed by
concurrent transactions.
The SET TRANSACTION ISOLATION LEVEL setting only affects the single next
transaction to be started.
The default SET TRANSACTION ISOLATION LEVEL setting (REPEATABLE READ or
whatever has been defined to be the default by using SET SESSION) applies unless an
alternative is explicitly set before each transaction.

Mimer SQL Version 11.0 419
SQL Reference Manual

If SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED is specified, then a
transaction access mode of READ ONLY is implicit for the single next transaction.
All of the isolation levels guarantee that each transaction will be executed completely or
not at all and that no updates will be lost.
The execution of concurrent transactions at the most secure isolation level,
SERIALIZABLE, guarantees that the execution of the operations of concurrently
executing transactions produces the same effect as some serial execution of those same
transactions (i.e. an execution where one transaction executes to completion before the
next begins).
When the other isolation levels are in effect (READ UNCOMMITTED, READ COMMITTED
and REPEATABLE READ), the following effects may occur during the execution of
concurrent transactions:
• ‘Dirty Read’ - this is where uncommitted updates can be read by another

transaction. This can lead to a situation, in the event of a rollback occurring in an
update transaction after another transaction has performed a read, where data has
been read which (because it was never committed) must be considered to have
never existed.

• ‘Non-repeatable Read’ - this is where a transaction reads a row and then another
transaction updates or deletes that specific row. A subsequent attempt to re-read the
same specific row retrieves modified information or finds that the row no longer
exists, thus it can be said that the original read cannot be repeated.

• ‘Phantoms’ - this is where a transaction reads a set of rows that satisfy some search
condition. Another transaction then performs an update which generates one or
more new rows that satisfy the search condition. If the original query is repeated
(using the same search condition), extra rows appear in the result set that where
previously not found.

The following table summarizes, for each of the four isolation levels, which of the affects
described above are guaranteed never to occur, or must be accepted as possible, where
there are concurrent transactions:

SET TRANSACTION DIAGNOSTICS SIZE
The SET TRANSACTION DIAGNOSTICS SIZE option allows the size of the diagnostics
area to be defined. The unsigned-integer value specifies how many exceptions can
be stacked in the diagnostics area, and examined by GET DIAGNOSTICS, in situations
where repeated RESIGNAL operations have effectively been performed.
The SET TRANSACTION DIAGNOSTICS SIZE setting only affects the single next
transaction to be started.
The default SET TRANSACTION DIAGNOSTICS SIZE setting (50 or whatever has been
defined to be the default by using SET SESSION) applies unless an alternative is
explicitly set before each transaction.

Isolation Level Dirty Read Non-repeatable Read Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Never occurs Possible Possible

REPEATABLE READ Never occurs Never occurs Possible

SERIALIZABLE Never occurs Never occurs Never occurs

420 Chapter 12 SQL Statements
SET TRANSACTION

SET TRANSACTION START
Transactions are started either by an explicit START statement or by an implicit
transaction start. The procedure that is followed is determined by using the SET
TRANSACTION START statement.
When START is set to IMPLICIT, the first operation involving a databank with either the
TRANSACTION or LOG option will start a transaction. The transaction must then be
terminated explicitly by either COMMIT or ROLLBACK.
The SET TRANSACTION START setting has effect in the current session until SET
TRANSACTION START is next used.
The default setting is START IMPLICIT.

Restrictions
The SET TRANSACTION statement may not be issued within a transaction.
A SET TRANSACTION READ setting or a SET TRANSACTION ISOLATION LEVEL
setting may not be changed if there are any holdable cursors remaining open from the
previous transaction.

Notes
The SET TRANSACTION START statement is generally issued at the beginning of a
session, to set the start mode for transactions. Changing the start mode for transactions in
the middle of a session is not generally recommended.
The SET SESSION statement can be used to define the default settings for the SET
TRANSACTION READ, SET TRANSACTION ISOLATION LEVEL and SET
TRANSACTION DIAGNOSTICS SIZE options.

Example
exec sql SET TRANSACTION START EXPLICIT;
LOOP
 exec sql FETCH C1 INTO :var1,:var2,...,:varn;
 display var1,var2,...,varn;
 prompt "Update row?";
 exit when answer = "yes";
END LOOP
exec sql START;
exec sql UPDATE table SET ...
 WHERE col1 = :var1,
 col2 = :var2, ...;
exec sql COMMIT;

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 421
SQL Reference Manual

SQL-2016 Features
outside core

Feature F111, “Isolation levels other than
serializable” support for READ UNCOMMITTED,
READ COMMITTED and REPEATABLE READ.
Feature F121, “Basic diagnostics management”
support for DIAGNOSTICS SIZE.

Mimer SQL
extension

The form TRANSACTION START is a Mimer SQL
extension.

Standard Compliance Comments

422 Chapter 12 SQL Statements
SIGNAL

SIGNAL
Raises the specified exception condition.

where signal-information is:

Usage
Procedural.

Description
The SIGNAL statement has the effect of raising an exception condition specified by an
SQLSTATE value or a condition name.
If a condition identifier is used in the statement the associated SQLSTATE value is raised.
If the condition identifier is declared without an SQLSTATE value, the SQLSTATE 45000
is raised. If there is an appropriate exception handler for this SQLSTATE, this handler will
be invoked otherwise the SQLSTATE is propagated to the calling environment.
It is possible to provide diagnostics information with the signal statement. This
diagnostics information can be retrieved where the exception is handled. This can be used
to customize error messages for an application. The signal-information fields are
described in the GET DIAGNOSTICS section condition-info Information Items on
page 353.
Note that an SQLSTATE value corresponding to a warning condition that is not catched by
an exception handler will not be propagated to the calling environment.

Mimer SQL Version 11.0 423
SQL Reference Manual

Notes
See DECLARE CONDITION on page 307 for a description of how to declare a condition
name.

Example
signal sqlstate 'UE324'
 set message_text = 'A horse named ' || horse_name ||
 ' already exists in the database';

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11, SIGNAL
Statements.

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

424 Chapter 12 SQL Statements
START

START
Starts a transaction build-up.

Usage
Embedded, Interactive, Module, Procedural.

Description
A new transaction is started, regardless of whether the transaction start mode is set to
IMPLICIT or EXPLICIT, see the SET TRANSACTION on page 418 statement.
The START BACKUP command starts a transaction in which the CREATE ONLINE
BACKUP statements of an online backup sequence are executed, see the description of
CREATE BACKUP on page 248 for more information.

Restrictions
The START statement may not be executed from within a transaction.
The START statement may not be used in a result set procedure.
The START BACKUP command is not supported in procedural mode.

Example
exec sql SET TRANSACTION START EXPLICIT;

LOOP
 exec sql FETCH C1 INTO :var1,:var2,...,:varn;
 DISPLAY var1,var2,...,varn;
 PROMPT "Update row?";
 EXIT WHEN ANSWER = "yes";
END LOOP

exec sql START;
exec sql UPDATE table SET ...

WHERE col1 = :var1,
col2 = :var2, ...

exec sql COMMIT;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 9,
Transaction Handling and Database Security.

Mimer SQL Version 11.0 425
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature T241, “START TRANSACTION
statement”.

Mimer SQL
extension

The use of the keywords BACKUP and WORK is a
Mimer SQL extension.

426 Chapter 12 SQL Statements
UPDATE

UPDATE
Updates a set of rows in a table or view.

Usage
Embedded, Interactive, Module, Procedural, ODBC, JDBC.

Description
The table or view identified by the table name is updated in the rows which satisfy the
condition in the WHERE clause by assigning new values to the columns as specified in the
SET clause. If no WHERE clause is specified, all rows are updated.
Values to be assigned to columns may be specified either as expressions or by using the
keywords NULL or DEFAULT. Expressions must have a data type compatible with the
definition of the column to which they are assigned. If column names are used in
expressions, they must refer to columns in the table or view addressed in the UPDATE
clause. The value specified by a column name in an expression is the value for the column
in the row concerned before any update operation is performed.
If no row is updated a NOT FOUND condition code is returned, see Appendix E Return
Status and Conditions.

Language Elements
expression, see Chapter 9, Expressions and Predicates.
search-condition, see Chapter 10, Search Conditions.
with-clause, see The WITH Clause on page 179.

Mimer SQL Version 11.0 427
SQL Reference Manual

Restrictions
UPDATE access is required on the columns specified in the SET clause.
If the UPDATE statement is used on a primary key column of a table, the table must be
stored in a databank with the TRANSACTION or LOG option.
In a procedural usage context, the UPDATE statement is only permitted if the procedure
access-clause is MODIFIES SQL DATA, see CREATE PROCEDURE on page 271.

Notes
Column names on the left-hand side of the assignment operator in the SET clause may not
be qualified by the table reference.
Columns may not be specified more than once on the left-hand side of the assignment
operator in the SET clause in a single UPDATE statement.
Expressions used in the SET clause cannot refer to set functions (except for in a
subquery).
Column names in the search condition of the WHERE clause must identify columns in the
table or view to be updated.
If a correlation name is introduced after the table reference in the UPDATE clause, the
correlation name must be used to refer to the table in the WHERE clause of the same
UPDATE statement.
UNIQUE and CHECK constraints in the table being updated may not be violated (this is
evaluated at the end when all the modifications involved in the UPDATE statement have
been made).
If the table name specified in the UPDATE statement is subject to any referential
constraint, the values in all updated rows must conform to that constraint. If a view
defined WITH CHECK OPTION is to be updated, the values assigned to the columns must
conform to the view definition.
Read-only views may not be updated, see CREATE VIEW on page 302.
An UPDATE statement is executed as a single statement. If an error occurs at any point
during the execution, no rows will be updated (however, if the table is stored in a databank
with the WORK option it is possible that some rows will be updated).

Example
The following example is taken from the Mimer SQL User’s Manual, Chapter 5,
Updating Tables.

UPDATE currencies SET exchange_rate = 7.25 WHERE currency_code = 'USD';

Multiple column update example:
UPDATE currencies
SET exchange_rate = 36.38, currency = 'Jaimacan Dollars'
WHERE currency_code = 'JMD';

can also be written as:
UPDATE currencies
SET (exchange_rate, currency) = (36.38, 'Jaimacan Dollars')
WHERE currency_code = 'JMD';

428 Chapter 12 SQL Statements
UPDATE

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F781, “Self-referencing operations” the
update table can be used in search conditions in the
update statement.

Mimer SQL Version 11.0 429
SQL Reference Manual

UPDATE CURRENT
Updates the current row indicated by a cursor.

Usage
Embedded, Module, ODBC, Procedural, JDBC.

Description
The current row addressed by the cursor is updated by assigning new values to the
columns as specified in the SET clause.
See ALLOCATE CURSOR on page 196 for a description of extended cursors.
If an extended cursor is used in an UPDATE CURRENT statement, the cursor is represented
following these rules:
• If the UPDATE CURRENT statement is executed with static SQL, i.e. using EXEC

SQL, the extended cursor is represented by the host variable containing the cursor.
• If the UPDATE CURRENT statement is executed with dynamic SQL, the extended

cursor must be represented by the cursor value contained in the host variable.
Values to be assigned to columns may be specified either as expressions or by using the
keywords NULL or DEFAULT. Expressions must have a data type compatible with the
definition of the column to which they are assigned.
If column names are used in expressions, they must refer to columns in the table or view
addressed in the UPDATE CURRENT clause. The value specified by a column name in an
expression is the value for the column in the row concerned before the update operation
is performed.

430 Chapter 12 SQL Statements
UPDATE CURRENT

Language Elements
expression, see Chapter 9, Expressions and Predicates.
with-clause, see The WITH Clause on page 179.

Restrictions
UPDATE access to the appropriate columns in the table or view identified by the table
name is required when the cursor used for the UPDATE CURRENT statement is opened. If
UPDATE access is not held, the cursor may be opened but UPDATE CURRENT statements
will fail. Direct access to the base table is not required for an update operation on a view.
If the UPDATE CURRENT statement is used on a primary key column of a table, the table
must be stored in a databank with the TRANSACTION or LOG option.
In a procedural usage context, extended-cursor-name cannot be used to identify the
cursor.
In a procedural usage context, the UPDATE CURRENT statement is only permitted if the
procedure access-clause is MODIFIES SQL DATA, see CREATE PROCEDURE on
page 271.
A row indicated by a WITH HOLD cursor must have been fetched in the same transaction.

Notes
Column names on the left-hand side of the assignment operator in the SET clause may not
be qualified by the table name.
Columns may not be specified more than once on the left-hand side of the assignment
operator in the SET clause in a single UPDATE statement.
Expressions used in the SET clause cannot refer to set functions (except for in a
subquery).
If columns are listed in the FOR UPDATE OF clause of the cursor definition (described
under SELECT) no other columns may be specified on the left-hand side of the assignment
operators in the SET clause.
The table name specified in the UPDATE CURRENT clause must be exactly the same as
that in the FROM clause of the SELECT statement used to declare the cursor. If a synonym
is used in one of the statements, the same synonym must also be used in the other.
UNIQUE constraints in the table being updated may not be violated.
If the table name specified in the UPDATE statement is subject to any referential
constraint, the values in the row to be updated must conform to that constraint.
If a view defined WITH CHECK OPTION is to be updated, the values assigned to the
columns must conform to the view definition.
The UPDATE CURRENT statement may not be used for read-only cursors.

Example
...
FETCH C1 INTO I_CHARGE_CODE,I_AMOUNT;
 IF I_CHARGE_CODE = '270' AND ... THEN
 UPDATE BILL SET AMOUNT = AMOUNT * 1.10 WHERE CURRENT OF C1;
...

Mimer SQL Version 11.0 431
SQL Reference Manual

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features
outside core

Feature F831, “Full cursor update”.

432 Chapter 12 SQL Statements
UPDATE STATISTICS

UPDATE STATISTICS
Updates the statistics recorded for all tables in the database, a specified list of tables, all
tables in a specified list of schemas or all the tables belonging to the schemas owned by
a specified list of idents.

Usage
Embedded, Interactive, Module, ODBC, JDBC.

Description
The default operation is to update statistics for all tables, including data dictionary tables,
in the database.
It is possible to update statistics for a specified list of tables by using the FOR TABLE
option, for all tables belonging to a specified list of schemas by using the FOR SCHEMA
option, or for all the tables belonging to the schemas created by a specified list of idents
by using the FOR IDENT option.
Update statistics includes an automatic operation which ensures the consistency of
secondary indexes (both explicitly created indexes and those created by the system when
certain constraints are defined). The operation is transparent to users of the database and
is performed on indexes selected by the UPDATE STATISTICS statement that are
contained in a databank with the TRANSACTION or LOG option and which are flagged as
‘not consistent’.
The process of ensuring the consistency of an index, and updating statistics for all tables
in the database (the default operation), can be rather time-consuming. Therefore, it is
generally recommended that these operations be performed at off-peak times, refer to the
Mimer SQL System Management Handbook, Chapter 11, Database Statistics for more
information.
A secondary index is flagged as not consistent if it belongs to a table in a databank
with the WORK option, or if the databank containing it has been upgraded from Mimer
SQL version 8.1 (or older).
The IS_CONSISTENT column in the data dictionary table TABLE_CONSTRAINTS shows
which indexes in the database are flagged as not consistent.

Restrictions
The current ident must be the creator of all the tables involved or must have STATISTICS
privilege.

Mimer SQL Version 11.0 433
SQL Reference Manual

Notes
The UPDATE STATISTICS statement can be used concurrently with other SQL
statements.
Precompiled statements may change search orders depending on the result of the updated
statistics.

Example
UPDATE STATISTICS FOR IDENT joe;

For more information, see the Mimer SQL System Management Handbook, Chapter 11,
Database Statistics.

Standard Compliance
Standard Compliance Comments

Mimer SQL
extension

The UPDATE STATISTICS statement is a Mimer
SQL extension.

434 Chapter 12 SQL Statements
WHENEVER

WHENEVER
Defines action to be taken for errors and exception conditions.

Usage
Embedded.

Description
The action taken in the event of a condition arising during execution of an SQL statement
is governed by the most recently issued WHENEVER statement. There are three different
types of conditions: NOT FOUND, SQLEXCEPTION and SQLWARNING. See Appendix E
Return Status and Conditions for a description of the different condition types.
The action taken is as follows:
• CONTINUE

Program execution continues at the next sequential statement of the source program.
• GOTO

Program execution continues at the source code statement identified by host-
label, where host-label is a program label in a program written according to
the host language.

Notes
If a condition in an SQL statement is not covered by an explicit WHENEVER statement
issued earlier in the host program code, CONTINUE will be assumed.
It’s recommended to set SQLEXCEPTION to CONTINUE action first of all in the
diagnostics part of the code, to avoid the risk of a looping application.

Example
...
GOTO 1025
EXEC SQL WHENEVER SQLEXCEPTION GOTO 1600

1025 CONTINUE
EXEC SQL DELETE FROM MYTABLE
...

1060 CONTINUE
EXEC SQL WHENEVER SQLEXCEPTION CONTINUE
EXEC SQL GET DIAGNOSTICS ...

Standard Compliance
Standard Compliance Comments

SQL-2016 Core Fully compliant.

Mimer SQL Version 11.0 435
SQL Reference Manual

WHILE
Allows one or more procedural SQL statements to be iteratively executed.

Usage
Procedural.

Description
The WHILE statement can be used to iteratively execute a sequence of one or more
procedural-sql-statements.
The iteration continues as long as search-condition evaluates to true.
For information on procedural-sql-statements, see Procedural SQL Statements
on page 193.

Restrictions
If label appears at the beginning and at the end of the WHILE statement, the same value
must be specified in both places.
Specifying label is optional, however, if label appears at the end of the WHILE
statement, it must also appear at the beginning.
A label is required at the beginning if the LEAVE statement is to be used to terminate the
WHILE statement.

Notes
The WHILE statement may be terminated by executing the LEAVE statement using label.
It will also terminate if an exception condition is raised, in accordance with the normal
exception handling process.

Example
SET I = 0;
L1:
WHILE I <= 10 DO
 ...
 SET I = I + 1;
END WHILE L1;

For more information, see the Mimer SQL Programmer’s Manual, Chapter 11, Iteration
Using WHILE.

436 Chapter 12 SQL Statements
WHILE

Standard Compliance
Standard Compliance Comments

SQL-2016 Features
outside core

Feature P002, “Computational completeness”.

Mimer SQL Version 11.0 437
SQL Reference Manual

Chapter 13

Data Dictionary
Views

This chapter documents the predefined system views on the data dictionary tables.
PUBLIC holds SELECT access on these views, so that they may be examined by any user.
INFORMATION_SCHEMA views are used to retrieve information about the objects in the
data dictionary.
An INFORMATION_SCHEMA view can be read with the statement (note the qualified form
of view-name):

SELECT column-list
FROM INFORMATION_SCHEMA.view-name
WHERE condition

Many of the views include only objects, privileges and so on relevant to the current ident
(the description for each view indicates exactly what information is shown in the view).
Note: Some of the views have columns designed to display information that is not

currently supported by Mimer SQL (e.g. catalog names for database objects),
in this situation the empty string ("") will be shown in these columns.

The tables in the data dictionary may be read directly only by the system administrator
ident SYSADM in the default installation. The base tables in the data dictionary are
documented in the Mimer SQL System Management Handbook. The system administrator
may, if desired, grant SELECT access on the dictionary tables to other users.
No user may access the data dictionary views or tables directly for any purpose other than
SELECT. All data dictionary maintenance is performed by internal routines and is
invisible to the user.

INFORMATION_SCHEMA dictionary views
The table below summarizes the data dictionary views that are part of the schema
INFORMATION_SCHEMA:

View name Description

INFORMATION_SCHEMA.ASSERTIONS Owned
assertions.

INFORMATION_SCHEMA.ATTRIBUTES Owned user-
defined type
attributes.

438 Chapter 13 Data Dictionary Views

INFORMATION_SCHEMA.CHARACTER_SETS Accessible
character sets.

INFORMATION_SCHEMA.CHECK_CONSTRAINTS Owned check
constraints.

INFORMATION_SCHEMA.COLLATIONS Accessible
collations.

INFORMATION_SCHEMA.COLUMN_DOMAIN_USAGE Columns
defined using
owned
domains.

INFORMATION_SCHEMA.COLUMN_PRIVILEGES Privileges
granted on
accessible
table columns.

INFORMATION_SCHEMA.COLUMN_UDT_USAGE Columns
defined using
owned user-
defined types.

INFORMATION_SCHEMA.COLUMNS Accessible
table columns.

INFORMATION_SCHEMA.CONSTRAINT_COLUMN_USAGE Columns
referenced by
owned
referential,
unique, check
or assertion
constraints.

INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE Tables on
which owned
referential,
unique, check
or assertion
constraints are
defined.

INFORMATION_SCHEMA.DIRECT_SUPERTABLES Information
about
inheritance
relations
between
tables.

View name Description

Mimer SQL Version 11.0 439
SQL Reference Manual

INFORMATION_SCHEMA.DIRECT_SUPERTYPES Information
about
inheritance
relations
between user-
defined types.

INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS Constraints of
accessible
domains.

INFORMATION_SCHEMA.DOMAINS Accessible
domains.

INFORMATION_SCHEMA.EXT_ACCESS_PATHS All explicit
and implicit
indexes for
tables.

INFORMATION_SCHEMA.EXT_COLLATION_DEFINITIONS Collation
definitions.

INFORMATION_SCHEMA.EXT_COLUMN_OFFSET_INFORMATION Physical
structure of
columns in a
table.

INFORMATION_SCHEMA.EXT_COLUMN_REMARKS Comments for
accessible
table columns.

INFORMATION_SCHEMA.EXT_DATABANKS Accessible
databanks.

INFORMATION_SCHEMA.EXT_IDENTS Accessible
authorization
idents.

INFORMATION_SCHEMA.EXT_INDEX_COLUMN_USAGE Accessible
table columns
on which
indexes
depend.

INFORMATION_SCHEMA.EXT_INDEXES Accessible
indexes.

INFORMATION_SCHEMA.EXT_OBJECT_IDENT_USAGE Accessible
objects
created by
authorization
ident.

View name Description

440 Chapter 13 Data Dictionary Views

INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_USED Accessible
objects used
by other
objects.

INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_USING Accessible
objects using
other objects.

INFORMATION_SCHEMA.EXT_OBJECT_PRIVILEGES Object
privileges
granted to an
authorization
ident.

INFORMATION_SCHEMA.EXT_ONEROW Dummy view
with one
single row.

INFORMATION_SCHEMA.EXT_ROUTINE_MODULE_DEFINITION Source
definition for
routines
defined in
modules.

INFORMATION_SCHEMA.EXT_ROUTINE_MODULE_USAGE Accessible
routines in a
module.

INFORMATION_SCHEMA.EXT_SCHEMAS Schemas
containing
objects to
which current
user have
some access.

INFORMATION_SCHEMA.EXT_SEQUENCES Accessible
sequences.

INFORMATION_SCHEMA.EXT_SHADOWS Accessible
shadows.

INFORMATION_SCHEMA.EXT_SOURCE_DEFINITION Text
definition for
owned
objects.

View name Description

Mimer SQL Version 11.0 441
SQL Reference Manual

INFORMATION_SCHEMA.EXT_STATEMENT_DEFINITION Shows a
textual
definition of
the
precompiled
statements
available to
the current
ident.

INFORMATION_SCHEMA.EXT_STATEMENTS Shows all
precompiled
statements
available to
the current
ident.

INFORMATION_SCHEMA.EXT_STATISTICS Statistics for
table.

INFORMATION_SCHEMA.EXT_SYNONYMS Accessible
synonyms.

INFORMATION_SCHEMA.EXT_SYSTEM_PRIVILEGES System
privileges
granted to an
authorization
ident.

INFORMATION_SCHEMA.EXT_TABLE_DATABANK_USAGE Owned
databanks on
which tables
depend.

INFORMATION_SCHEMA.KEY_COLUMN_USAGE Table
columns
constrained as
keys by
accessible
tables.

INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS Accessible
method’s
parameters.

INFORMATION_SCHEMA.METHOD_SPECIFICATIONS Accessible
method
specifications.

INFORMATION_SCHEMA.MODULES Owned
modules.

View name Description

442 Chapter 13 Data Dictionary Views

INFORMATION_SCHEMA.PARAMETERS Parameters of
accessible
routines.

INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS Accessible
tables’
referential
constraints.

INFORMATION_SCHEMA.ROUTINE_COLUMN_USAGE Owned table
columns on
which
routines
depend.

INFORMATION_SCHEMA.ROUTINE_PRIVILEGES Privileges
held on
accessible
routines.

INFORMATION_SCHEMA.ROUTINE_TABLE_USAGE Owned tables
on which
routines
depend.

INFORMATION_SCHEMA.ROUTINES Accessible
routines.

INFORMATION_SCHEMA.SCHEMATA Owned
schemas.

INFORMATION_SCHEMA.SEQUENCES Accessible
sequences.

INFORMATION_SCHEMA.SQL_FEATURES Features and
subfeatures of
SQL-2016.

INFORMATION_SCHEMA.SQL_LANGUAGES Conformance
levels for
supported
SQL language
options and
dialects.

INFORMATION_SCHEMA.SQL_SIZING Sizing items.

INFORMATION_SCHEMA.TABLE_CONSTRAINTS Accessible
tables’
constraints.

INFORMATION_SCHEMA.TABLE_PRIVILEGES Privileges
held on
accessible
tables.

View name Description

Mimer SQL Version 11.0 443
SQL Reference Manual

INFORMATION_SCHEMA.TABLES Accessible
tables.

INFORMATION_SCHEMA.TRANSLATIONS Accessible
character set
translations.

INFORMATION_SCHEMA.TRIGGER_COLUMN_USAGE Owned
columns
referenced
from a trigger
action.

INFORMATION_SCHEMA.TRIGGER_TABLE_USAGE Tables on
which owned
triggers
depend.

INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS Owned
columns
referenced
from
UPDATE
trigger
column lists.

INFORMATION_SCHEMA.TRIGGERS Owned
triggers.

INFORMATION_SCHEMA.UDT_PRIVILEGES Privileges for
accessible
user-defined
types.

INFORMATION_SCHEMA.USAGE_PRIVILEGES USAGE
privilege held
on accessible
objects.

INFORMATION_SCHEMA.USER_DEFINED_TYPES Owned user-
defined types.

INFORMATION_SCHEMA.VIEW_COLUMN_USAGE Columns on
which owned
views depend.

INFORMATION_SCHEMA.VIEW_TABLE_USAGE Tables on
which owned
views depend.

INFORMATION_SCHEMA.VIEWS Accessible
views.

View name Description

444 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.ASSERTIONS

INFORMATION_SCHEMA.ASSERTIONS
The ASSERTIONS system view shows all assertions owned by the current ident.

INFORMATION_SCHEMA.ATTRIBUTES
Contains one row for each attribute of a user-defined type accessible to the current user

Column name Data type Description

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the assertion.

CONSTRAINT_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the assertion.

CONSTRAINT_NAME NCHAR
VARYING(128)

The name of the assertion.

IS_DEFERRABLE VARCHAR(3) One of:
YES = the assertion is deferrable
NO = the assertion is not deferrable

INITIALLY_DEFERRED VARCHAR(3) One of:
YES = the assertion is immediate
NO = the assertion is deferred.

Column name Data type Description

UDT_CATALOG NCHAR
VARYING(128)

Name of catalog containing user-
defined type.

UDT_SCHEMA NCHAR
VARYING(128)

Name of schema containing user-
defined type

UDT_NAME NCHAR
VARYING(128)

Name of user-defined type

ATTRIBUTE_NAME NCHAR
VARYING(128)

Name of attribute

ORDINAL_POSITION INTEGER Ordinal position for attribute within
user-defined type

ATTRIBUTE_DEFAULT NCHAR
VARYING(400)

Default value for attribute

IS_NULLABLE VARCHAR(3) Nullability attribute
YES = The attribute can be null
NO = The attribute can not be null

Mimer SQL Version 11.0 445
SQL Reference Manual

DATA_TYPE VARCHAR(30) The type of the attribute. One of:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHARACTER LARGE
OBJECT
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED

CHARACETR_MAXIMUM_
LENGTH

INTEGER For a character data type, this shows
the maximum length in characters.
For all other data types it is the null
value.

CHARACTER_OCTET_
LENGTH

INTEGER For a character data type, this shows
the maximum length in octets. For all
other data types it is the null value. It
the same value as
CHARACTER_MAXIMUM length for
single octet data types.

NUMERIC_PRECISION INTEGER For NUMERIC data types, this
shows the total number of significant
digits allowed in the column. For all
other data types it is the null value.

NUMERIC_PRECISION_
RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in a
binary or decimal radix. The numeric
radix is always decimal in Mimer
SQL, therefore the value 10 is always
shown for numeric data types. For all
other data types it is the null value.

Column name Data type Description

446 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.ATTRIBUTES

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL, this
defines the total number of
significant digits to the right of the
decimal point. For BIGINT,
INTEGER and SMALLINT, this is 0.
For all other data types, it is the null
value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
INTERVAL data types, this column
contains the number of digits of
precision for the fractional seconds
component. For other data types it is
the null value.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the
interval qualifier. Can be one of:
YEAR
YEAR TO MONTH
DAY
HOUR
MINUTE
SECOND
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND.
For other data types it is the null
value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision (see
Interval Literals on page 67). For
other data types it is the null value.

CHARACTER_SET_
CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the character set used by the attribute

CHARACTER_SET_
SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the character set used by the attribute

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set used by
the attribute

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the collation used by the attribute.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the collation used by the attribute.

Column name Data type Description

Mimer SQL Version 11.0 447
SQL Reference Manual

INFORMATION_SCHEMA.CHARACTER_SETS
The CHARACTER_SETS system view describes each character set to which the current
ident has USAGE privilege.

COLLATION_NAME NCHAR
VARYING(128)

The name of the collation used by the
attribute.

USER_DEFINED_TYPE_
CATALOG

NCHAR
VARYING(128)

The name of the user-defined type
catalog used by the attribute.

USER_DEFINED_TYPE_
SCHEMA

NCHAR
VARYING(128)

The name of the user-defined type
schema used by the attribute.

USER_DEFINED_TYPE_
NAME

NCHAR
VARYING(128)

The name of the user-defined type
name

Column name Data type Description

Column name Data type Description

CHARACTER_SET_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the character set.

CHARACTER_SET_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the character set.

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set.

FORM_OF_USE NCHAR
VARYING(128)

A user-defined name that
indicates the form-of-use of the
character set.

NUMBER_OF_CHARACTERS INTEGER The number of characters in the
character set.

DEFAULT_COLLATE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the default collation
for the character set.

DEFAULT_COLLATE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the default collation
for the character set.

DEFAULT_COLLATE_NAME NCHAR
VARYING(128)

The name of the default
collation for the character set.

448 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.CHECK_CONSTRAINTS

INFORMATION_SCHEMA.CHECK_CONSTRAINTS
The CHECK_CONSTRAINTS system view lists the check constraints that are owned by the
current ident.

INFORMATION_SCHEMA.COLLATIONS
The COLLATIONS system view describes each collation to which the current ident has
access.

Column name Data type Description

CONSTRAINT_CATALOG NCHAR VARYING(128) The name of the catalog
containing the check constraint.

CONSTRAINT_SCHEMA NCHAR VARYING(128) The name of the schema
containing the check constraint.

CONSTRAINT_NAME NCHAR VARYING(128) The name of the check
constraint.

CHECK_CLAUSE NCHAR VARYING(200) The character representation of
the search condition used in the
check clause.
If the character representation
does not fit, the value is null. In
that case the definition can be
found in
INFORMATION_SCHEMA.EXT_
SOURCE_DEFINITION.

Column name Data type Description

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the collation.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the collation.

COLLATION_NAME NCHAR
VARYING(128)

Name of the collation.

CHARACTER_SET_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the character set on
which the collation is defined.

CHARACTER_SET_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the character set on
which the collation is defined.

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set on
which the collation is defined.

Mimer SQL Version 11.0 449
SQL Reference Manual

INFORMATION_SCHEMA.COLUMN_DOMAIN_USA
GE

The COLUMN_DOMAIN_USAGE system view lists the table columns which depend on
domains owned by the current ident.

INFORMATION_SCHEMA.COLUMN_PRIVILEGES
The COLUMN_PRIVILEGES system view lists privileges on table columns that were
granted by the current ident and privileges on table columns that were granted to the
current ident or to PUBLIC.

PAD_ATTRIBUTE VARCHAR(20) One of the following values:
NO PAD = the collation has the no
pad attribute
PAD SPACE = the collation has the
pad space attribute.

Column name Data type Description

Column name Data type Description

DOMAIN_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
domain.

DOMAIN_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
domain.

DOMAIN_NAME NCHAR
VARYING(128)

The name of the domain.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

COLUMN_NAME NCHAR
VARYING(128)

The name of the column.

Column name Data type Description

GRANTOR NCHAR
VARYING(128)

The name of the ident who granted the
privilege.

GRANTEE NCHAR
VARYING(128)

The name of the ident to whom the
privilege was granted. Granting a privilege
to PUBLIC will result in only one row (per
privilege granted) in this view and the
name PUBLIC will be shown.

450 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.COLUMN_UDT_USAGE

INFORMATION_SCHEMA.COLUMN_UDT_USAGE
Contains one row for each column using a user-defined type created by the current user.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table containing the
column on which the column privilege has
been granted.

COLUMN_NAME NCHAR
VARYING(128)

The name of the column on which the
privilege has been granted.

PRIVILEGE_TYPE VARCHAR(20) A value describing the type of the column
privilege that was granted. One of:
INSERT
REFERENCES
SELECT
UPDATE.
Note that when multiple table column
privileges are granted to the same user at
the same time (e.g. when the keyword ALL
is used), multiple rows appear in this view
(one for each privilege granted).

IS_GRANTABLE VARCHAR(3) One of:
YES = the privilege is held WITH GRANT
OPTION
NO = the privilege is not held WITH GRANT
OPTION.

Column name Data type Description

Column name Data type Description

UDT_CATALOG NCHAR
VARYING(128)

Name of catalog containing user-defined
type.

UDT_SCHEMA NCHAR
VARYING(128)

Name of schema containing user-defined
type

UDT_NAME NCHAR
VARYING(128)

Name of user-defined type

TABLE_CATALOG NCHAR
VARYING(128)

Catalog name for table using UDT

TABLE_SCHEMA NCHAR
VARYING(128)

Schema name for table using UDT

TABLE_NAME NCHAR
VARYING(128)

Name of table using UDT

Mimer SQL Version 11.0 451
SQL Reference Manual

INFORMATION_SCHEMA.COLUMNS
The COLUMNS system view lists the table columns to which the current ident has access.

COLUMN_NAME NCHAR
VARYING(128)

Name of column using UDT

Column name Data type Description

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
table or view.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
table or view.

TABLE_NAME NCHAR
VARYING(128)

The name of the table or view.

COLUMN_NAME NCHAR
VARYING(128)

The name of the column of the table or
view.

ORDINAL_POSITION INTEGER The ordinal position of the column in
the table. The first column in the table
is number 1.

452 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.COLUMNS

COLUMN_DEFAULT NCHAR
VARYING(200)

This shows the default value for the
column.
If the default value is a character
string, the value shown is the string
enclosed in single quotes.
If the default value is a numeric literal,
the value is shown in its original
character representation without
enclosing quotes.
If the default value is a DATE, TIME or
TIMESTAMP, the value shown is the
appropriate keyword (e.g. DATE)
followed by the literal representation
of the value enclosed in single quotes
(see DATE, TIME and TIMESTAMP
Literals on page 67 for a description of
DATE, TIME and TIMESTAMP literals).
If the default value is a pseudo-literal,
the value shown is the appropriate
keyword (e.g. CURRENT_DATE)
without enclosing quotes.
If the default value is the null value, the
value shown is the keyword NULL
without enclosing quotes.
If the default value cannot be
represented without truncation, then
TRUNCATED is shown without
enclosing quotes.
If no default value was specified then
its value is the null value.
The value of COLUMN_DEFAULT is
syntactically suitable for use in
specifying default-value in a
CREATE TABLE or ALTER TABLE
statement (except when TRUNCATED is
shown).

IS_NULLABLE VARCHAR(3) One of:
NO = the column is not nullable,
according to the rules in the
international standard
YES = the null value is allowed in the
column.

Column name Data type Description

Mimer SQL Version 11.0 453
SQL Reference Manual

DATA_TYPE VARCHAR(30) Identifies the data type of the column.
Can be one of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

LOB_MAXIMUM_LENGTH BIGINT For the LOB data type, this shows the
maximum length in bytes. For all other
data types it is the null value.

CHARACTER_MAXIMUM_
LENGTH

INTEGER For CHARACTER, LOB and BINARY
data types, this shows the maximum
length in characters or bytes. For all
other data types it is the null value.

CHARACTER_OCTET_
LENGTH

INTEGER For CHARACTER, LOB and BINARY
data types, this shows the maximum
length in octets. For all other data types
it is the null value.
For single octet character sets, this is
the same as
CHARACTER_MAX_LENGTH.

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of significant digits
allowed in the column. For all other
data types it is the null value.

Column name Data type Description

454 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.COLUMNS

NUMERIC_PRECISION_
RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in a
binary or decimal radix. The numeric
radix is always decimal in Mimer
SQL, therefore the value 10 is always
shown for numeric data types. For all
other data types it is the null value.

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL, this
defines the total number of significant
digits to the right of the decimal point.
For BIGINT, INTEGER and
SMALLINT, this is 0.
For all other data types, it is the null
value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
INTERVAL data types, this column
contains the number of digits of
precision for the fractional seconds
component.
For other data types it is the null value.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the interval
qualifier. Can be one of:
YEAR
YEAR TO MONTH
DAY
HOUR
MINUTE
SECOND
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND.
For other data types it is the null value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision (see Interval
Qualifiers on page 55).
For other data types it is the null value.

CHARACTER_SET_
CATALOG

NCHAR
VARYING(128)

The name of the catalog containing the
character set used by the column.

CHARACTER_SET_
SCHEMA

NCHAR
VARYING(128)

The name of the schema containing the
character set used by the column.

Column name Data type Description

Mimer SQL Version 11.0 455
SQL Reference Manual

INFORMATION_SCHEMA.CONSTRAINT_COLUMN_
USAGE

The CONSTRAINT_COLUMN_USAGE system view lists the table columns on which
constraints (referential constraints, unique constraints, check constraints and assertions)
that are owned by the current ident are defined.

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set used by
the column.

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
collation used by the column.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
collation used by the column.

COLLATION_NAME NCHAR
VARYING(128)

The name of the collation used by the
column.

DOMAIN_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
domain used by the column.

DOMAIN_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
domain used by the column.

DOMAIN_NAME NCHAR
VARYING(128)

The name of the domain used by the
column.

USER_DEFINED_TYPE_
CATALOG

NCHAR
VARYING(128)

The name of the user-defined type
catalog.

USER_DEFINED_TYPE_
SCHEMA

NCHAR
VARYING(128)

The name of the user-defined type
schema.

USER_DEFINED_TYPE_
NAME

NCHAR
VARYING(128)

The name of the user-defined type
name.

COLUMN_CARD BIGINT Number of unique values in column as
set by last UPDATE STATISTICS
command for table.

Column name Data type Description

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

COLUMN_NAME NCHAR
VARYING(128)

The name of the table column.

456 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.CONSTRAINT_TABLE_USAGE

INFORMATION_SCHEMA.CONSTRAINT_TABLE_U
SAGE

The CONSTRAINT_TABLE_USAGE system view lists the tables on which constraints
(referential constraints, unique constraints, check constraints and assertions) that are
owned by the current ident are defined.

INFORMATION_SCHEMA.DIRECT_SUPERTABLES
The DIRECT_SUPERTABLES system view lists each table created under another table.

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the constraint.

CONSTRAINT_NAME NCHAR
VARYING(128)

The name of the constraint.

Column name Data type Description

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the constraint.

CONSTRAINT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the constraint.

CONSTRAINT_NAME NCHAR
VARYING(128)

The name of the constraint.

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

SUPERTABLE_NAME NCHAR
VARYING(128)

The name of the supertable.

Mimer SQL Version 11.0 457
SQL Reference Manual

INFORMATION_SCHEMA.DIRECT_SUPERTYPES
The DIRECT_SUPERTYPES system view lists each user-defined type created under
another user-defined type.

INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS
The DOMAIN_CONSTRAINTS system view lists the domain constraints of domains to
which the current ident has access.

Column name Data type Description

UDT_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the user-defined type.

UDT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the user-defined type.

UDT_NAME NCHAR
VARYING(128)

The name of the user-defined
type.

SUPERTYPE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the supertype.

SUPERTYPE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the supertype.

SUPERTYPE_NAME NCHAR
VARYING(128)

The name of the supertype.

Column name Data type Description

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the constraint.

CONSTRAINT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the constraint.

CONSTRAINT_NAME NCHAR
VARYING(128)

Name of the constraint.

DOMAIN_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the domain on which
the constraint is defined.

DOMAIN_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the domain on which
the constraint is defined.

DOMAIN_NAME NCHAR
VARYING(128)

The name of the domain on
which the constraint is defined.

IS_DEFERRABLE VARCHAR(3) One of:
YES = the constraint is
deferrable
NO = the constraint is not
deferrable.

458 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.DOMAINS

INFORMATION_SCHEMA.DOMAINS
The DOMAINS system view describes each domain to which the current ident has USAGE
privilege.

INITIALLY_DEFERRED VARCHAR(3) One of:
YES = the constraint is
immediate
NO = the constraint is deferred.

Column name Data type Description

Column name Data type Description

DOMAIN_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the domain.

DOMAIN_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the domain.

DOMAIN_NAME NCHAR
VARYING(128)

Name of the domain.

DATA_TYPE VARCHAR(30) Identifies the data type of the
domain.
Can be one of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER
 VARYING
NATIONAL CHAR LARGE
 OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP.

Mimer SQL Version 11.0 459
SQL Reference Manual

LOB_MAXIMUM_LENGTH BIGINT For the LOB data type, this
shows the maximum length in
bytes. For all other data types it
is the null value.

CHARACTER_MAXIMUM_
LENGTH

INTEGER For CHARACTER, LOB and
BINARY data types, this shows
the maximum length in
characters or bytes. For all
other data types it is the null
value.

CHARACTER_OCTET_LENGTH INTEGER For CHARACTER, LOB and
BINARY data types, this shows
the maximum length in octets.
For all other data types it is the
null value.
For single octet character sets,
this is the same as
CHARACTER_MAX_LENGTH.

CHARACTER_SET_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the character set
used by the domain. Null if not
CHARACTER data type.

CHARACTER_SET_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the character set
used by the domain. Null if not
CHARACTER data type.

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set
used by the domain. Null if not
CHARACTER data type.

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the default collation
for the character set. Null if not
CHARACTER data type.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the default collation
for the character set. Null if not
CHARACTER data type.

COLLATION_NAME NCHAR
VARYING(128)

The name of the default
collation for the character set.
Null if not CHARACTER data
type.

Column name Data type Description

460 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.DOMAINS

NUMERIC_PRECISION INTEGER For NUMERIC data types, this
shows the total number of
significant digits allowed in
the column. For all other data
types it is the null value.

NUMERIC_PRECISION
_RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is
given in a binary or decimal
radix. The numeric radix is
always decimal in Mimer
SQL, therefore the value 10 is
always shown for numeric data
types. For all other data types it
is the null value.

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL,
this defines the total number of
significant digits to the right of
the decimal point. For
BIGINT, INTEGER and
SMALLINT, this is 0. For all
other data types, it is the null
value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP
and INTERVAL data types, this
column contains the number of
digits of precision for the
fractional seconds component.
For other data types it is the
null value.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this
is a character string specifying
the interval qualifier for the
named interval data type (see
Interval Qualifiers on
page 55). For other data types
it is the null value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this
is the number of significant
digits for the interval leading
precision (see Interval
Qualifiers on page 55). For
other data types it is the null
value.

Column name Data type Description

Mimer SQL Version 11.0 461
SQL Reference Manual

INFORMATION_SCHEMA.EXT_ACCESS_PATHS
The EXT_ACCESS_PATHS view shows all explicit and implicit indexes on tables that are
accessible by the current ident. All columns in the indexes are displayed including the
primary key columns that are automatically appended to an index.

DOMAIN_DEFAULT NCHAR
VARYING(200)

This shows the default value
for the domain.
For more information, see
INFORMATION_SCHEMA.C
OLUMNS on page 451

Column name Data type Description

Column name Data type Description

INDEX_CATALOG NCHAR
VARYING(128)

Catalog name for the index.

INDEX_SCHEMA NCHAR
VARYING(128)

Schema name for the index.

INDEX_NAME NCHAR
VARYING(128)

Index name for the secondary
index. For implicit indexes this
is the name of the constraint that
is the reason for the index. This
can be constraints such as
primary key, unique, foreign key
etc.

TABLE_NAME NCHAR
VARYING(128

Name of the table on which the
index is defined. The table
always has the same catalog and
and schema as the index itself.

INDEX_TYPE VARCHAR(20) One of:
FOREIGN KEY
INDEX
INTERNAL KEY
PRIMARY KEY
UNIQUE
UNIQUE INDEX.

COLUMN_NAME NCHAR
VARYING(128)

Name of column present in
index.

ORDINAL_POSITION INTEGER Ordinal position for the column
within the index.

COLUMN_SOURCE VARCHAR(20) Used to distinguish which
columns are the index columns
and which columns comes from
the primary key of the base table.

462 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_COLLATION_DEFINITIONS

INFORMATION_SCHEMA.EXT_COLLATION_DEFINI
TIONS

The EXT_COLLATION_DEFINITIONS system view shows collation definitions.

COLLATION_CATALOG NCHAR
VARYING(128)

Catalog name for the collation
used by the index column.
The value is null if the column is
not of CHARACTER type.

COLLATION_SCHEMA NCHAR
VARYING(128)

Schema name for the collation
used by the index column.
The value is null if the column is
not of CHARACTER type.

COLLATION_NAME NCHAR
VARYING(128)

Name of the collation used by
the index column.
The value is null if the column is
not of CHARACTER type.

INDEX_ALGORITHM VARCHAR(20) For secondary index this
indicates the type of index.
SIMPLE is used for ordinary
indexes. Other values include
WORD_SEARCH and
PINYIN_START.
Implicit indexes has null in this
column.

Column name Data type Description

Column name Data type Description

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the collation.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the collation.

COLLATION_NAME NCHAR
VARYING(128)

Name of the collation.

COLLATION_VERSION VARCHAR(20) Version of the collation.

COLLATION_DEFINITION VARCHAR(400) Delta string defining the
collation.

COLLATION_SEQNO INTEGER Sequence number.

BASE_COLLATION_CATALOG NCHAR
VARYING(128)

The catalog for the collation on
which the current collation is
based.

Mimer SQL Version 11.0 463
SQL Reference Manual

INFORMATION_SCHEMA.EXT_COLUMN_OFFSET_
INFORMATION

The EXT_COLUMN_OFFSET_INFORMATION system view shows the physical layout of
columns in tables accessible by current user.

BASE_COLLATION_SCHEMA NCHAR
VARYING(128)

The schema for the collation on
which the current collation is
based.

BASE_COLLATION_NAME NCHAR
VARYING(128)

The name of the collation on
which the current collation is
based.

Column name Data type Description

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

TABLE_SYSID INTEGER System identifier for the
table.

COLUMN_NAME NCHAR
VARYING(128)

Name of the column.

ORDINAL_POSITION INTEGER The ordinal position of the
column in the table. The first
column in the table is
number 1.

IS_NULLABLE CHARACTER
VARYING(3)

One of:
NO = the column is not
nullable, according to the
rules in the international
standard
YES = the null value is
allowed in the column.

464 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_COLUMN_OFFSET_INFORMATION

DATA_TYPE CHARACTER
VARYING(30)

Identifies the data type of the
domain.
Can be one of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE
OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER
VARYING
NATIONAL CHAR LARGE
OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

LOB_MAXIMUM_LENGTH BIGINT For the LOB data type, this
shows the maximum length
in bytes. For all other data
types it is the null value.

CHARACTER_MAXIMUM_LENGTH INTEGER For CHARACTER, BINARY,
CHARACTER LARGE OBJECT
and BINARY LARGE OBJECT
data types, this shows the
maximum length in
characters or bytes as
appropriate.
For all other data types it is
the null value.

Column name Data type Description

Mimer SQL Version 11.0 465
SQL Reference Manual

CHARACTER_OCTET_LENGTH INTEGER For a CHARACTER, BINARY,
CHARACTER LARGE OBJECT
and BINARY LARGE OBJECT
data types, this shows the
maximum length in octets.
For all other data types it is
the null value. (For single
octet character sets, this is
the same as
CHARACTER_MAXIMUM_
LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types, this
shows the total number of
decimal digits allowed in the
column.
For all other data types it is
the null value.

NUMERIC_SCALE INTEGER This defines the total number
of significant digits to the
right of the decimal point.
For INTEGER and
SMALLINT, this is 0.
For CHARACTER, VARCHAR,
DATETIME, FLOAT,
INTERVAL, REAL and
DOUBLE PRECISION data
types, it is the null value.

DATETIME_PRECISION INTEGER For DATE, TIME,
TIMESTAMP and interval
data types, this column
contains the number of digits
of precision for the fractional
seconds component.
For other data types it is the
null value.

INTERVAL_TYPE CHARACTER
VARYING(30)

For INTERVAL data types,
this is a character string
specifying the interval
qualifier for the named
interval data type, see the
Mimer SQL Reference
Manual.
For other data types it is the
null value.

Column name Data type Description

466 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_COLUMN_REMARKS

INFORMATION_SCHEMA.EXT_COLUMN_REMARK
S

The EXT_COLUMN_REMARKS system view shows remarks for columns that are accessible
by the current ident.

INFORMATION_SCHEMA.EXT_DATABANKS
The EXT_DATABANKS system view shows databanks on which the current ident has table
privilege.
An ident with the system privileges BACKUP or SHADOW may see all databanks in the
system.

INTERVAL_PRECISION INTEGER For INTERVAL data types,
this is the number of
significant digits for the
interval leading precision,
see the Mimer SQL
Reference Manual.
For other data types it is the
null value.

COLUMN_OFFSET INTEGER Internal offset for column in
the table.

COLUMN_LENGTH INTEGER Internal length of column.

VARCHAR_OFFSET INTEGER Internal offset for field
containing actual length for a
varying length column.

Column name Data type Description

Column name Data type Description

TABLE_CATALOG NCHAR VARYING(128) The name of the catalog containing
the table.

TABLE_SCHEMA NCHAR VARYING(128) The name of the schema containing
the table.

TABLE_NAME NCHAR VARYING(128) The name of the table.

COLUMN_NAME NCHAR VARYING(128) Name of the column.

REMARKS NCHAR VARYING(254) Remark for column.

Column name Data type Description

DATABANK_CREATOR NCHAR
VARYING(128)

The name of the authorization ident that
created the databank.

Mimer SQL Version 11.0 467
SQL Reference Manual

INFORMATION_SCHEMA.EXT_IDENTS
The EXT_IDENTS system view shows authorization idents either created by the current
ident or those on which the current ident has execute or member privilege.

DATABANK_NAME NCHAR
VARYING(128)

The name of the databank.

DATABANK_TYPE VARCHAR(20) One of:
LOG
READ ONLY
TEMPORARY
TRANSACTION
WORK.

IS_ONLINE VARCHAR(3) One of:
YES = the databank is online
NO = the databank is offline.

FILE_NUMBER INTEGER Ordinal number for databank file.

FILE_NAME NCHAR
VARYING(256)

Filename for databank.

MAXSIZE BIGINT Maximum size for databank file, in kilo
bytes

GOALSIZE BIGINT Ideal size for databank file, in kilo bytes

MINSIZE BIGINT Minimum size for databank file, in kilo
bytes

IS_REMOVABLE VARCHAR(3) One of:
NO = databank is not removable
YES = databank is removable

BACKUP_DATE TIMESTAMP Last backup date for databank.

Column name Data type Description

Column name Data type Description

IDENT_CREATOR NCHAR
VARYING(128)

The name of the authorization ident that
created the ident.

IDENT_NAME NCHAR
VARYING(128)

The name of the ident.

IDENT_LOGIN NCHAR
VARYING(128)

OS_USER login name.
The value is null value if no OS_USER is
defined.

HAS_PASSWORD VARCHAR(3) This column is only kept for backward
compatibility with older versions. The
value is always:
NO

468 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_INDEX_COLUMN_USAGE

INFORMATION_SCHEMA.EXT_INDEX_COLUMN_U
SAGE

The EXT_INDEX_COLUMN_USAGE system view shows on which table columns an
secondary index is defined. Only indexes defined on table accessible by the current ident
is shown.

IDENT_TYPE VARCHAR(20) One of:
GROUP
PROGRAM
USER.

IDENT_SCHEMA VARCHAR(3) One of:
YES = the ident has a schema
NO = the ident is created without schema

Column name Data type Description

Column name Data type Description

INDEX_CATALOG NCHAR
VARYING(128)

Catalog name for the secondary index.

INDEX_SCHEMA NCHAR
VARYING(128)

Schema name for the secondary index.

INDEX_NAME NCHAR
VARYING(128)

Name of the index.

IS_UNIQUE VARCHAR(3) One of:
YES = the index may not contain
duplicates
NO = the index may contain duplicates.

TABLE_NAME NCHAR
VARYING(128)

Name of the table on which the index
is defined.

COLUMN_NAME NCHAR
VARYING(128)

Name of column present in index.

IS_ASCENDING VARCHAR(3) One of:
YES = the sort order of the index is
ascending
NO = the sort order of the index is
descending.

ORDINAL_POSITION INTEGER Ordinal position for the column within
the index.

COLLATION_CATALOG NCHAR
VARYING(128)

Catalog name for the collation. The
value is null if the column is not of
CHARACTER type.

COLLATION_SCHEMA NCHAR
VARYING(128)

Schema name for the collation. The
value is null if the column is not of
CHARACTER type.

Mimer SQL Version 11.0 469
SQL Reference Manual

INFORMATION_SCHEMA.EXT_INDEXES
The EXT_INDEXES system view shows secondary indexes defined on tables that are
accessible by the current ident.

INFORMATION_SCHEMA.EXT_OBJECT_IDENT_US
AGE

The EXT_OBJECT_IDENT system view shows objects accessible by the current ident.

COLLATION_NAME NCHAR
VARYING(128)

Name of the collation. The value is
null if the column is not of CHARACTER
type.

INDEX_ALGORITHM CHARACTER
VARYING(20)

Type of index algorithm. SIMPLE or
WORD_SEARCH.

INDEX_DATA_TYPE CHARACTER
VARYING(30)

INDEX_SIZE INTEGER

INDEX_SCALE INTEGER

Column name Data type Description

Column name Data type Description

INDEX_CATALOG NCHAR
VARYING(128)

Catalog name for the secondary index.

INDEX_SCHEMA NCHAR
VARYING(128)

Schema name for the secondary index.

INDEX_NAME NCHAR
VARYING(128)

Name of the secondary index.

TABLE_NAME NCHAR
VARYING(128)

Name of the table on which the index is
defined.

IS_UNIQUE VARCHAR(3) One of:
YES = the index may not contain duplicates
NO = the index may contain duplicates.

Column name Data type Description

CREATOR_NAME NCHAR
VARYING(128)

Name of authorization ident that
created the object.

OBJECT_CATALOG NCHAR
VARYING(128)

Catalog name for the object.

OBJECT_SCHEMA NCHAR
VARYING(128)

Schema name for the object.

470 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_OBJECT_IDENT_USAGE

OBJECT_NAME NCHAR
VARYING(128)

Name of the object.

SPECIFIC_NAME NCHAR
VARYING(128)

Specific name for owned object if
object_type is one of
FUNCTION
METHOD
METHOD SPECIFICATION
PROCEDURE

Otherwise null.

OBJECT_TYPE VARCHAR(20) One of:
ASSERTION
BASE TABLE
CHARACTER SET
COLLATION
CONSTRAINT
DATABANK
DOMAIN
FUNCTION
IDENT
INDEX
METHOD
METHOD SPECIFICATION
MODULE
PROCEDURE
SCHEMA
SEQUENCE
SHADOW
STATEMENT
SYNONYM
TRIGGER
USER-DEFINED TYPE
VIEW.

CREATION_DATE TIMESTAMP Time when object was created.

ALTERATION_DATE TIMESTAMP Time when object was last altered.

IS_IMPLICIT VARCHAR(3) One of
YES - The object has been created
implicitly by Mimer when creating
other objects
NO - The object has been created
explicitly by the ident

REMARKS NCHAR
VARYING(254)

Remark for the object.

Column name Data type Description

Mimer SQL Version 11.0 471
SQL Reference Manual

INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_
USED

The EXT_OBJECT_OBJECT_USED system view shows which object that are used by an
object. The used and using objects must be accessible to the current ident.

Column name Data type Description

USED_OBJECT_TYPE VARCHAR(20) Object type for used object.
One of:
ASSERTION
BASE TABLE
CHARACTER SET
COLLATION
DOMAIN
FUNCTION
INDEX
METHOD
METHOD SPECIFICATION
MODULE
PROCEDURE
SEQUENCE
SHADOW
TRIGGER
USER-DEFINED TYPE
VIEW.

USED_OBJECT_CATALOG NCHAR
VARYING(128)

Catalog name for used object.

USED_OBJECT_SCHEMA NCHAR
VARYING(128)

Schema name for used object.

USED_OBJECT_NAME NCHAR
VARYING(128)

Name of used object

USED_SPECIFIC_NAME NCHAR
VARYING(128)

Specific name for used object

472 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_USED

USING_OBJECT_TYPE VARCHAR(20) Object type for using object.
One of:
ASSERTION
BASE TABLE
CHARACTER SET
COLLATION
CONSTRAINT
DOMAIN
FUNCTION
INDEX
METHOD
METHOD SPECIFICATION
MODULE
PROCEDURE
SHADOW
STATEMENT
TRIGGER
USER-DEFINED TYPE
VIEW.

USING_OBJECT_CATALOG NCHAR
VARYING(128)

Catalog name for using object

USING_OBJECT_SCHEMA NCHAR
VARYING(128)

Schema name for using object

USING_OBJECT_NAME NCHAR
VARYING(128)

Name of using object

USING_SPECIFIC_NAME NCHAR
VARYING(128)

Specific name for using object

Column name Data type Description

Mimer SQL Version 11.0 473
SQL Reference Manual

INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_
USING

The EXT_OBJECT_OBJECT_USING system view shows which object that are using
another object. The used and using objects must be accessible to the current ident.

Column name Data type Description

USING_OBJECT_TYPE VARCHAR(20) Object type for using object.
One of:
ASSERTION
BASE TABLE
CHARACTER SET
COLLATION
CONSTRAINT
DOMAIN
FUNCTION
INDEX
METHOD
METHOD SPECIFICATION
MODULE
PROCEDURE
SHADOW
STATEMENT
TRIGGER
USER-DEFINED TYPE
VIEW.

USING_OBJECT_CATALOG NCHAR
VARYING(128)

Catalog name for using object.

USING_OBJECT_SCHEMA NCHAR
VARYING(128)

Schema name for using object.

USING_OBJECT_NAME NCHAR
VARYING(128)

Name of using object

USING_SPECIFIC_NAME NCHAR
VARYING(128)

Specific name for using object

474 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_OBJECT_PRIVILEGES

INFORMATION_SCHEMA.EXT_OBJECT_PRIVILEG
ES

The EXT_OBJECT_PRIVILEGES system view shows which object privileges that are
granted to an authorization ident. Either GRANTEE or GRANTOR should be equal to
current ident.

USED_OBJECT_TYPE VARCHAR(20) Object type for used object.
One of:
ASSERTION
BASE TABLE
CHARACTER SET
COLLATION
DOMAIN
FUNCTION
IDENT
METHOD
METHOD SPECIFICATION
MODULE
PROCEDURE
SEQUENCE
SHADOW
TRIGGER
USER-DEFINED TYPE
VIEW.

USED_OBJECT_CATALOG NCHAR
VARYING(128)

Catalog name for used object

USED_OBJECT_SCHEMA NCHAR
VARYING(128)

Schema name for used object

USED_OBJECT_NAME NCHAR
VARYING(128)

Name of used object

USED_SPECIFIC_NAME NCHAR
VARYING(128)

Specific name for used object

Column name Data type Description

Column name Data type Description

GRANTEE NCHAR
VARYING(128)

Name of authorization ident that has
received the privilege.

OBJECT_CATALOG NCHAR
VARYING(128)

Catalog name for object.

OBJECT_SCHEMA NCHAR
VARYING(128)

Schema name for object.

OBJECT_NAME NCHAR
VARYING(128)

Name of object on which privilege is
granted.

Mimer SQL Version 11.0 475
SQL Reference Manual

INFORMATION_SCHEMA.EXT_ONEROW
Dummy view containing one single row.

INFORMATION_SCHEMA.EXT_ROUTINE_MODULE
_DEFINITION

The EXT_ROUTINE_MODULE_DEFINITION system view lists definitions for routines
that are defined in a module.

OBJECT_TYPE VARCHAR(20) One of:
CHARACTER SET
DOMAIN
DATABANK
FUNCTION
IDENT
METHOD
METHOD SPECIFICATION
PROCEDURE
SEQUENCE
STATEMENT
USER-DEFINED TYPE.

PRIVILEGE_TYPE VARCHAR(20) One of:
EXECUTE
MEMBER
TABLE
USAGE
USER-DEFINED TYPE.

GRANTOR NCHAR
VARYING(128)

Name of authorization ident that granted
the privilege.

IS_GRANTABLE VARCHAR(3) One of:
YES = the grantee may grant the privilege
NO = the grantee may not grant the
privilege.

Column name Data type Description

Column name Data type Description

M CHAR(1) Contains the value M

Column name Data type Description

SPECIFIC_SCHEMA NCHAR
VARYING(128)

The name of the schema to which
the routine belongs.

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name of the routine

476 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_ROUTINE_MODULE_USAGE

INFORMATION_SCHEMA.EXT_ROUTINE_MODULE
_USAGE

The EXT_ROUTINE_MODULE_USAGE system view lists which routines that are defined in
a module.

INFORMATION_SCHEMA.EXT_SCHEMAS
The EXT_SCHEMAS system view shows schemas containing objects that are accessible to
the current ident.

INFORMATION_SCHEMA.EXT_SEQUENCES
The EXT_SEQUENCES system view shows sequences that are accessible to the current
ident.

ROUTINE_LENGTH INTEGER The total length of the routine
definition

ROUTINE_DEFINITION NCHAR
VARYING(400)

The source text for the routine

Column name Data type Description

Column name Data type Description

ROUTINE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
routine

ROUTINE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
routine

ROUTINE_NAME NCHAR
VARYING(128)

The name of the routine

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name of the routine

MODULE_NAME NCHAR
VARYING(128)

The name of the module in which the
routine is defined

Column name Data type Description

SCHEMA_NAME NCHAR
VARYING(128)

Schema name

Column name Data type Description

SEQUENCE_CATALOG NCHAR
VARYING(128)

Catalog name for the sequence.

SEQUENCE_SCHEMA NCHAR
VARYING(128)

Schema name for the sequence.

Mimer SQL Version 11.0 477
SQL Reference Manual

INFORMATION_SCHEMA.EXT_SHADOWS
The EXT_SHADOWS system view shows shadows. A user with shadow privilege may see
any shadow or shadows on databanks that are created by the user.

INFORMATION_SCHEMA.EXT_SOURCE_DEFINITI
ON

The EXT_SOURCE_DEFINITION system view shows a textual definition for owned
objects.

SEQUENCE_NAME NCHAR
VARYING(128)

Name of the sequence.

IS_UNIQUE VARCHAR(3) One of:
YES = the sequence will yield unique
values
NO = the sequence may repeat itself.

INITIAL_VALUE BIGINT The initial value for the sequence.

INCREMENT BIGINT The increment for the sequence.

MAXIMUM_VALUE BIGINT The maximum value for the sequence.

FLUSH_RATE BIGINT Number of sequence value allocations
between saving sequence data to disk.

DATABANK_NAME NCHAR
VARYING(128)

Name of databank where the sequence
table is located.

Column name Data type Description

Column name Data type Description

SHADOW_CREATOR NCHAR
VARYING(128)

Creator of the shadow.

SHADOW_NAME NCHAR
VARYING(128)

Name of the shadow.

DATABANK_NAME NCHAR
VARYING(128)

Name of databank.

IS_ONLINE VARCHAR(3) One of:
YES = the shadow is online
NO = the shadow is offline.

FILE_NUMBER INTEGER Ordinal number for physical file.

FILE_NAME NCHAR
VARYING(256)

Name of physical file for shadow.

Column name Data type Description

OBJECT_CATALOG NCHAR VARYING(128) Catalog name for object.

478 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_SOURCE_DEFINITION

OBJECT_SCHEMA NCHAR VARYING(128) Schema name for object.

OBJECT_NAME NCHAR VARYING(128) Name of object.

SPECIFIC_NAME NCHAR VARYING(128) Specific name for routine if
object type is one of:
CONSTRUCTOR METHOD
CONSTRUCTOR FUNCTION
FUNCTION
INSTANCE METHOD
PROCEDURE
STATIC METHOD

Otherwise the column is null.

COLUMN_NAME NCHAR VARYING(128) If object type is BASE TABLE
the column contains the name
of the column for which the
default value is defined.
If object type is USER-
DEFINED TYPE the column
contains the name of the
attribute for which the default
value is defined.
Otherwise the column is null.

OBJECT_TYPE VARCHAR(20) One of:
CONSTRAINT
FUNCTION
METHOD
METHOD SPECIFICATION
MODULE
PROCEDURE
TRIGGER
USER-DEFINED TYPE
VIEW.

SOURCE_DEFINITION NCHAR VARYING(400) Definition text for object.

SOURCE_LENGTH INTEGER Total length of source.

LINE_NUMBER INTEGER The line number within the
source.
1 = this is the first 400
characters of the source.
2 = this is the second 400
characters of the source, etc.

Column name Data type Description

Mimer SQL Version 11.0 479
SQL Reference Manual

INFORMATION_SCHEMA.EXT_STATEMENTS
The EXT_STATEMENTS view shows all precompiled statements available to the current
IDENT.

INFORMATION_SCHEMA.EXT_STATEMENT_DEFIN
ITION

The EXT_STATEMENT_DEFINITION view shows a textual definition of the precompiled
statements available to the current IDENT.

Column name Data type Description

STATEMENT_CATALOG NCHAR
VARYING(128)

Catalog name for precompiled
statement.

STATEMENT_SCHEMA NCHAR
VARYING(128)

Schema name for precompiled
statement.

STATEMENT_NAME NCHAR
VARYING(128)

Name of precompiled statement.

STATEMENT_TYPE INTEGER Type of precompiled statement.

STATEMENT_DEFINITION NCHAR
VARYING(200)

Definition text of precompiled
statement.
If the definition does not fit, the
null value is shown. In that case
the definition can be found in
INFORMATION_SCHEMA.EXT_S
TATEMENT_DEFINITION.

IS_SCROLLABLE VARCHAR(3) One of:
YES = a scrollable version of the
statement exists.
NO = no scrollable version of the
statement exists.

IS_FORWARD_ONLY VARCHAR(3) One of:
YES = a forward only version of
the statement exists.
NO = no forward only version of
the statement exists.

Column name Data type Description

STATEMENT_SCHEMA NCHAR
VARYING(128)

Schema name for precompiled
statement.

STATEMENT_NAME NCHAR
VARYING(128)

Name of precompiled
statement.

STATEMENT_SEQUENCE_NO INTEGER The sequence number.

480 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.EXT_STATISTICS

INFORMATION_SCHEMA.EXT_STATISTICS
The EXT_STATISTICS system view shows when statistics for a base table was collected.

INFORMATION_SCHEMA.EXT_SYNONYMS
The EXT_SYNONYMS system view shows synonyms on accessible tables.

STATEMENT_DEFINITION NCHAR
VARYING(400)

The definition text of the
precompiled statement. 400
characters for each sequence
number.

Column name Data type Description

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

Catalog name for base table.

TABLE_SCHEMA NCHAR
VARYING(128)

Schema name for base table.

TABLE_NAME NCHAR
VARYING(128)

Name of base table.

STATISTICS_GATHERED TIMESTAMP(2) Time when statistics for this
table was collected

CARDINALITY BIGINT Number of rows in table when
statistics was gathered.

Column name Data type Description

SYNONYM_CATALOG NCHAR
VARYING(128)

Catalog name for synonym.

SYNONYM_SCHEMA NCHAR
VARYING(128)

Schema name for synonym.

SYNONYM_NAME NCHAR
VARYING(128)

Name of synonym.

TABLE_CATALOG NCHAR
VARYING(128)

Catalog for table on which synonym is
defined.

TABLE_SCHEMA NCHAR
VARYING(128)

Schema name for table.

TABLE_NAME NCHAR
VARYING(128)

Name of table.

Mimer SQL Version 11.0 481
SQL Reference Manual

INFORMATION_SCHEMA.EXT_SYSTEM_PRIVILEG
ES

The EXT_SYSTEM_PRIVILEGES system view shows granted to or by the current ident.

INFORMATION_SCHEMA.EXT_TABLE_DATABANK
_USAGE

The EXT_TABLE_DATABANK_USAGE system view shows in which databank a base table
is located. Base tables accessible to the current ident are shown.

Column name Data type Description

GRANTEE NCHAR
VARYING(128)

Name of grantee.

PRIVILEGE_TYPE VARCHAR(20) One of:
BACKUP
DATABANK
IDENT
SCHEMA
SHADOW
STATISTICS.

GRANTOR NCHAR
VARYING(128)

Name of grantor.

IS_GRANTABLE VARCHAR(3) One of:
YES = grantee has grant option
NO = grantee has not grant option.

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

Catalog for table.

TABLE_SCHEMA NCHAR
VARYING(128)

Schema name for table.

TABLE_NAME NCHAR
VARYING(128)

Name of table.

DATABANK_CREATOR NCHAR
VARYING(128)

Name of authorization ident that
created databank.

DATABANK_NAME NCHAR
VARYING(128)

Name of databank.

482 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.KEY_COLUMN_USAGE

INFORMATION_SCHEMA.KEY_COLUMN_USAGE
The KEY_COLUMN_USAGE system view lists the table columns that are constrained as
keys and on accessible tables.

INFORMATION_SCHEMA.METHOD_SPECIFICATIO
N_PARAMETERS

Contains one row for each parameter for a method specification belonging to a user-
defined type on which the current user has USAGE privilege.

Column name Data type Description

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the table constraint.

CONSTRAINT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table or view.

CONSTRAINT_NAME NCHAR
VARYING(128)

The name of the table constraint.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the table or view.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table or view.

TABLE_NAME NCHAR
VARYING(128)

The name of the table or view.

COLUMN_NAME NCHAR
VARYING(128)

The name of the column.

ORDINAL_POSITION INTEGER The ordinal position of the
column within the key.

Column name Data type Description

SPECIFIC_CATALOG NCHAR
VARYING(128)

Name of catalog containing method
specification.

SPECIFIC_SCHEMA NCHAR
VARYING(128)

Name of schema containing method
specification.

SPECIFIC_NAME NCHAR
VARYING(128)

Name of method specification

ORDINAL_POSITION INTEGER Ordinal position for parameter

PARAMETER_MODE VARCHAR(5) One of
IN = The parameter mode is in.

Mimer SQL Version 11.0 483
SQL Reference Manual

IS_RESULT VARCHAR(3) One of
YES = The parameter is a result
parameter
NO = The parameter is not a result
parameter

PARAMETER_NAME NCHAR
VARYING(128)

Name of parameter

DATA_TYPE VARCHAR(30) The type of the parameter.
One of:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHARACTER LARGE
OBJECT
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED

CHARACETR_MAXIMUM_
LENGTH

INTEGER For a character data type, this shows
the maximum length in characters. For
all other data types it is the null value.

CHARACTER_OCTET_
LENGTH

INTEGER For a character data type, this shows
the maximum length in octets. For all
other data types it is the null value. It
the same value as
CHARACTER_MAXIMUM length for
single octet data types.

CHARACTER_SET_
CATALOG

NCHAR
VARYING(128)

The name of the catalog containing the
character set used by the parameter

CHARACTER_SET_
SCHEMA

NCHAR
VARYING(128)

The name of the schema containing the
character set used by the parameter

Column name Data type Description

484 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.METHOD_SPECIFICATION_PARAMETERS

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set used by
the parameter

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
collation used by the parameter.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
collation used by the parameter.

COLLATION_NAME NCHAR
VARYING(128)

The name of the collation used by the
parameter.

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of significant digits
allowed in the column. For all other
data types it is the null value.

NUMERIC_PRECISION_
RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in a
binary or decimal radix. The numeric
radix is always decimal in
Mimer SQL, therefore the value 10 is
always shown for numeric data types.
For all other data types it is the null
value.

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL, this
defines the total number of significant
digits to the right of the decimal point.
For BIGINT, INTEGER and SMALLINT,
this is 0. For all other data types, it is
the null value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
INTERVAL data types, this column
contains the number of digits of
precision for the fractional seconds
component. For other data types it is
the null value.

Column name Data type Description

Mimer SQL Version 11.0 485
SQL Reference Manual

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the interval
qualifier. Can be one of:
YEAR
YEAR TO MONTH
DAY
HOUR
MINUTE
SECOND
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND.
For other data types it is the null value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision (see Interval
Qualifiers). For other data types it is
the null value.

USER_DEFINED_TYPE_
CATALOG

NCHAR
VARYING(128)

The name of the user-defined type
catalog used by the parameter.

USER_DEFINED_TYPE_
SCHEMA

NCHAR
VARYING(128)

The name of the user-defined type
schema used by the parameter.

USER_DEFINED_TYPE_
NAME

NCHAR
VARYING(128)

The name of the user-defined type
name used by the parameter

PARAMETER_DOMAIN_
CATALOG

NCHAR
VARYING(128)

The catalog name for a domain when
domain is used as the type for a
parameter in a method.

PARAMETER_DOMAIN_
SCHEMA

NCHAR
VARYING(128)

The schema name for a domain when
domain is used as the type for a
parameter in a method.

PARAMETER_DOMAIN_
NAME

NCHAR
VARYING(128)

The name for a domain when domain
is used as the type for a parameter in a
method.

Column name Data type Description

486 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS

INFORMATION_SCHEMA.METHOD_SPECIFICATIO
NS

Contains one row for each method specification belonging to a user-defined type on
which the current user has USAGE privilege.

Column name Data type Description

SPECIFIC_CATALOG NCHAR
VARYING(128)

Catalog name for method
specification

SPECIFIC_SCHEMA NCHAR
VARYING(128)

Schema name for method
specification

SPECIFIC_NAME NCHAR
VARYING(128)

Specific name for method
specification

UDT_CATALOG NCHAR
VARYING(128)

Catalog for user-defined type
containing method specification

UDT_SCHEMA NCHAR
VARYING(128)

Schema for user-defined type
containing method specification

UDT_NAME NCHAR
VARYING(128)

Name of user-defined type containing
method specification

METHOD_NAME NCHAR
VARYING(128)

Method name

IS_STATIC VARCHAR(3) One of
YES = Method specification is static
NO = Method specification is not
static

IS_OVERRIDING VARCHAR(3) One of
YES = Method specification is
overriding
NO = Method specification is not
overriding

IS_CONSTRUCTOR VARCHAR(3) One of
YES = Method specification is a
constructor method
NO = Method specification is not a
constructor method

Mimer SQL Version 11.0 487
SQL Reference Manual

DATA_TYPE VARCHAR(30) The return data type of the method
specification. One of:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHARACTER LARGE
OBJECT
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED

LOB_MAXIMUM_
LENGTH

INTEGER For a lob data type, this shows the
maximum length. For all other data
types it is the null value.

CHARACTER_MAXIMUM_
LENGTH

INTEGER For a character data type, this shows
the maximum length in characters.
For all other data types it is the null
value.

CHARACTER_OCTET_
LENGTH

INTEGER For a character data type, this shows
the maximum length in octets. For all
other data types it is the null value. It
the same value as
CHARACTER_MAXIMUM length for
single octet data types.

CHARACTER_SET_
CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the character set used by the
parameter

CHARACTER_SET_
SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the character set used by the result
type for the method specification

Column name Data type Description

488 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.METHOD_SPECIFICATIONS

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set used by
the result type for the method
specification

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the collation used by the result type
for the method specification.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the collation used by the result type
for the method specification.

COLLATION_NAME NCHAR
VARYING(128)

The name of the collation used by the
result type for the method
specification.

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of significant digits
allowed in the column. For all other
data types it is the null value.

NUMERIC_PRECISION_
RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in a
binary or decimal radix. The numeric
radix is always decimal in Mimer
SQL, therefore the value 10 is always
shown for numeric data types. For all
other data types it is the null value.

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL, this
defines the total number of significant
digits to the right of the decimal point.
For BIGINT, INTEGER and
SMALLINT, this is 0. For all other data
types, it is the null value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
INTERVAL data types, this column
contains the number of digits of
precision for the fractional seconds
component. For other data types it is
the null value.

Column name Data type Description

Mimer SQL Version 11.0 489
SQL Reference Manual

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the
interval qualifier. Can be one of:
YEAR
YEAR TO MONTH
DAY
HOUR
MINUTE
SECOND
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND.
For other data types it is the null
value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision (see
Interval Qualifiers). For other data
types it is the null value.

RETURN_UDT_CATALOG NCHAR
VARYING(128)

The name of the user-defined type
catalog used by the result type for the
method specification.

RETURN_UDT_SCHEMA NCHAR
VARYING(128)

The name of the user-defined type
schema used by the result type for the
method specification.

RETURN_UDT_NAME NCHAR
VARYING(128)

The name of the user-defined type
name used by the result type for the
method specification

METHOD_LANGUAGE VARCHAR(20) One of:
SQL

IS_DETERMINISTIC VARCHAR(3) One of:
YES = the function was declared as
DETERMINISTIC when it was
created
NO = the function was not declared as
DETERMINISTIC when it was
created.

SQL_DATA_ACCESS VARCHAR(20) One of:
CONTAINS SQL
READS SQL
MODIFIES SQL.

Column name Data type Description

490 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.MODULES

INFORMATION_SCHEMA.MODULES
The MODULES system views shows modules created by the current ident.

IS_NULL_CALL VARCHAR(3) One of:
YES = The method will be invoked
even if any parameter is null
NO = The method will return NULL if
any parameter is null

CREATED TIMESTAMP(2) The date and time at which the method
specification was created

LAST_ALTERED TIMESTAMP(2) The date and time at which the method
specification was last altered.
If the method has not been altered, this
value will be null.

AS_LOCATOR VARCHAR(3) One of:
YES = The returned data type for the
method is declared as a locator
NO = The returned data type for the
method is not declared as a locator

RETURN_DOMAIN_
CATALOG

NCHAR
VARYING(128)

The catalog name for a domain when
domain is used as return type for a
method.

RETURN_DOMAIN_
SCHEMA

NCHAR
VARYING(128)

The schema name for a domain when
domain is used as return type for a
method.

RETURN_DOMAIN_NAME NCHAR
VARYING(128)

The name for a domain when domain
is used as return type for a method.

Column name Data type Description

Column name Data type Description

MODULE_CATALOG NCHAR
VARYING(128)

Catalog name for module.

MODULE_SCHEMA NCHAR
VARYING(128)

Schema name for module.

MODULE_NAME NCHAR
VARYING(128)

Name of module.

DEFAULT_CHARACTER_SET
_CATALOG

NCHAR
VARYING(128)

Catalog name for default
character set.

DEFAULT_CHARACTER_SET
_SCHEMA

NCHAR
VARYING(128)

Schema name for default
character set.

DEFAULT_CHARACTER_SET
_NAME

NCHAR
VARYING(128)

The name for default character
set.

Mimer SQL Version 11.0 491
SQL Reference Manual

INFORMATION_SCHEMA.PARAMETERS
The PARAMETERS system view lists the parameters of routines on which the current ident
has EXECUTE privilege.

DEFAULT_SCHEMA_CATALOG NCHAR
VARYING(128)

Catalog name for default
schema of the module.

DEFAULT_SCHEMA_NAME NCHAR
VARYING(128)

Name of default schema of the
module.

MODULE_DEFINITION NCHAR
VARYING(400)

Module definition; if text
larger than 400, the null value
is stored. The complete text
can always be found in the
EXT_SOURCE_
DEFINITION view.

SQL_PATH NCHAR
VARYING(200)

The default path for the
module

Column name Data type Description

Column name Data type Description

SPECIFIC_CATALOG NCHAR
VARYING(128)

The catalog name for the specific
name of the routine.

SPECIFIC_SCHEMA NCHAR
VARYING(128)

The schema name for the specific
name of the routine.

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name of the routine.

ORDINAL_POSITION INTEGER The ordinal position of the
parameter in the routine. The first
parameter in the routine is number
1.

PARAMETER_MODE VARCHAR(5) Indicates whether the parameter is
IN, OUT or INOUT.

PARAMETER_NAME NCHAR
VARYING(128)

The name of the parameter.

492 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.PARAMETERS

DATA_TYPE VARCHAR(30) The data type of the parameter. One
of:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHARACTER LARGE
OBJECT
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED

LOB_MAXIMUM_LENGTH BIGINT For the LOB data type, this shows
the maximum length in bytes. For
all other data types it is the null
value.

CHARACTER_MAXIMUM
_LENGTH

INTEGER For CHARACTER, LOB and BINARY
data types, this shows the maximum
length in characters or bytes. For all
other data types it is the null value.

CHARACTER_OCTET
_LENGTH

INTEGER For CHARACTER, LOB and BINARY
data types, this shows the maximum
length in octets. For all other data
types it is the null value. (For single
octet character sets, this is the same
as CHARACTER_MAX_LENGTH).

CHARACTER_SET
_CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the character set.

CHARACTER_SET
_SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the character set.

Column name Data type Description

Mimer SQL Version 11.0 493
SQL Reference Manual

CHARACTER_SET
_NAME

NCHAR
VARYING(128)

Name of the character set.

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the collation.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the collation.

COLLATION_NAME NCHAR
VARYING(128)

Name of the collation.

USER_DEFINED_TYPE
_CATALOG

NCHAR
VARYING(128)

The name of the user-defined type
catalog.

USER_DEFINED_TYPE
_SCHEMA

NCHAR
VARYING(128)

The name of the user-defined type
schema.

USER_DEFINED_TYPE
_NAME

NCHAR
VARYING(128)

The name of the user-defined type
name.

NUMERIC_PRECISION INTEGER For numeric data types, this shows
the total number of significant digits
allowed in the column.
For all other data types it is the null
value.

NUMERIC_PRECISION
_RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in a
binary or decimal radix. The
numeric radix is always decimal in
Mimer SQL, therefore the value 10
is always shown for numeric data
types. For all other data types it is
the null value.

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL, this
defines the total number of
significant digits to the right of the
decimal point. For BIGINT,
INTEGER and SMALLINT, this is 0.
For all other data types, it is the null
value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
interval data types, this column
contains the number of digits of
precision for the fractional seconds
component. For other data types it is
the null value.

Column name Data type Description

494 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS

INFORMATION_SCHEMA.REFERENTIAL_CONSTR
AINTS

The REFERENTIAL_CONSTRAINTS system view lists the referential constraints that are
accessible by the current ident.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the
interval qualifier for the named
interval data type (see Interval
Qualifiers on page 55).

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision (Interval
Qualifiers on page 55).

PARAMETER_DEFAULT NCHAR
VARYING(200)

Default value for parameter.

DOMAIN_CATALOG NCHAR
VARYING(128)

The catalog name for a domain
when domain is used as the type for
a parameter in a routine.

DOMAIN_SCHEMA NCHAR
VARYING(128)

The schema name for a domain
when domain is used as the type for
a parameter in a routine.

DOMAIN_NAME NCHAR
VARYING(128)

The name for a domain when
domain is used as the type for a
parameter in a routine.

Column name Data type Description

Column name Data type Description

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the referential constraint.

CONSTRAINT_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the referential constraint.

CONSTRAINT_NAME NCHAR
VARYING(128)

The name of the referential
constraint.

UNIQUE_CONSTRAINT
_CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the unique constraint being
referenced.

UNIQUE_CONSTRAINT
_SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the unique constraint being
referenced

UNIQUE_CONSTRAINT
_NAME

NCHAR
VARYING(128)

The name of the unique constraint
being referenced.

Mimer SQL Version 11.0 495
SQL Reference Manual

INFORMATION_SCHEMA.ROUTINE_COLUMN_USA
GE

The ROUTINE_COLUMN_USAGE system view lists the table columns that are owned by the
current ident which are referenced from within a routine.

MATCH_OPTION VARCHAR(20) One of:
NONE
PARTIAL
FULL.

UPDATE_RULE VARCHAR(20) One of:
CASCADE
SET NULL
SET DEFAULT
NO ACTION.

DELETE_RULE VARCHAR(20) One of:
CASCADE
SET NULL
SET DEFAULT
NO ACTION.

Column name Data type Description

Column name Data type Description

SPECIFIC_CATALOG NCHAR
VARYING(128)

The catalog name for the specific
name of the routine.

SPECIFIC_SCHEMA NCHAR
VARYING(128)

The schema name for the specific
name of the routine.

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name of the routine.

ROUTINE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the routine.

ROUTINE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the routine.

ROUTINE_NAME NCHAR
VARYING(128)

The name of the routine.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

COLUMN_NAME NCHAR
VARYING(128)

The name of the column.

496 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.ROUTINE_PRIVILEGES

INFORMATION_SCHEMA.ROUTINE_PRIVILEGES
The ROUTINE_PRIVILEGES system view lists privileges that were granted by the current
ident, and privileges that were granted to the current ident or to PUBLIC, on a routine.

INFORMATION_SCHEMA.ROUTINE_TABLE_USAG
E

The ROUTINE_TABLE_USAGE system view lists the tables that are owned by the current
ident on which SQL-invoked routines depend.

Column name Data type Description

GRANTOR NCHAR
VARYING(128)

The name of the ident who granted the
privilege.

GRANTEE NCHAR
VARYING(128)

The name of the ident to whom the
privilege was granted. Granting a
privilege to PUBLIC will result in only
one row (per privilege granted) in this
view and the name PUBLIC will be
shown.

SPECIFIC_CATALOG NCHAR
VARYING(128)

The catalog name for the specific
name of the routine.

SPECIFIC_SCHEMA NCHAR
VARYING(128)

The schema name for the specific
name of the routine.

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name of the routine.

ROUTINE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
routine.

ROUTINE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the routine.

ROUTINE_NAME NCHAR
VARYING(128)

The name of the routine.

PRIVILEGE_TYPE VARCHAR(20) The type of the privilege.

IS_GRANTABLE VARCHAR(3) One of:
YES = the privilege is held with the
WITH GRANT OPTION
NO = the privilege is held without the
WITH GRANT OPTION.

Column name Data type Description

SPECIFIC_CATALOG NCHAR
VARYING(128)

The catalog name for the specific
name of the routine.

SPECIFIC_SCHEMA NCHAR
VARYING(128)

The schema name for the specific
name of the routine.

Mimer SQL Version 11.0 497
SQL Reference Manual

INFORMATION_SCHEMA.ROUTINES
The ROUTINES system view lists the routines on which the current ident has EXECUTE
privilege. If the routine is a function, the result data type for the function is returned.

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name of the routine.

ROUTINE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the routine.

ROUTINE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the routine.

ROUTINE_NAME NCHAR
VARYING(128)

The name of the routine.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

Column name Data type Description

Column name Data type Description

SPECIFIC_CATALOG NCHAR
VARYING(128)

The catalog name for the specific
name of the routine.

SPECIFIC_SCHEMA NCHAR
VARYING(128)

The schema name for the specific
name of the routine.

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name of the routine.

ROUTINE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the routine.

ROUTINE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the routine.

ROUTINE_NAME NCHAR
VARYING(128)

The name of the routine.

MODULE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the module to which
the routine belongs.

MODULE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the module to which
the routine belongs.

MODULE_NAME NCHAR
VARYING(128)

The name of the module to which
the routine belongs.

498 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.ROUTINES

ROUTINE_TYPE VARCHAR(20) One of:
CONSTRUCTOR METHOD
FUNCTION
INSTANCE METHOD
PROCEDURE
STATIC METHOD

DATA_TYPE VARCHAR(30) The data type returned by the
function or method. One of:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NATIONAL CHARACTER
NATIONAL CHARACTER
VARYING
NATIONAL CHARACTER LARGE
OBJECT
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED

LOB_MAXIMUM_LENGTH BIGINT For LOB data types, this shows the
maximum length in bytes.

CHARACTER_MAXIMUM
_LENGTH

INTEGER For CHARACTER, LOB and
BINARY data types, this shows the
maximum length in characters or
bytes. For all other data types it is
the null value.

Column name Data type Description

Mimer SQL Version 11.0 499
SQL Reference Manual

CHARACTER_OCTET
_LENGTH

INTEGER For CHARACTER, LOB and
BINARY data types, this shows the
maximum length in octets. For all
other data types it is the null value.
(For single octet character sets,
this is the same as
CHARACTER_MAX_LENGTH).

CHARACTER_SET
_CATALOG

NCHAR
VARYING(128)

The name of the catalog
containing the character set.

CHARACTER_SET_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the character set.

CHARACTER_SET_NAME NCHAR
VARYING(128)

Name of the character set.

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the collation.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the collation.

COLLATION_NAME NCHAR
VARYING(128)

Name of the collation.

USER_DEFINED_TYPE
_CATALOG

NCHAR
VARYING(128)

The name of the user-defined type
catalog.

USER_DEFINED_TYPE
_SCHEMA

NCHAR
VARYING(128)

The name of the user-defined type
schema.

USER_DEFINED_TYPE
_NAME

NCHAR
VARYING(128)

The name of the user-defined type
name.

NUMERIC_PRECISION INTEGER For NUMERIC data types, this
shows the total number of
significant digits contained in the
result.
For all other data types it is the
null value.

NUMERIC_PRECISION
_RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in
a binary or decimal radix. The
numeric radix is always decimal
in Mimer SQL, therefore the value
10 is always shown for numeric
data types.
For all other data types it is the
null value.

Column name Data type Description

500 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.ROUTINES

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL, this
defines the total number of
significant digits to the right of the
decimal point. For BIGINT,
INTEGER and SMALLINT, this is
0. For all other data types, it is the
null value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
interval data types, this result
contains the number of digits of
precision for the fractional
seconds component. For other
data types it is the null value.

INTERVAL_TYPE VARCHAR(30) For interval data types, this is a
character string specifying the
interval qualifier for the named
interval data type (see Interval
Qualifiers on page 55).

INTERVAL_PRECISION INTEGER For interval data types, this is the
number of significant digits for
the interval leading precision, see
Interval Qualifiers on page 55.

EXTERNAL_LANGUAGE VARCHAR(20) The language for the routine if it is
an external routine, otherwise the
null value is shown

IS_DETERMINISTIC VARCHAR(3) One of:
YES = the function was declared
as DETERMINISTIC when it was
created
NO = the function was not declared
as DETERMINISTIC when it was
created.

SQL_DATA_ACCESS VARCHAR(20) One of:
CONTAINS SQL
READS SQL
MODIFIES SQL.

IS_NULL_CALL VARCHAR(3) If the routine is a function or
method then one of:
YES = The function will be
invoked even if any parameter is
null
NO = The function will return
NULL if any parameter is null

Column name Data type Description

Mimer SQL Version 11.0 501
SQL Reference Manual

ROUTINE_BODY VARCHAR(20) One of:
SQL = the routine is an SQL
routine
EXTERNAL = the routine is an
external routine.

ROUTINE_DEFINITION NCHAR
VARYING(200)

The text of the routine definition.
If the actual definition would not
fit into the maximum length of
this column, the null value will be
shown and the definition text will
appear in the view
INFORMATION_SCHEMA.EXT_S
OURCE_DEFINITION.

EXTERNAL_NAME NCHAR
VARYING(128)

The external name of the routine if
it is an external routine, otherwise
the null value is shown.

PARAMETER_STYLE VARCHAR(20) The parameter passing style of the
routine if it is an external routine,
otherwise the null value is shown.

SQL_PATH NCHAR
VARYING(200)

The path for the routine.
The null value is shown if no path
is defined.

SCHEMA_LEVEL_ROUTINE VARCHAR(3) One of:
YES = the routine was created on
its own
NO = the routine was created in a
module.

IS_RESULT VARCHAR(3) One of:
YES = the routine returns a result
set
NO = the routine does not return a
result set.

EXTERNAL_LIBRARY NCHAR
VARYING(128)

DOMAIN_CATALOG NCHAR
VARYING(128)

The catalog name for a domain
when domain is used as return
type for a function or a result set
procedure.

DOMAIN_SCHEMA NCHAR
VARYING(128)

The schema name for a domain
when domain is used as return
type for a function or a result set
procedure.

Column name Data type Description

502 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.SCHEMATA

INFORMATION_SCHEMA.SCHEMATA
The SCHEMATA system view lists the schemas that are owned by the current ident.

INFORMATION_SCHEMA.SEQUENCES
The SEQUENCES system view shows sequences that are accessible to the current ident.

DOMAIN_NAME NCHAR
VARYING(128)

The name for a domain when
domain is used as return type for a
function or a result set procedure.

Column name Data type Description

Column name Data type Description

CATALOG_NAME NCHAR
VARYING(128)

The name of the catalog containing
the schema.

SCHEMA_NAME NCHAR
VARYING(128)

The name of the schema.

SCHEMA_OWNER NCHAR
VARYING(128)

The name of the ident who created
the schema.

DEFAULT_CHARACTER_
SET_CATALOG

NCHAR
VARYING(128)

The name of the catalog that
contains the default character set for
the schema.

DEFAULT_CHARACTER_
SET_SCHEMA

NCHAR
VARYING(128)

The name of the schema that
contains the default character set for
the schema.

DEFAULT_CHARACTER_
SET_NAME

NCHAR
VARYING(128)

The name of the default character
set for the schema.

SQL_PATH NCHAR
VARYING(200)

The default path for the schema

Column name Data type Description

SEQUENCE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the sequence.

SEQUENCE_SCHEMA NCHAR
VARYING(128)

Schema name for the sequence.

SEQUENCE_NAME NCHAR
VARYING(128)

Name of the sequence.

DATA_TYPE VARCHAR(30) Data type for sequence.
One of:
SMALLINT
INTEGER
BIGINT

Mimer SQL Version 11.0 503
SQL Reference Manual

INFORMATION_SCHEMA.SQL_FEATURES
The SQL_FEATURES lists the features and subfeatures of the SQL-2011 standard, and
indicates which of these Mimer SQL supports.

NUMERIC_PRECISION INTEGER Number of significant digits for
sequence value.

NUMERIC_PRECISION_
RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in a
binary or decimal radix. The
numeric radix is always decimal in
Mimer SQL, therefore the value 10
is always shown.

NUMERIC_SCALE INTEGER Number of significant decimals.
This value will always be zero.

START_VALUE VARCHAR(20) Initial value for sequence.

MINIMUM_VALUE VARCHAR(20) Minimum value for sequence.

MAXIMUM_VALUE VARCHAR(20) Maximum value for sequence.

INCREMENT VARCHAR(20) Increment value for sequence.

CYCLE_OPTION VARCHAR(3) Indicates whether sequence is
defined with cycle option or not.
One of:
YES
NO

Column name Data type Description

Column name Data type Description

FEATURE_ID VARCHAR(20) Identifies the feature by a letter and
three digits.

FEATURE_NAME VARCHAR(254) Short description of the feature.

SUB_FEATURE_ID VARCHAR(20) Identifies a subfeature by two digits.
Single space if feature described.

SUB_FEATURE_NAME VARCHAR(254) Short description of the subfeature.
Single space if feature described.

IS_SUPPORTED VARCHAR(3) YES if fully supported by Mimer
SQL, otherwise NO.

IS_VERIFIED_BY VARCHAR(3) Should identify the test used to
verify the conformance (always
null).

IS_CORE_SQL VARCHAR(3) YES if the feature belongs to Core
SQL, otherwise NO.

504 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.SQL_LANGUAGES

INFORMATION_SCHEMA.SQL_LANGUAGES
The SQL_LANGUAGES system view lists the conformance levels, options and dialects
supported by the SQL implementation.

INFORMATION_SCHEMA.SQL_SIZING
The SQL_SIZING view lists the sizing items defined in the SQL-2011 standard and, for
each of these, indicate the size supported by Mimer SQL.

COMMENTS VARCHAR(254) Comments pertinent to the feature
element.

Column name Data type Description

Column name Data type Description

SQL_LANGUAGE_SOURCE VARCHAR(254) The organization that defined the
SQL version.

SQL_LANGUAGE_YEAR VARCHAR(254) The year the relevant source
document was approved.

SQL_LANGUAGE
_CONFORMANCE

VARCHAR(254) The conformance level to the
relevant document that the
implementation claims.

SQL_LANGUAGE
_INTEGRITY

VARCHAR(254) (Meaning no longer defined).

SQL_LANGUAGE
_IMPLEMENTATION

VARCHAR(254) A character string, defined by the
vendor, that uniquely defines the
vendor’s SQL product.

SQL_LANGUAGE
_BINDING_STYLE

VARCHAR(254) Included to envisage future
adoption of direct, module or other
binding styles.

SQL_LANGUAGE
_PROGRAMMING
_LANGUAGE

VARCHAR(254) The host language for which the
binding style is supported.

Column name Data type Description

SIZING_ID SMALLINT Identifies the sizing item by an
integer value.

SIZING_NAME VARCHAR(50) Description of the sizing item.

SUPPORTED_VALUE INTEGER 0 if no limit by Mimer SQL
null value if item not supported by
Mimer SQL

COMMENTS VARCHAR(200) Comments pertinent to the sizing
item.

Mimer SQL Version 11.0 505
SQL Reference Manual

INFORMATION_SCHEMA.TABLE_CONSTRAINTS
The TABLE_CONSTRAINTS system view lists the table constraints that are accessible by
the current ident.

INFORMATION_SCHEMA.TABLE_PRIVILEGES
The TABLE_PRIVILEGES system view lists privileges that were granted by the current
ident, and privileges that were granted to the current ident or to PUBLIC, on an entire
table.

Column name Data type Description

CONSTRAINT_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the table constraint.

CONSTRAINT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table or view.

CONSTRAINT_NAME NCHAR
VARYING(128)

The name of the table constraint.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog
containing the table or view.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table or view.

TABLE_NAME NCHAR
VARYING(128)

The name of the table or view.

CONSTRAINT_TYPE VARCHAR(20) One of:
CHECK
FOREIGN KEY
PRIMARY KEY
UNIQUE.

IS_DEFERRABLE VARCHAR(3) One of:
YES = the constraint is deferrable
NO = the constraint is not
deferrable.

INITIALLY_DEFERRED VARCHAR(3) One of:
YES = the constraint is immediate
NO = the constraint is deferred.

Column name Data type Description

GRANTOR NCHAR
VARYING(128)

The name of the ident who granted the
privilege.

506 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.TABLE_PRIVILEGES

GRANTEE NCHAR
VARYING(128)

The name of the ident to whom the
privilege was granted.
Granting a privilege to PUBLIC will result
in only one row (per privilege granted) in
this view and the name PUBLIC will be
shown.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table in question.

PRIVILEGE_TYPE VARCHAR(20) A value describing the type of the privilege.
One of:
DELETE
INSERT
REFERENCES
SELECT
UPDATE.
Rows where the privilege type is
REFERENCES, UPDATE or INSERT only
describe cases where the grantee was
granted the privilege on the entire table.
Where the GRANT statement granted
REFERENCES or UPDATE privilege to
specified columns of a table, no rows
appear in TABLE_PRIVILEGES but there
are rows in COLUMN_PRIVILEGES.
Note that when multiple table privileges are
granted to the same user at the same time
(e.g. when the keyword ALL is used),
multiple rows appear in this view (one for
each privilege granted).

IS_GRANTABLE VARCHAR(3) One of:
YES = the privilege is held with the WITH
GRANT OPTION
NO = the privilege is held without the WITH
GRANT OPTION.

Column name Data type Description

Mimer SQL Version 11.0 507
SQL Reference Manual

INFORMATION_SCHEMA.TABLES
The TABLES system view lists tables to which the current ident has access.

INFORMATION_SCHEMA.TRANSLATIONS
The TRANSLATIONS system view lists the character translations on which the current
ident has USAGE privilege.
The source character set is the character set to which the characters that are to be
translated by the translation belong.
The target character set is the character set to which the characters that are the result of
the translation belong.

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
table or view.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
table or view.

TABLE_NAME NCHAR
VARYING(128)

The name of the table or view.

TABLE_TYPE VARCHAR(20) One of:
BASE TABLE = the row describes a table
VIEW = the row describes a view.

COMMIT_ACTION VARCHAR(20) Indicates what happens with records in a
temporary table at commit.
One of:
DELETE
PRESERVE

The column will be null if the table is not
temporary.

Column name Data type Description

TRANSLATION
_CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the translation.

TRANSLATION
_SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the translation.

TRANSLATION_NAME NCHAR
VARYING(128)

The name of the translation.

SOURCE_CHARACTER
_SET_CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the source character set.

SOURCE_CHARACTER
_SET_SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the source character set.

SOURCE_CHARACTER
_SET_NAME

NCHAR
VARYING(128)

The name of the source character
set.

508 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.TRIGGERED_UPDATE_COLUMNS

INFORMATION_SCHEMA.TRIGGERED_UPDATE_C
OLUMNS

The TRIGGERED_UPDATE_COLUMNS system view lists the columns owned by the current
ident that are referenced from the explicit column list in the trigger event of an UPDATE
trigger.

TARGET_CHARACTER
_SET_CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the target character set.

TARGET_CHARACTER
_SET_SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the target character set.

TARGET_CHARACTER
_SET_NAME

NCHAR
VARYING(128)

The name of the target character set.

Column name Data type Description

Column name Data type Description

TRIGGER_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the trigger.

TRIGGER_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the trigger.

TRIGGER_NAME NCHAR
VARYING(128)

The name of the trigger.

EVENT_OBJECT
_CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the table or view on which the trigger
is created.

EVENT_OBJECT
_SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the table or view on which the
UPDATE trigger is created.

EVENT_OBJECT
_TABLE

NCHAR
VARYING(128)

The name of the table or view on
which the UPDATE trigger is created.

EVENT_OBJECT
_COLUMN

NCHAR
VARYING(128)

The name of the table or view column
referenced in the column list of the
UPDATE trigger event.

Mimer SQL Version 11.0 509
SQL Reference Manual

INFORMATION_SCHEMA.TRIGGER_COLUMN_USA
GE

The TRIGGER_COLUMN_USAGE view lists the table columns on which triggers, that
owned by the current ident, depend because they are referenced in the search condition of
the trigger or in one of the statements in the body of the trigger.

INFORMATION_SCHEMA.TRIGGER_TABLE_USAG
E

The TRIGGER_TABLE_USAGE view lists the tables on which triggers, that owned by the
current ident, depend.

Column name Data type Description

TRIGGER_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
trigger.

TRIGGER_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
trigger.

TRIGGER_NAME NCHAR
VARYING(128)

The name of the trigger.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
referenced table or view.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
referenced table or view.

TABLE_NAME NCHAR
VARYING(128)

The name of the referenced table or view.

COLUMN_NAME NCHAR
VARYING(128)

The name of the referenced column.

Column name Data type Description

TRIGGER_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
trigger.

TRIGGER_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
trigger.

TRIGGER_NAME NCHAR
VARYING(128)

The name of the trigger.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
referenced table or view.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
referenced table or view.

TABLE_NAME NCHAR
VARYING(128)

The name of the referenced table or
view.

510 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.TRIGGERS

INFORMATION_SCHEMA.TRIGGERS
The TRIGGERS system view lists the triggers owned by the current ident.

Column name Data type Description

TRIGGER_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the trigger.

TRIGGER_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the trigger.

TRIGGER_NAME NCHAR
VARYING(128)

The name of the trigger.

EVENT_MANIPULATION VARCHAR(20) The data manipulation event
triggering execution of the trigger
(the trigger event).
One of:
INSERT
DELETE
UPDATE.

EVENT_OBJECT_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the table or view on which the
trigger is created.

EVENT_OBJECT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the table or view on
which the trigger is created.

EVENT_OBJECT_TABLE NCHAR
VARYING(128)

The name of the table or view on
which the trigger is created.

ACTION_ORDER INTEGER Ordinal number for trigger
execution. This number will define
the execution order of triggers on
the same table and with the same
value for EVENT_MANIPULATION,
ACTION_CONDITION,
CONDITION_TIMING and
ACTION_ORIENTATION. The
trigger with 1 in this column will
be executed first, followed by the
trigger with 2, etc.

ACTION_CONDITION NCHAR
VARYING(200)

The character representation of the
search condition in the WHEN
clause of the trigger. If the length
of the text exceeds 200 characters,
the null value will be shown.

ACTION_STATEMENT NCHAR
VARYING(200)

The character representation of the
body of the trigger. If the length of
the text exceeds 200 characters, the
null value will be shown.

Mimer SQL Version 11.0 511
SQL Reference Manual

INFORMATION_SCHEMA.UDT_PRIVILEGES
Contains one row for each user-defined type on which the current user has granted or been
granted USAGE privilege.

ACTION_ORIENTATION VARCHAR(20) One of:
ROW = the trigger is a row trigger
STATEMENT = the trigger is a
statement trigger.

ACTION_TIMING VARCHAR(20) One of:
BEFORE = the trigger is executed
before the triggering data
manipulation operation
INSTEAD OF = the trigger is
executed instead of the triggering
data manipulation operation
AFTER = the trigger is executed
after the triggering data
manipulation operation.

ACTION_REFERENCE
_OLD_TABLE

NCHAR
VARYING(128)

The identifier specified in the OLD
TABLE clause.

ACTION_REFERENCE
_NEW_TABLE

NCHAR
VARYING(128)

The identifier specified in the NEW
TABLE clause.

ACTION_REFERENCE
_OLD_ROW

NCHAR
VARYING(128)

The identifier specified in the OLD
ROW clause.

ACTION_REFERENCE
_NEW_ROW

NCHAR
VARYING(128)

The identifier specified in the NEW
ROW clause.

COLUMN_LIST_IS
_IMPLICIT

CHAR(3) One of:
YES = the trigger will be executed
on update of any column in the
table
NO = the trigger will only be
executed on update of those
columns specified in the UPDATE
OF clause in the trigger definition.

CREATED TIMESTAMP(2) The date when the trigger was
created.

Column name Data type Description

Column name Data type Description

GRANTOR NCHAR
VARYING(128)

Name of authorization ident who has
granted privilege

GRANTEE NCHAR
VARYING(128)

Name of authorization ident who has been
granted privilege

512 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.USAGE_PRIVILEGES

INFORMATION_SCHEMA.USAGE_PRIVILEGES
The USAGE_PRIVILEGES system view lists the USAGE privileges that were granted by
the current ident, and granted to the current ident or to PUBLIC.

UDT_CATALOG NCHAR
VARYING(128)

Catalog name for user-defined type.

UDT_SCHEMA NCHAR
VARYING(128)

Schema name for user-defined type.

UDT_NAME NCHAR
VARYING(128)

Name of user-defined type

PRIVILEGE_TYPE VARCHAR(20) One of
USAGE TYPE

IS_GRANTABLE VARCHAR(3) One of
YES = The grantee has the privilege with
grant option.
NO = The grantee has the privilege without
grant option.

Column name Data type Description

Column name Data type Description

GRANTOR NCHAR
VARYING(128)

The name of the ident who granted
the privilege.

GRANTEE NCHAR
VARYING(128)

The name of the ident to whom the
privilege was granted. Granting a
privilege to PUBLIC will result in
only one row (per privilege granted)
in this view and the name PUBLIC
will be shown.

OBJECT_CATALOG NCHAR
VARYING(128)

The name of the catalog that contains
the object character set or collation.

OBJECT_SCHEMA NCHAR
VARYING(128)

The name of the schema that contains
the object character set or collation.

OBJECT_NAME NCHAR
VARYING(128)

The name of the character set or
collation.

OBJECT_TYPE NCHAR
VARYING(20)

One of:
CHARACTER SET = the privilege is
held on a character set
COLLATION = the privilege is held on
a collation
DOMAIN = the privilege is held on a
domain
SEQUENCE = the privilege is held on a
sequence.

Mimer SQL Version 11.0 513
SQL Reference Manual

INFORMATION_SCHEMA.USER_DEFINED_TYPES
The USER_DEFINED_TYPES system view shows the user-defined types defined and
accessible by the current ident.

PRIVILEGE_TYPE VARCHAR(20) This will always be USAGE.

IS_GRANTABLE VARCHAR(3) One of:
YES = the privilege is held WITH
GRANT OPTION
NO = the privilege is not held WITH
GRANT OPTION.

Column name Data type Description

Column name Data type Description

USER_DEFINED_TYPE_
CATALOG

NCHAR
VARYING(128)

Catalog name for the user-defined
type.

USER_DEFINED_TYPE_
SCHEMA

NCHAR
VARYING(128)

Schema name for the user-defined
type.

USER_DEFINED_TYPE_
NAME

NCHAR
VARYING(128)

Name of the user-defined type.

USER_DEFINED_TYPE_
CATEGORY

VARCHAR(20) Contains STRUCTURED or
DISTINCT.

IS_FINAL VARCHAR(3) YES if the user-defined type cannot
have subtypes, otherwise NO.

514 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.USER_DEFINED_TYPES

DATA_TYPE VARCHAR(30) Identifies the data type of the
column. Can be one of the
following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

LOB_MAXIMUM_LENGTH BIGINT For the LOB data type, this shows the
maximum length in bytes. For all
other data types it is the null value.

CHARACTER_MAXIMUM_
LENGTH

INTEGER For CHARACTER, LOB and BINARY
data types, this shows the maximum
length in characters or bytes. For all
other data types it is the null value.

CHARACTER_OCTET_
LENGTH

INTEGER For CHARACTER, LOB and BINARY
data types, this shows the maximum
length in octets. For all other data
types it is the null value.
For single octet character sets, this is
the same as
CHARACTER_MAX_LENGTH.

CHARACTER_SET_
CATALOG

NCHAR
VARYING(128)

The name of the catalog containing
the character set used by the column.

CHARACTER_SET_
SCHEMA

NCHAR
VARYING(128)

The name of the schema containing
the character set used by the column.

Column name Data type Description

Mimer SQL Version 11.0 515
SQL Reference Manual

CHARACTER_SET_NAME NCHAR
VARYING(128)

The name of the character set used
by the column.

COLLATION_CATALOG NCHAR
VARYING(128)

The name of the catalog containing
the collation used by the column.

COLLATION_SCHEMA NCHAR
VARYING(128)

The name of the schema containing
the collation used by the column.

COLLATION_NAME NCHAR
VARYING(128)

The name of the collation used by
the column.

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of significant digits
allowed in the column. For all other
data types it is the null value.

NUMERIC_PRECISION_
RADIX

INTEGER This shows whether the
NUMERIC_PRECISION is given in a
binary or decimal radix. The
numeric radix is always decimal in
Mimer SQL, therefore the value 10
is always shown for numeric data
types. For all other data types it is the
null value.

NUMERIC_SCALE INTEGER For NUMERIC and DECIMAL, this
defines the total number of
significant digits to the right of the
decimal point.
For BIGINT, INTEGER and
SMALLINT, this is 0.
For all other data types, it is the null
value.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
INTERVAL data types, this column
contains the number of digits of
precision for the fractional seconds
component.
For other data types it is the null
value.

Column name Data type Description

516 Chapter 13 Data Dictionary Views
INFORMATION_SCHEMA.VIEW_COLUMN_USAGE

INFORMATION_SCHEMA.VIEW_COLUMN_USAGE
The VIEW_COLUMN_USAGE system view lists the table columns on which views that are
owned by the current ident depend.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the
interval qualifier. Can be one of:
YEAR
YEAR TO MONTH
DAY
HOUR
MINUTE
SECOND
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND.
For other data types it is the null
value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision (see
Interval Qualifiers on page 55).
For other data types it is the null
value.

Column name Data type Description

Column name Data type Description

VIEW_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
view.

VIEW_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
view.

VIEW_NAME NCHAR
VARYING(128)

The name of the view.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

COLUMN_NAME NCHAR
VARYING(128)

The name of the column.

Mimer SQL Version 11.0 517
SQL Reference Manual

INFORMATION_SCHEMA.VIEW_TABLE_USAGE
The VIEW_TABLE_USAGE system view lists the tables on which views that are owned by
the current ident depend.

INFORMATION_SCHEMA.VIEWS
The VIEWS system view lists the views to which the current ident as access.

Column name Data type Description

VIEW_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the view.

VIEW_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the view.

VIEW_NAME NCHAR
VARYING(128)

The name of the view.

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the table.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the table.

TABLE_NAME NCHAR
VARYING(128)

The name of the table.

Column name Data type Description

TABLE_CATALOG NCHAR
VARYING(128)

The name of the catalog containing the
table or view.

TABLE_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
table or view.

TABLE_NAME NCHAR
VARYING(128)

The name of the table or view.

VIEW_DEFINITION NCHAR
VARYING(200)

The definition of the view as it would
appear in a CREATE VIEW statement.
If the actual definition would not fit into
the maximum length of this column, the
null value will be shown. In that case the
definition can be found in
INFORMATION_SCHEMA.EXT_SOURCE_
DEFINITION.

CHECK_OPTION VARCHAR(20) The value CASCADED is shown if WITH
CHECK OPTION was specified in the
CREATE VIEW statement that created the
view, and the value NONE is shown
otherwise.

518 Chapter 13 Data Dictionary Views
Standard Compliance

Standard Compliance
The table below summarizes standards compliance concerning the views in
INFORMATION_SCHEMA.

IS_UPDATABLE VARCHAR(3) One of:
YES = the view is updatable
NO = the view is not updatable.

Column name Data type Description

Standard Compliance Comments

SQL-2016 Core Fully compliant.

SQL-2016 Features outside
core

Feature F231, “Privilege tables” support for
the views TABLE_PRIVILEGES,
COLUMN_PRIVILEGES and
USAGE_PRIVILEGES.
Feature T011, “TIME_STAMP domain in
information_schema”.

Mimer SQL
extension

All views starting with the name EXT_ are
Mimer SQL extensions.

Mimer SQL Version 11.0 519
SQL Reference Manual

Appendix A

Reserved Words
The following keywords are reserved in Mimer SQL statements.
They must be enclosed in quotation marks if you want to use them as SQL identifiers.

ALL ALLOCATE ALTER

AND ANY AS

ASYMMETRIC AT ATOMIC

AUTHORIZATION BEGIN BETWEEN

BOTH BY CALL

CALLED CASE CAST

CHECK CLOSE COLLATE

COLUMN COMMIT CONDITION

CONNECT CONSTRAINT CORRESPONDING

CREATE CROSS CURRENT

CURRENT_DATE CURRENT_PATH CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DAY DEALLOCATE DECLARE

DEFAULT DELETE DESCRIBE

DETERMINISTIC DISCONNECT DISTINCT

DO DROP ELSE

ELSEIF END ESCAPE

EXCEPT EXECUTE EXISTS

EXTERNAL FALSE FETCH

FIRSTa FOR FOREIGN

FROM FULL FUNCTION

GET GLOBAL GRANT

GROUP HANDLER HAVING

HOLD HOUR IDENTITY

520 Appendix A Reserved Words

IF IN INDICATOR

INNER INOUT INSERT

INTERSECT INTERVAL INTO

IS ITERATE JOIN

LANGUAGE LARGE LEADING

LEAVE LEFT LIKE

LOCAL LOCALTIME LOCALTIMESTAMP

LOOP MATCH MEMBER

METHOD MINUTE MODIFIES

MODULE MONTH NATIONAL

NATURAL NEW NEXTa

NO NOT NULL

OF OFFSET OLD

ON OPEN OR

ORDER OUT OVERLAPS

PARAMETER PRECISION PREPARE

PRIMARY PROCEDURE READS

RECURSIVE REFERENCES REFERENCING

RELEASE REPEAT RESIGNAL

RESULT RETURN RETURNS

REVOKE RIGHT ROLLBACK

ROW ROWS SCROLL

SECOND SELECT SESSION_USER

SET SIGNAL SOME

SPECIFIC SQL SQLEXCEPTION

SQLSTATE SQLWARNING START

STATIC SYMMETRIC SYSTEM_USER

TABLE THEN TIMEZONE_HOUR

TIMEZONE_MINUTE TO TRAILING

TREAT TRIGGER TRUE

UNION UNIQUE UNKNOWN

UNTIL UPDATE USER

USING VALUE VALUES

VARYING WHEN WHERE

Mimer SQL Version 11.0 521
SQL Reference Manual

Note: The keyword END-EXEC is also reserved specifically in statements embedded
in COBOL programs.

Reserved Keywords in the SQL Standard
The following keywords are reserved in the SQL-2016 standard, but not in Mimer SQL:

WHILE WITH

WITHOUT YEAR

a. Listed as non-reserved in the SQL-2016 standard.

ABS ABSENT ACOS

ARE ARRAY ARRAY_AGG

ARRAY_MAX_
CARDINALITY

ASENSITIVE ASIN

ATAN AVG BEGIN_FRAME

BEGIN_PARTITION BIGINT BINARY

BLOB BOOLEAN CARDINALITY

CASCADED CEIL CEILING

CHAR CHAR_LENGTH CHARACTER

CHARACTER_LENGTH CLASSIFIER CLOB

COALESCE COLLECT CONTAINS

CONVERT COPY CORR

COS COSH COUNT

COVAR_POP COVAR_SAMP CUBE

CUME_DIST CURRENT_CATALOG CURRENT_DEFAULT_
TRANSFORM_GROUP

CURRENT_ROLE CURRENT_ROW CURRENT_SCHEMA

CURRENT_TRANSFORM
_GROUP_FOR_TYPE

CYCLE DATE

DEC DECIMAL DECFLOAT

DEFINE DENSE_RANK DEREF

DOUBLE DYNAMIC EACH

ELEMENT EMPTY END_FRAME

END_PARTITION END-EXEC EQUALS

EVERY EXEC EXP

EXTRACT FILTER FIRST_VALUE

FLOAT FLOOR FRAME_ROW

522 Appendix A Reserved Words

FREE FUSION GROUPING

GROUPS INITIAL INSENSITIVE

INT INTEGER INTERSECTION

JSON JSON_ARRAY JSON_ARRAYAGG

JSON_EXISTS JSON_OBJECT JSON_OBJECTAGG

JSON_QUERY JSON_TABLE JSON_TABLE_
PRIMITIVE

JSON_VALUE LAG LAST_VALUE

LATERAL LEAD LIKE_REGEX

LISTAGG LN LOG

LOG10 LOWER MATCH_NUMBER

MATCH_RECOGNIZE MATCHES MAX

MERGE MIN MOD

MULTISET NCHAR NCLOB

NONE NORMALIZE NTH_VALUE

NTILE NULLIF NUMERIC

OCTET_LENGTH OCCURRENCES_REGEX OMIT

ONE ONLY OUTER

OVER OVERLAY PARTITION

PATTERN PER PERCENT

PERCENT_RANK PERCENTILE_CONT PERCENTILE_DISC

PERIOD PORTION POSITION

POSITION_REGEX POWER PRECEDES

PTF RANGE RANK

REAL REF REGR_AVGX

REGR_AVGY REGR_COUNT REGR_INTERCEPT

REGR_R2 REGR_SLOPE REGR_SXX

REGR_SXY REGR_SYY ROLLUP

ROW_NUMBER RUNNING SAVEPOINT

SCOPE SEARCH SEEK

SENSITIVE SHOW SIMILAR

SIN SINH SKIP

SMALLINT SPECIFICTYPE SQL

SQRT STDDEV_POP STDDEV_SAMP

Mimer SQL Version 11.0 523
SQL Reference Manual

SUBMULTISET SUBSET SUBSTRING

SUBSTRING_REGEX SUCCEEDS SUM

SYSTEM SYSTEM_TIME TABLESAMPLE

TAN TANH TIME

TIMESTAMP TRANSLATE TRANSLATE_REGEX

TRANSLATION TRIM TRIM_ARRAY

TRUNCATE UESCAPE UNNEST

UPPER VALUE_OF VAR_POP

VAR_SAMP VARBINARY VARCHAR

VERSIONING WHENEVER WIDTH_BUCKET

WINDOW WITHIN

524 Appendix A Reserved Words

Mimer SQL Version 11.0 525
SQL Reference Manual

Appendix B

Character Sets
Character Data

For character data, the character set used by Mimer SQL is ISO 8859-1 (also known as
Latin1). Character data is by default sorted in numerical order according to the ISO8BIT
collation.

SP = space
NS = non-breaking space
SH = soft hyphen

526 Appendix B Character Sets
National Character Data – Unicode

National Character Data – Unicode
For national character data, Mimer SQL uses the Unicode character set. National
character data is by default sorted in numerical order according to the UCS_BASIC
collation.
For more information, see https://www.unicode.org.

https://www.unicode.org

Mimer SQL Version 11.0 527
SQL Reference Manual

Appendix C

Limits
LIMIT Value

CHARACTER string length 15000

Variable length CHARACTER string 15000

NATIONAL CHARACTER string length 5000

Variable length NATIONAL CHARACTER string 5000

BINARY string length 15000

Variable BINARY string length 15000

DECIMAL precision in digits 45

FLOAT precision in digits 45

SMALLINT precision in bits 16

INTEGER precision in bits 32

BIGINT precision in bits 64

REAL precision in bits 24

DOUBLE PRECISION/FLOAT precision in bits 53

SQLCODE precision in digits 10

Fractional precision, in decimal digits, of TIME seconds component 9

Fractional precision, in decimal digits, of TIMESTAMP seconds
component

9

Fractional precision, in decimal digits, of INTERVAL seconds
component

9

Leading precision, in decimal digits, for INTERVAL data types 7-12

Fractional precision for INTERVAL data types that have a SECOND field 9

Number of columns in a table 252

Number of columns in an index 32

Number of tables referenced in a statement unlimited a

Number of cursors open simultaneously unlimited b

528 Appendix C Limits

Number of columns a single update statement can update unlimited a

Number of parameters for a function or procedure unlimited b

SQL statement length in bytes unlimited b

Total length of a row, the sum of:
Two bytes for column identification
Lengths of all character/binary columns
Precisions of all numeric columns

32000

Identifier length 128

a. There is a limit on the total complexity of an SQL statement.
b. The limit is only dependent on the amount of virtual memory available to the application.

LIMIT Value

Mimer SQL Version 11.0 529
SQL Reference Manual

Appendix D

Deprecated
Features

Some non-standard features of earlier versions of Mimer SQL are retained for backward
compatibility. Where these features have equivalents in the standard implementation,
only the standard form is documented in the main body of this manual. Non-standard
forms are documented below. Use of the standard forms is strongly recommended in new
applications.
Non-standard Mimer SQL features which do not have equivalents in the standards are
documented in the main body of the manual.

Indicator Variables
Host variables with negative indicator variables are assigned null. In previous versions of
Mimer SQL, the indicator variable could be given any negative value. The accepted
standards however define the value of -1 as an indicator for null and reserve other
negative values for future use. Use of values other than -1 is therefore not recommended.

Operators

Statements
ALTER IDENT Change Password

The ALTER IDENT USING syntax and the ALTER IDENT IDENTIFIED BY syntax to
change password are deprecated and have been replaced by the SET PASSWORD syntax.
The old syntax is still supported for backward compatibility.

Operator Standard form Alternative form(s)

string concatenation ||

not equal to <> !=

less than or equal to <=

greater than or equal to >=

530 Appendix D Deprecated Features
Statements

CREATE IDENT AS OS_USER
The possibility to specify OS_USER as ident type is deprecated. The syntax is still
supported for backward compatibility.

GET DIAGNOSTICS EXCEPTION INFO
The SQL-2008 standard has adjusted the GET DIAGNOSTICS syntax. The keyword
EXCEPTION has been replaced with the keyword CONDITION. As a consequence the
exception-clause is now called condition-clause.
The old GET DIAGNOSTICS EXCEPTION INFO syntax is still supported for backward
compatibility.

JOIN Without SELECT
The way to write a join without starting with the SELECT keyword was removed from the
SQL standard in 2003, and has also been removed from the Mimer SQL syntax.
So instead of just writing

table1 INNER JOIN table2 ON table1.col1 = table2.co2

specify the SELECT keyword, like:
SELECT * FROM table1 INNER JOIN table2 ON table1.col1 = table2.co2

CONNECT
The syntax of the standard CONNECT statement differs from that in earlier versions of
Mimer SQL. The previous form is still supported for backward compatibility.
Backward compatibility syntax:

Note: The CONNECT statement and the standard-compliant CONNECT TO statement
have different default modes for SET TRANSACTION START. CONNECT uses
SET TRANSACTION START EXPLICIT, while CONNECT TO uses SET
TRANSACTION START IMPLICIT.

ORDER BY Ordinal Position
Using an integer value to represent the ordinal position in an ORDER BY specification is
deprecated due to changes in the SQL standards.

SELECT NULL
The use of the keyword NULL in a select list is still supported for backward compatibility
but should be regarded as a deprecated feature in Mimer SQL.
Instead, specify CAST(NULL AS data-type).

Example
SELECT c1, int_col FROM t1
UNION
SELECT c1, CAST(NULL AS integer) FROM t2;

Mimer SQL Version 11.0 531
SQL Reference Manual

SET TRANSACTION CHANGES
Following the introduction of the SET TRANSACTION READ and SET TRANSACTION
ISOLATION LEVEL options, the SET TRANSACTION CHANGES options are no longer
supported. The options are currently supported for backward compatibility, but will be
removed in the next version of Mimer SQL.

CREATE IDENT
The keyword USING is now used when specifying the password-string for the ident
being created. The use of IDENTIFIED BY is deprecated.
The following syntax is supported for backward compatibility only:

ENTER
The keyword USING is now used when specifying the password for the program ident
being entered. The use of IDENTIFIED BY is deprecated.
The following syntax is supported for backward compatibility only:

Program Idents
MIMER_SW

The right to create and manage databank shadows was previously granted by having
EXECUTE on the program ident MIMER_SW.
This has now been replaced by the SHADOW system privilege.

MIMER_BR
The right to perform backup and restore operations was previously granted by having
EXECUTE on the program ident MIMER_BR.
This has now been replaced by the BACKUP system privilege.

532 Appendix D Deprecated Features
Functions

MIMER_SC
The right to execute the UPDATE STATISTICS statement was previously granted by
having EXECUTE on the program ident MIMER_SC.
This has now been replaced by the STATISTICS system privilege.

Functions
The following functions have been deprecated in the current version of Mimer SQL.

BIT_LENGTH
The BIT_LENGTH function is no longer supported. The function OCTET_LENGTH’s return
value multiplied by 8 can be used as an alternative.
See OCTET_LENGTH on page 112.

Arithmetic Functions
The functions DACOS, DASIN, DATAN, DATAN2, DCOS, DCOT, DDEGREES, DEXP, DLOG,
DLOG10, DPOWER, DRADIANS, DSIN, DSQRT and DTAN are no longer supported.
In Mimer version 11 the following functions are supported: ACOS, ASIN, ATAN, ATAN2,
COS, COSH, COT, EXP, LN, LOG10, POWER, SIN, SINH, SQRT, TAN and TANH.

Datetime Scalar Functions
The following scalar functions have been deprecated in the current version of
Mimer SQL. They will be re-introduced in a future version with changed functionality.

CURRENT_TIME
This function, in its present form, has been removed since it’s deprecated.
The same functionality is now provided by the LOCALTIME function.

CURRENT_TIMESTAMP
This function, in its present form, has been removed since it’s deprecated.
The same functionality is now provided by the LOCALTIMESTAMP function.

Data Dictionary Views
The MIMER and INFO_SCHEM predefined system views on the data dictionary tables, that
were supported in previous versions of Mimer SQL have now been replaced by the
standard system views belonging to the schema INFORMATION_SCHEMA, which is owned
by ident SYSTEM.
The FIPS_DOCUMENTATION system views have been removed.

Mimer SQL Version 11.0 533
SQL Reference Manual

Host Variable Types
The following SQL descriptor host variable types are deprecated:

Host variable TYPE

MIMER_BINARY -13

534 Appendix D Deprecated Features
Host Variable Types

Mimer SQL Version 11.0 535
SQL Reference Manual

Appendix E

Return Status and
Conditions

In Mimer SQL, status information is returned in the SQLCODE and SQLSTATE variables.
The SQLSTATE variable must be declared as a 5-character long string (excluding any
terminating null byte), and the declaration of SQLSTATE must be made between BEGIN
DECLARE SECTION and END DECLARE SECTION. The SQLSTATE variable together
with the GET DIAGNOSTICS statement will provide the application with information
about the most recently executed SQL statement.
The SQLCODE variable must be declared as integer. If neither an SQLSTATE nor an
SQLCODE variable is declared between BEGIN DECLARE SECTION and END DECLARE
SECTION, Mimer SQL will assume the existence of an SQLCODE variable. (I.e. declared
somewhere outside the declare section, but still within scope.)
There are three different types of conditions in Mimer SQL; NOT FOUND,
SQLEXCEPTION and SQLWARNING (see the WHENEVER on page 434).
The NOT FOUND condition is returned by setting SQLSTATE to No data ('02000'), or by
setting SQLCODE to +100. This is referred to as “a NOT FOUND condition code is
returned” in this manual.
SQLEXCEPTION’s are returned using an error code in SQLSTATE, or a negative value in
SQLCODE. This is referred to as “an error code is returned” in this manual.
SQLWARNING’s are returned by setting either a Success with warning -code in
SQLSTATE, or a value > 0 in SQLCODE. This is referred to as “a warning flag is set” in this
manual.
More detailed information about certain operations can be obtained by the GET
DIAGNOSTICS statement described in GET DIAGNOSTICS on page 351.

SQLSTATE Return Codes
SQLSTATE contains a 5 character long return code string that indicates status of an SQL
statement. These return codes follows the established standards. Observe that not all
standardized SQLSTATE return codes are used by Mimer SQL.
The SQLSTATE values consists of two fields: the class, which is the first two characters
of the string, and the subclass, which is the terminating three characters of the string.
For a full list of SQLSTATE values returned by Mimer SQL, see Mimer SQL
Programmer’s Manual, Appendix B, List of SQLSTATE Values.

536 Appendix E Return Status and Conditions
SQLCODE Return Codes

SQLCODE Return Codes
The values of SQLCODE are the same as the values for the native Mimer SQL return codes,
as described in the Mimer SQL Programmer’s Manual, Appendix B, Native Mimer SQL
Return Codes.

Mimer SQL Version 11.0 537
SQL Reference Manual

Appendix F

SQL-2016
Compliance

The ANSI/ISO SQL-2016 standard is divided into a number of named features. In this
appendix it is shown which of these features that are supported in Mimer SQL. The
information can also be retrieved from the data dictionary by selecting from the view
INFORMATION_SCHEMA.SQL_FEATURES.

SQL-2016 Core Features
Feature ID Feature name Supported

B012 Embedded C Yes

B013 Embedded COBOL Yes

B014 Embedded Fortran Yes

E011 Numeric data types Yes

E011-01 INTEGER and SMALLINT data types
(including all spellings)

Yes

E011-02 REAL, DOUBLE PRECISON, and FLOAT
data types

Yes

E011-03 DECIMAL and NUMERIC data types Yes

E011-04 Arithmetic operators Yes

E011-05 Numeric comparison Yes

E011-06 Implicit casting among the numeric data
types

Yes

E021 Character string types Yes

E021-01 CHARACTER data type (including all its
spellings)

Yes

E021-02 CHARACTER VARYING data type
(including all its spellings)

Yes

538 Appendix F SQL-2016 Compliance
SQL-2016 Core Features

E021-03 Character literals Yes

E021-04 CHARACTER_LENGTH function Yes

E021-05 OCTET_LENGTH function Yes

E021-06 SUBSTRING function Yes

E021-07 Character concatenation Yes

E021-08 UPPER and LOWER functions Yes

E021-09 TRIM function Yes

E021-10 Implicit casting among the fixed-length and
variable-length character string types

Yes

E021-11 POSITION function Yes

E021-12 Character comparison Yes

E031 Identifiers Yes

E031-01 Delimited identifiers Yes

E031-02 Lower case identifiers Yes

E031-03 Trailing underscore Yes

E051 Basic query specification Yes

E051-01 SELECT DISTINCT Yes

E051-02 GROUP BY clause Yes

E051-04 GROUP BY can contain columns not in
select-list

Yes

E051-05 Select list items can be renamed Yes

E051-06 HAVING clause Yes

E051-07 Qualified * in select list Yes

E051-08 Correlation names in the FROM clause Yes

E051-09 Rename columns in the FROM clause Yes

E061 Basic predicates and search conditions Yes

E061-01 Comparison predicate Yes

E061-02 BETWEEN predicate Yes

E061-03 IN predicate with list of values Yes

E061-04 LIKE predicate Yes

E061-05 LIKE predicate: ESCAPE clause Yes

E061-06 NULL predicate Yes

E061-07 Quantified comparison predicate Yes

Mimer SQL Version 11.0 539
SQL Reference Manual

E061-08 EXISTS predicate Yes

E061-09 Subqueries in comparison predicate Yes

E061-11 Subqueries in IN predicate Yes

E061-12 Subqueries in quantified comparison
predicate

Yes

E061-13 Correlated subqueries Yes

E061-14 Search condition Yes

E071 Basic query expressions Yes

E071-01 UNION DISTINCT table operator Yes

E071-02 UNION ALL table operator Yes

E071-03 EXCEPT DISTINCT table operator Yes

E071-05 Columns combined via table operators need
not have exactly the same data type

Yes

E071-06 Table operators in subqueries Yes

E081 Basic Privileges Yes

E081-01 SELECT privilege at the table level Yes

E081-02 DELETE privilege Yes

E081-03 INSERT privilege at the table level Yes

E081-04 UPDATE privilege at the table level Yes

E081-05 UPDATE privilege at the column level Yes

E081-06 REFERENCES privilege at the table level Yes

E081-07 REFERENCES privilege at the column level Yes

E081-08 WITH GRANT OPTION Yes

E081-09 USAGE privilege Yes

E081-10 EXECUTE privilege Yes

E091 Set functions Yes

E091-01 AVG Yes

E091-02 COUNT Yes

E091-03 MAX Yes

E091-04 MIN Yes

E091-05 SUM Yes

E091-06 ALL quantifier Yes

E091-07 DISTINCT qualifier Yes

540 Appendix F SQL-2016 Compliance
SQL-2016 Core Features

E101 Basic data manipulation Yes

E101-01 INSERT statement Yes

E101-03 Searched UPDATE statement Yes

E101-04 Searched DELETE statement Yes

E111 Single row SELECT statement Yes

E121 Basic cursor support Yes

E121-01 DECLARE CURSOR Yes

E121-02 ORDER BY columns need not be in select
list

Yes

E121-03 Value expressions in ORDER BY clause Yes

E121-04 Open statement Yes

E121-06 Positioned UPDATE statement Yes

E121-07 Positioned DELETE statement Yes

E121-08 CLOSE statement Yes

E121-10 FETCH statement: implicit NEXT Yes

E121-17 WITH HOLD cursors Yes

E131 Null value support (nulls in lieu of values) Yes

E141 Basic integrity constraints Yes

E141-01 NOT NULL constraints Yes

E141-02 UNIQUE constraints of NOT NULL
columns

Yes

E141-03 PRIMARY KEY constraints Yes

E141-04 Basic FOREIGN KEY constraint with the
NO ACTION default for both referential
delete action and referential update action

Yes

E141-06 CHECK constraints Yes

E141-07 Column defaults Yes

E141-08 NOT NULL inferred on PRIMARY KEY Yes

E141-10 Names in a foreign key can be specified in
any order

Yes

E151 Transaction support Yes

E151-01 COMMIT statement Yes

E151-02 ROLLBACK statement Yes

E152 Basic SET TRANSACTION statement Yes

Mimer SQL Version 11.0 541
SQL Reference Manual

E152-01 SET TRANSACTION statement:
ISOLATION LEVEL SERIALIZABLE
clause

Yes

E152-02 SET TRANSACTION statement: READ
ONLY and READ WRITE clauses

Yes

E153 Updatable queries with subqueries Yes

E161 SQL comments using leading double minus Yes

E171 SQLSTATE support Yes

F031 Basic schema manipulation Yes

F031-01 CREATE TABLE statement to create
persistent base tables

Yes

F031-02 CREATE VIEW statement Yes

F031-03 GRANT statement Yes

F031-04 ALTER TABLE statement: ADD
COLUMN clause

Yes

F031-13 DROP TABLE statement: RESTRICT
clause

Yes

F031-16 DROP VIEW statement: RESTRICT clause Yes

F031-19 REVOKE statement: RESTRICT clause Yes

F041 Basic joined tables Yes

F041-01 Inner join (but not necessarily the INNER
keyword)

Yes

F041-02 INNER keyword Yes

F041-03 LEFT OUTER JOIN Yes

F041-04 RIGHT OUTER JOIN Yes

F041-05 Outer joins can be nested Yes

F041-07 The inner table in a left or right outer join can
also be used in an inner join

Yes

F041-08 All comparison operators are supported
(rather than just =)

Yes

F051 Basic date and time Yes

F051-01 DATE data type (including DATE literal) Yes

F051-02 TIME data type (including TIME literal)
with fractional seconds precision of 0

Yes

F051-03 TIMESTAMP data type (including
TIMESTAMP literal) with fractional
seconds precision of 0 and 6

Yes

542 Appendix F SQL-2016 Compliance
SQL-2016 Core Features

F051-04 Comparison predicate on DATE, TIME, and
TIMESTAMP data types

Yes

F051-05 Explicit CAST between datetime types and
character types

Yes

F051-06 CURRENT_DATE Yes

F051-07 LOCALTIME Yes

F051-08 LOCALTIMESTAMP Yes

F081 UNION and EXCEPT in views No

F131 Grouped operations Yes

F131-01 WHERE, GROUP BY, and HAVING
clauses supported in queries with grouped
views

Yes

F131-02 Multiple tables supported in queries with
grouped views

Yes

F131-03 Set functions supported in queries with
grouped views

Yes

F131-04 Subqueries with GROUP BY and HAVING
clauses and grouped views

Yes

F131-05 Single row SELECT with GROUP BY and
HAVING clauses and grouped views

Yes

F181 Multiple module support Yes

F201 CAST function Yes

F221 Explicit defaults Yes

F261 CASE expression Yes

F261-01 Simple CASE Yes

F261-02 Searched CASE Yes

F261-03 NULLIF Yes

F261-04 COALESCE Yes

F311 Schema definition statement Yes

F311-01 CREATE SCHEMA Yes

F311-02 CREATE TABLE for persistent base tables Yes

F311-03 CREATE VIEW Yes

F311-04 CREATE VIEW: WITH CHECK OPTION Yes

F311-05 GRANT statement Yes

F471 Scalar subquery values Yes

Mimer SQL Version 11.0 543
SQL Reference Manual

Features Outside Core Supported by Mimer SQL

F481 Expanded NULL predicate Yes

F812 Basic flagging Yes

S011 Distinct data types Yes

T321 Basic SQL invoked routines Yes

T321-01 User-defined functions with no overloading Yes

T321-02 User-defined stored procedures with no
overloading

Yes

T321-03 Function invocation Yes

T321-04 CALL statement Yes

T321-05 RETURN statement Yes

Feature ID Feature Name

B021 Direct SQL

B031 Basic dynamic SQL

B032 Extended dynamic SQL

B032-01 <describe input> statement

B033 Untyped SQL invoked function argument

B112 Module language C

B113 Module language COBOL

B114 Module language Fortran

B128 Routine language SQL

F032 CASCADE drop behavior

F033 ALTER TABLE statement: DROP COLUMN clause

F034 Extended REVOKE statement

F052 Intervals and datetime arithmetic

F053 OVERLAPS predicate

F054 Timestamp in DATE type precedence list

F111 Isolation levels other than SERIALIZABLE

F111-01 READ UNCOMMITTED isolation level

F111-02 READ COMMITTED isolation level

F111-03 REPEATABLE READ isolation level

544 Appendix F SQL-2016 Compliance
Features Outside Core Supported by Mimer SQL

F121 Basic diagnostics management

F121-01 GET DIAGNOSTICS statement

F121-02 SET TRANSACTION statement: DIAGNOSTICS SIZE clause

F122 Enhanced diagnostics management

F171 Multiple schemas per user

F191 Referential delete actions

F222 INSERT statement: DEFAULT VALUES clause

F231 Privilege tables

F251 Domain support

F271 Compound character literals

F281 LIKE enhancements

F291 UNIQUE predicate

F302 INTERSECT table operator

F302-01 INTERSECT DISTINCT table operator

F302-02 INTERSECT ALL table operator

F304 EXCEPT ALL table operator

F341 Usage tables

F361 Subprogram support

F381 Extended schema manipulation

F381-01 ALTER TABLE statement: ALTER COLUMN clause

F381-02 ALTER TABLE statement: ADD CONSTRAINT clause

F381-03 ALTER TABLE statement: DROP CONSTRAINT clause

F382 Alter column data type

F391 Long identifiers

F392 Unicode escapes in identifiers

F393 Unicode escapes in literals

F401-01 NATURAL JOIN

F401-04 CROSS JOIN

F421 National character

F431 Read-only scrollable cursors

F441 Extended set function support

F442 Mixed column references in set functions

Mimer SQL Version 11.0 545
SQL Reference Manual

F491 Constraint management

F555 Enhanced seconds precision

F561 Full value expressions

F571 Truth value tests

F591 Derived tables

F661 Simple tables

F672 Retrospective check constraints

F673 Reads SQL-data routine invocations in CHECK constraints

F690 Collation support

F692 Enhanced collation support

F701 Referential update actions

F721 Deferrable constraints

F731 INSERT column privileges

F771 Connection management

F781 Self-referencing operations

F850 Top-level <order by clause> in <query expression>

F851 <order by clause> in subqueries

F852 Top-level <order by clause> in views

F855 Nested <order by clause> in <query expression>

F856 Nested <fetch first clause> in <query expression>

F857 Top-level <fetch first clause> in <query expression>

F858 <fetch first clause> in subqueries

F859 Top-level <fetch first clause> in views

F860 dynamic <fetch first row count> in <fetch first clause>

F861 Top-level <result offset clause> in <query expression>

F862 <result offset clause> in subqueries

F863 Nested <result offset clause> in <query expression>

F864 Top-level <result offset clause> in views

F865 dynamic <offset row count> in <result offset clause>

P001 Stored Modules

P002 Computational completeness

P003 Information Schema views

546 Appendix F SQL-2016 Compliance
Features Outside Core Supported by Mimer SQL

P004 Extended CASE statement

P005 Qualified SQL variable references

P006 Multiple assignment

S028 Permutable UDT options list

T011 Timestamp in Information Schema

T021 BINARY and VARBINARY data types

T022 Advanced support for BINARY and VARBINARY data types

T023 Compound binary literals

T024 Spaces in binary literals

T031 BOOLEAN data type

T041 Basic LOB data type support. Mimer SQL does not support the
following sub-features:
T041-03 “POSITION, LENGTH, LOWER, TRIM, UPPER, and
SUBSTRING functions for LOB data types” (except SUBSTRING
that is supported)
T041-04 “Concatenation of LOB data types”
T041-05 “LOB locator: non-holdable”.

T071 BIGINT data type

T101 Enhanced nullability determination

T121 WITH (excluding RECURSIVE) in query expression

T122 WITH (excluding RECURSIVE) in subquery

T132 Recursive query in subquery

T151 DISTINCT predicate

T152 DISTINCT predicate with negation

T176 Sequence generator support

T177 Sequence generator support: simple restart option

T191 Referential action RESTRICT

T211 Basic trigger capability

T212 Enhanced trigger capability

T213 INSTEAD OF triggers

T241 START TRANSACTION statement

T285 Enhanced derived column names

T312 OVERLAY function

T321 Basic SQL-invoked routines

Mimer SQL Version 11.0 547
SQL Reference Manual

T341 Overloading of SQL-invoked functions and SQL-invoked
procedures

T441 ABS and MOD functions

T461 Symmetric BETWEEN predicate

T501 Enhanced EXISTS predicate

T551 Optional key words for default syntax

T591 UNIQUE constraints of possibly null columns

T622 Trigonometric functions

T624 Common logarithm functions

T631 IN predicate with one list element

T641 Multiple column assignment

T655 Cyclically dependent routines

P001 Stored modules

P002 Computational completeness

P003 Information Schema views

548 Appendix F SQL-2016 Compliance
Features Outside Core Supported by Mimer SQL

Mimer SQL Version 11.0 549
SQL Reference Manual

Appendix G

Languages
Mimer SQL contains a large number of collations for different languages:
• Afrikaans
• Albanian
• Arabic
• Armenian
• Arumanian
• Assamese
• Asturian
• Azerbaijani
• Basque
• Belarusian
• Bengali
• Bosnian
• Breton
• Bulgarian
• Catalan
• Chinese KangXi
• Chinese PinYin
• Chinese_Pinyin_Name
• Chinese Stroke
• Chinese ZhuYin
• Chinese_Zhuyin_Name
• Corsican
• Croatian
• Czech
• Danish
• Dutch
• Dzongkha
• English
• Esperanto

550 Appendix G Languages

• Estonian
• Faroese
• Filipino
• Finnish
• French
• Frisian
• Friulian
• Galician
• Georgian
• German
• German Phonebook
• Greek
• Greenlandic
• Gujarati
• Hausa
• Hebrew
• Hindi
• Hungarian
• Icelandic
• Igbo
• Indonesian
• Irish Gaelic
• Italian
• Japanese
• Javanese
• Kannada
• Kazakh
• Khmer
• Kirghiz
• Korean
• Kurdish
• Lao
• Latin
• Latvian
• Lithuanian
• Luxembourgish
• Macedonian
• Malay

Mimer SQL Version 11.0 551
SQL Reference Manual

• Malayalam
• Maltese
• Marathi
• Moldavian
• Myanmar
• Nepali
• Norwegian
• Occitan
• Oriya
• Persian
• Polish
• Portuguese
• Punjabi
• Romanian
• Romansch
• Russian
• Sami (Inari, Lule, Northern, Skolt, Southern)
• Sanskrit
• Scots
• Scottish Gaelic
• Serbian
• Sesotho
• Sinhala
• Slovak
• Slovenian
• Sorbian Lower
• Sorbian Upper
• Spanish
• Spanish Traditional
• Swedish
• Tamil
• Tatar
• Telugu
• Thai
• Tibetan
• Turkish
• Turkmen
• Ukrainian

552 Appendix G Languages

• Urdu
• Uzbek
• Vietnamese
• Welsh
• Yiddish
• Yoruba
• Zulu
All collations available are found in the INFORMATION_SCHEMA.COLLATIONS view.
Mimer SQL’s predefined level 1 collations have names ending with _1, e.g. ENGLISH_1,
the predefined level 2 collations have names ending with _2, e.g. ENGLISH_2, and the
predefined level 3 collations have names ending with _3, e.g. ENGLISH_3.
Note: Mimer Information Technology AB reserves the right to change the contents

of these collations in future releases.

Mimer SQL Version 11.0 553
SQL Reference Manual

Appendix H

Type Precedence
Lists

The following table describes the parameter overloading type precedence lists:

Data type Precedence list

CHARACTER VARYING CHARACTER VARYING
CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHARACTER

CHARACTER CHARACTER
CHARACTER VARYING
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING

NATIONAL CHARACTER
VARYING

NATIONAL CHARACTER VARYING
NATIONAL CHARACTER
CHARACTER VARYING
CHARACTER

NATIONAL CHARACTER NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
CHARACTER
CHARACTER VARYING

BINARY BINARY
BINARY VARYING

BINARY VARYING BINARY VARYING
BINARY

INTERVAL YEAR INTERVAL YEAR
INTERVAL YEAR to MONTH
INTERVAL MONTH

INTERVAL YEAR to MONTH INTERVAL YEAR to MONTH
INTERVAL YEAR
INTERVAL MONTH

554 Appendix H Type Precedence Lists

INTERVAL MONTH INTERVAL MONTH
INTERVAL YEAR to MONTH
INTERVAL YEAR

INTERVAL DAY INTERVAL DAY
INTERVAL DAY to HOUR
INTERVAL DAY to MINUTE
INTERVAL DAY to SECOND
INTERVAL HOUR
INTERVAL HOR to MINUTE
INTERVAL HOUR to SECOND
INTERVAL MINUTE
INTERVAL MINUTE to SECOND
INTERVAL SECOND

INTERVAL DAY to HOUR INTERVAL DAY to HOUR
INTERVAL DAY to MINUTE
INTERVAL DAY to SECOND
INTERVAL DAY
INTERVAL HOUR
INTERVAL HOR to MINUTE
INTERVAL HOUR to SECOND
INTERVAL MINUTE
INTERVAL MINUTE to SECOND
INTERVAL SECOND

INTERVAL DAY to MINUTE INTERVAL DAY to MINUTE
INTERVAL DAY to SECOND
INTERVAL DAY to HOUR
INTERVAL DAY
INTERVAL HOR to MINUTE
INTERVAL HOUR to SECOND
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL MINUTE to SECOND
INTERVAL SECOND

INTERVAL DAY to SECOND INTERVAL DAY to SECOND
INTERVAL DAY to MINUTE
INTERVAL DAY to HOUR
INTERVAL DAY
INTERVAL HOUR to SECOND
INTERVAL HOUR to MINUTE
INTERVAL HOUR
INTERVAL MINUTE to SECOND
INTERVAL MINUTE
INTERVAL SECOND

Data type Precedence list

Mimer SQL Version 11.0 555
SQL Reference Manual

INTERVAL HOUR INTERVAL HOUR
INTERVAL HOUR to MINUTE
INTERVAL HOUR to SECOND
INTERVAL DAY to HOUR
INTERVAL DAY to MINUTE
INTERVAL DAY to SECOND
INTERVAL DAY
INTERVAL MINUTE
INTERVAL MINUTE to SECOND
INTERVAL SECOND

INTERVAL HOUR to MINUTE INTERVAL HOUR to MINUTE
INTERVAL HOUR to SECOND
INTERVAL HOUR
INTERVAL DAY to MINUTE
INTERVAL DAY to SECOND
INTERVAL DAY to HOUR
INTERVAL DAY
INTERVAL MINUTE
INTERVAL MINUTE to SECOND
INTERVAL SECOND

INTERVAL HOUR to SECOND INTERVAL HOUR to SECOND
INTERVAL HOUR to MINUTE
INTERVAL HOUR
INTERVAL DAY to SECOND
INTERVAL DAY to MINUTE
INTERVAL DAY to HOUR
INTERVAL DAYI
NTERVAL MINUTE to SECOND
INTERVAL MINUTE
INTERVAL SECOND

INTERVAL MINUTE INTERVAL MINUTE
INTERVAL MINUTE to SECOND
INTERVAL HOUR to MINUTE
INTERVAL HOUR to SECOND
INTERVAL HOUR
INTERVAL DAY to MINUTE
INTERVAL DAY to HOUR
INTERVAL DAY
INTERVAL DAY to SECOND
INTERVAL SECOND

Data type Precedence list

556 Appendix H Type Precedence Lists

INTERVAL MINUTE to SECOND INTERVAL MINUTE to SECOND
INTERVAL HOUR to SECOND
INTERVAL DAY to SECOND
INTERVAL MINUTE
INTERVAL HOUR to MINUTE
INTERVAL DAY to MINUTE
INTERVAL HOUR
INTERVAL DAY to HOUR
INTERVAL DAY
INTERVAL SECOND

INTERVAL SECOND INTERVAL SECOND
INTERVAL MINUTE to SECOND
INTERVAL HOUR to SECOND
INTERVAL DAY to SECOND
INTERVAL MINUTE
INTERVAL HOUR to MINUTE
INTERVAL HOUR
INTERVAL DAY to MINUTE
INTERVAL DAY to HOUR
INTERVAL DAY

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

SMALLINT SMALLINT
Integer(p)
INTEGER
BIGINT
DECIMAL
NUMERIC
Float(p)
REAL
FLOAT
DOUBLE PRECISION

Integer(p) Integer(p)
INTEGER
BIGINT
DECIMAL
NUMERIC
Float(p)
REAL
FLOAT
DOUBLE PRECISION
SMALLINT

Data type Precedence list

Mimer SQL Version 11.0 557
SQL Reference Manual

INTEGER INTEGER
BIGINT
DECIMAL
NUMERIC
Float(p)
REAL
FLOAT
DOUBLE PRECISION
Integer(p)
SMALLINT

BIGINT BIGINT
DECIMAL
NUMERIC
Float(p)
REAL
FLOAT
DOUBLE PRECISION
Integer(p)
INTEGER
SMALLINT

DECIMAL DECIMAL
NUMERIC
Float(p)
REAL
FLOAT
DOUBLE PRECISION
BIGINT
INTEGER
Integer(p)
SMALLINT

NUMERIC NUMERIC
DECIMAL
Float(p)
REAL
FLOAT
DOUBLE PRECISION
BIGINT
INTEGER
Integer(p)
SMALLINT

Data type Precedence list

558 Appendix H Type Precedence Lists

Float(p) Float(p)
REAL
FLOAT
DOUBLE PRECISION
DECIMAL
NUMERIC
BIGINT
INTEGER
Integer(p)
SMALLINT

REAL REAL
FLOAT
DOUBLE PRECISION
Float(p)
DECIMAL
NUMERIC
BIGINT
INTEGER
Integer(p)
SMALLINT

FLOAT FLOAT
DOUBLE PRECISION
REAL
Float(p)
DECIMAL
NUMERIC
BIGINT
INTEGER
Integer(p)
SMALLINT

DOUBLE PRECISION DOUBLE PRECISION
FLOAT
REAL
Float(p)
DECIMAL
NUMERIC
BIGINT
INTEGER
Integer(p)
SMALLINT

BOOLEAN BOOLEAN

Data type Precedence list

Mimer SQL Version 11.0 559
SQL Reference Manual

Index
A
aborting transactions 394
ABS 89
access

privileges 24, 357
access control statements 189
access privileges

DELETE 357
INSERT 357
REFERENCES 357
revoking 386
SELECT 357
UPDATE 357

access-clause for procedures 257
ACOS 90
ALL 153, 174

in SELECT clause 174
predicate 153

ALLOCATE CURSOR 194
ALLOCATE DESCRIPTOR 196
ALTER DATABANK 198

INTO 198
SET FILESIZE 198
TO

LOG 198
TRANSACTION 198
WORK 198

ALTER DATABANK RESTORE 203
filename-string 203
LOG 203

ALTER DATABASE 205
ALTER FUNCTION 207
ALTER IDENT 210
ALTER METHOD 212
ALTER PROCEDURE 214
ALTER ROUTINE 217
ALTER SEQUENCE 220
ALTER SHADOW 221
ALTER STATEMENT 223
ALTER TABLE 224
ALTER TYPE 228, 229
Alternate Weighting 26
anchor member 179

ANSI/ISO 9
ANY 153
arccosine 90
arcsine 91
arctangent 92
arithmetical operators 72
ASCII_CHAR 90
ASCII_CODE 91
ASIN 91
assigning values 77

standard compliance 80, 83
assignment

SET 402
assignments 77

string 77
ATAN 92
ATAN2 92
automatic upgrade 206
AUTOUPGRADE 205, 226, 252, 263
AVG 135

B
BACKUP

privilege 362
backup

databank 246
BACKUP privilege 362
Backward Accent Ordering 32
backward compatibility 527
basic predicate 152

subselect 152
BEGIN DECLARE SECTION 312
BEGINS 93
BEGINS_WORD 93
BETWEEN 154
BIGINT 52
BINARY 50
BINARY LARGE OBJECT 50
binary operators 140
BINARY VARYING 50
bit operators 72
BLOB 50
Boolean 57

560 Index

BREADTH first 180
BUILTIN.BEGINS_WORD 93
BUILTIN.MATCH_WORD 94
BUILTIN.UTC_TIMESTAMP 95

C
CALL 231
calling procedures 231
CASCADE 225, 226, 325, 386, 390
CASE 143, 233

rules 143, 144
CASE expression 143

COALESCE 145
is NULLIF 145
NULLIF 145
rules 143, 144
short forms 145

case folding 47
CAST 146
CAST specification 146

example 149
rules 146

CEILING 96
changing databank file location 221
changing shadow to master databank 221
CHAR_LENGTH 96
CHAR(n) 45
CHARACTER 44
CHARACTER LARGE OBJECT 44
character set 523
character string 64
CHARACTER VARYING 44
CHARACTER VARYING(n) 45
CHARACTER_SET_ CATALOG 343
CHARACTER_SET_ NAME 343
CHARACTER_SET_ SCHEMA 343
CHARACTER(n) 45
character-string-literal 64
CHECK

in domain 255
check conditions 22
CHECK OPTION

in view definition 300
check options 23
CLOB 44, 45

maximum length 45, 50
CLOSE 235
closing a cursor 235
COALESCE 145
COLLATE 177
collation 20, 325, 523

creating 249
dropping 325

COLLATION_CATALOG 343
COLLATION_NAME 343
COLLATION_SCHEMA 343

column
adding 224
altering 225
dropping 225

column definition 285
column names

in UNION queries 182
in views 300

COMMAND_FUNCTION 354
COMMENT 237
comment

dropping 325
comments 237

changing 237
dropping 325

COMMIT 239
COMMIT BACKUP 239
common table expression 177
comparison operators 73
comparisons 80

truth tables 82
compound statement 241
compress 225
concatenation 65
condition names

declaring 305
conditional execution

CASE 233
IF 364

CONNECT 243
backward compatibility syntax 528

connection statements 189
constants 64
CONSTRAINT_CATALOG 352
constructor-method-invocation 149
CONTINUE 432
contractions 32
coordinate system 58
Coordinated Universal Time 95
correlation names 175
COS 97
COSH 97
cosine 97
COT 98
cotangent 98
COUNT 135
CREATE

BACKUP 246
COLLATION 249
DATABANK 251
DOMAIN 254
FUNCTION 256
IDENT 260
INDEX 262
METHOD 265
MODULE 266
PROCEDURE 269

Mimer SQL Version 11.0 561
SQL Reference Manual

SCHEMA 273
SEQUENCE 275
SHADOW 278
STATEMENT 280
SYNONYM 282
TABLE 283
TRIGGER 292
TYPE 296
VIEW 299, 300

creating 280
collations 249
comments 237
databanks 251
domain 254
function 256
ident 260
method 265
module 266
procedure 269
schema 273
secondary index 262
sequence 275
shadow databank 278
synonym 282
table 283
trigger 292
user-defined types 296
view 300

CROSS JOIN 170
cte 177
CURRENT VALUE 100
CURRENT_DATE 98
CURRENT_PROGRAM 99
CURRENT_USER 99
cursor

closing 235
cursor stack 235, 307
cursors

access rights 308
declaring 307
deleting current row 317
evaluating declaration 308
opening 376
position after delete 317
positioning in result set 337
REOPENABLE 307
retrieving data 337
SCROLL 307, 337
updating data 427

CYCLE 276
CYCLE clause 182
cycle-clause 178

D
data

binary 50

numerical 52
data definition statements 190
data dictionary 12, 435
data integrity 21

check conditions 22
check options 23
domains 22
foreign keys 21

data types
abbreviations 59
CHAR(n) 45
CHARACTER(n) 45
compatibility 60
compatibility in FETCH statements 338
conversion 60, 61, 146
DATE TIME TIMESTAMP 53
INTERVAL 54
NCHAR 46
NCHAR VARYING 46
ROW 59
standard compliance 63

databank 12, 251
altering 198
backup 246
creating 251
dropping 325
file location 221, 251
name 253, 274
offline 405
restoring 203
shadow 278
shadows offline 414
shadows online 414
system 13
user 13

DATABANK privilege 362
databanks

online 405
database

connecting to 243
objects 11
offline 407
online 407
optimizing performance 430
private objects 11
system objects 11

DATE 53, 54
datetime and interval comparisons 81
datetime assignments 79
DATETIME data types 347
Datetime literals 67
DATETIME_INTERVAL _CODE 344
DATETIME_INTERVAL _PRECISION
344
DAY 56, 100, 101
DAYOFYEAR 100, 101, 102
DAY-TIME 54

562 Index

DDL 190
DEALLOCATE

DESCRIPTOR 303
PREPARE 304

deallocating cursor resources 235
DECIMAL 52
decimal literals 66
DECLARE

CONDITION 305
CURSOR 307
HANDLER 310
SECTION 312
VARIABLE 313

declaring host variables 312
declaring procedure variables 313
DEFAULT

in column definition 285
in domain 254

default transaction mode settings 411
default values 76
DEGREES 102
DELETE 315

CURRENT 317
privilege 357

DELETE STATISTICS 319
delete-rule 288
delimited identifier 38
deprecated features 527
DEPTH first 180
DESCRIBE SELECT LIST 321
DESCRIBE USER VARIABLES 321
descriptor area 321

see SQLDA 338
destroy allocated cursor 304
destroy prepared statement 304
diagnostics area 349
DISCONNECT 323
disk representation 225
DISTINCT 174
DISTINCT FROM 159
DISTINCT predicate 159
domain 254

creating 254
data integrity 22
dropping 325

DOUBLE PRECISION 52
DROP 16, 324
drop behavior 225, 226
dynamic SQL statements

executing 330, 332
opening cursors 376
preparing 378
source form 378

DYNAMIC_FUNCTION 354

E
ELSE 144, 364
ELSEIF 364
embedded SQL control statements 191
END DECLARE SECTION 312
EOR 10
error

codes 533, 535
handling 432

escape
characters 156

evaluating cursor declaration 308
EXCEPT 71, 183
exception

conditions 432
handlers

declaring 310
exception-info 351
EXECUTE 330
EXECUTE IMMEDIATE 332
EXECUTE privilege

on procedure 360
on program ident 360

EXECUTE STATEMENT 333, 334
EXISTS 157
EXP 103
exp 103
explain 334
expression 139

CASE 143
expressions 139

binary operators 140
evaluating arithmetical 141
evaluating string 142
in SELECT 174
operands 140
precision and scale 141
standard compliance 150
syntax 139
unary operators 140

extended cursor
allocate 194
DELETE CURRENT 317
UPDATE CURRENT 427

EXTRACT 103

F
FETCH 337

scrollable cursor 337
FETCH FIRST 185
fetch limit 185
file extension

shadow databank 221
file location

databank 221, 251
FILESIZE 199, 251

Mimer SQL Version 11.0 563
SQL Reference Manual

FIPS_DOCUMENTATION 530
FLOAT 52
floating point literals 66
FLOOR 104
FOR UPDATE 396
foreign keys

data integrity 21
function

dropping 326
functions 17, 87, 256

datetime pseudo literals
CURRENT_DATE 98
LOCALTIME 107
LOCALTIMESTAMP 107

scalar functions
standard compliance 133

scalar interval functions
ABS 89

scalar numeric functions 87
ASCII_CODE 91, 132
CHAR_LENGTH 96
CURRENT_VALUE 100
DAYOFYEAR 100, 101, 102
EXTRACT 103
IRAND 105
MOD 110
OCTET_LENGTH 112
POSITION 115
ROUND 123
SIGN 125
TRUNCATE 131
WEEK 133

scalar string functions
ASCII_CHAR 90, 131
CURRENT_PROGRAM 99
LOWER 109
PASTE 114
REPEAT 122
REPLACE 122
SOUNDEX 126
SUBSTRING 127
TAIL 128
TRIM 130
UPPER 132

set functions 135
ALL 136
AVG 135
COUNT 135
DISTINCT 136
eliminating duplicate values 136
empty operand set 136
evaluating 137
MAX 135
MIN 135
NULL 136
operational mode 136
precision and scale 137

restrictions 136
results 136
standard compliance 137
SUM 135
syntax 135

string ‘pseudo literals’
CURRENT_USER 99
SESSION_USER 124
USER 132

user-defined 256

G
GET DESCRIPTOR 342
GET DIAGNOSTICS 349

COMMAND_FUNCTION 354
condition-info 351
DYNAMIC_FUNCTION 354
exception-info

CATALOG_NAME 351
CLASS_ORIGIN 351
COLUMN_NAME 351
CONDITION_IDENTIFIER 352
CONDITION_NUMBER 352
CONNECTION_NAME 352
CONSTRAINT_CATALOG 352
CONSTRAINT_NAME 352
CONSTRAINT_SCHEMA 352
CURSOR_NAME 352
ERROR_LENGTH 352
ERROR_POSITION 352
MESSAGE_LENGTH 352
MESSAGE_OCTET _LENGTH

352
MESSAGE_TEXT 352
NATIVE_ERROR 353
PARAMETER_NAME 353
RETURNED_SQLSTATE 353
ROUTINE_CATALOG 353
ROUTINE_NAME 353
ROUTINE_SCHEMA 353
SCHEMA_NAME 353
SERVER_NAME 353
SPECIFIC_NAME 353
SUBCLASS_ORIGIN 353
TABLE_NAME 354
TRIGGER_CATALOG 354
TRIGGER_NAME 354
TRIGGER_SCHEMA 354

statement-information 351
COMMAND_FUNCTION 351
DYNAMIC_FUNCTION 351
MORE 351
NUMBER 351
ROW_COUNT 351
TRANSACTION_ACTIVE 351

GIS 58

564 Index

GOALSIZE 199, 251
GOTO 432
GRANT OBJECT PRIVILEGE 359
GRANT SYSTEM PRIVILEGE 362
GROUP BY 176
group ident 14
GROUP idents 261
group membership 360

H
handlers

declaring 310
HAVING 177
holdable cursor 194, 307
host variable declarations 312
HOUR 56, 104
hyperbolic cosine 97
hyperbolic sine 126
hyperbolic tangent 129

I
IDENT

privilege 362
ident 14, 260

creating 260
disconnecting from a database 323
dropping 326
GROUP 261
group 14
group membership 360
PROGRAM 260
program 14
USER 260
user 14

IDENT privilege 362
identifiers

standard compliance 43
IF 364
IN predicate 154
increment 275
index 262

dropping 326
index algorithm 263
INDEX_CHAR 105
indexes 16
indexing

automatic 264
Indic 33
indicator variables 42
INFO_SCHEM 530
INFORMATION_SCHEMA 435
INNER JOINs 165
INSERT 366

privilege 357
INTEGER 52

integer literals 65
intermediate result sets 175
INTERSECT 72, 183
INTERVAL 54

literals 67
qualifiers 55

INTERVAL data types 347
invoking procedures 231
IRAND 105
ISO/IEC 9075 9
ISOLATION LEVEL 411
isolation levels 416
item descriptor area 343
ITERATE 369
iterative execution

LOOP 374
REPEAT 380
WHILE 433

J
Japanese 35
JOIN

FULL OUTER 169
INNER 165
LEFT OUTER 168
NATURAL 166
ON 165
OUTER 167
RIGHT OUTER 168
standard compliance 170
USING 166

joined tables 165
joins 163

K
Kanji 35, 36
keywords

in syntax diagrams 6
Korean 36

L
labels in SELECT clause 174
languages 547
LARGE OBJECT 48, 50
latitude 58
LEAVE 371

(program ident) 373
LEFT 106
LENGTH 344
LEVEL 344
level-1 25
level-2 25
level-3 26
level-4 26

Mimer SQL Version 11.0 565
SQL Reference Manual

LIKE 155
escape characters 156
meta-characters 155
wildcards 155

literals 64
standard compliance 69

LN 106
LOCALTIME 107
LOCALTIMESTAMP 107
LOCATE 108
location 58
log 106, 109
LOG option 200, 252
LOG10 109
longitude 58
LOOP 374
LOWER 109

M
MASTER 221
MATCH_WORD 94
MAX 135
MAXSIZE 199, 251
MAXVALUE 276
MEMBER privilege 360
meta-characters 155
method 265
method-invocation 149
Mimer SQL

basic concepts 11, 25
database objects 11

MIN 135
MINSIZE 199, 251
MINUTE 56, 110
MINVALUE 276
MOD 110
module

dropping 326
modules 18, 266

creating 266
MONTH 56, 111
Multilevel Comparisons 25

N
NAME 344
NATIONAL CHARACTER 48
national character

data 524
NCHAR 46
strings 46

NATIONAL CHARACTER LARGE
OBJECT 48
NATIONAL CHARACTER VARYING 48
NATIONAL CHARACTER VARYING(n)
48

NATIONAL CHARACTER(n) 48
national-character-string-literal 64
NATURAL JOIN 166
NCHAR 46, 48
NCHAR LARGE OBJECT 48
NCHAR VARYING 48
NCHAR VARYING(n) 48
NCHAR(n) 48
NCLOB 48
NEXT VALUE 111
NO CYCLE 276
NOT EXISTS 157
NOT FOUND 432
NULL 59, 157

in comparisons 82
in expressions 141
in host variables 42
in set functions 136
in UNION queries 182
indicator variables 527
predicate 157

NULLABLE 344
NULLIF 145
numerical

comparisons 81
data

precision and scale 53
literals 66
strings 62

NVARCHAR 48

O
object privileges 23, 359

revoking 389
OCTET_LENGTH 112, 344
ON DELETE 288
ON UPDATE 288
OPEN 376
operand 71
operands 140
operators 72

standard compliance 75, 76
ORDER BY 184
order-by-clause 173
orientation specification 337
OS_USER 14
OUTER JOINs 167
outer references 40
OVERLAPS 158
OVERLAY 113

P
padding

string values 77
with blanks in LIKE predicate 156

566 Index

parameter marker 41
parameter markers

in dynamic SQL statements 330
parameter overloading 257, 270, 551
PARAMETER_MODE 345
PARAMETER_ORDINAL_POSITION 345
PARAMETER_SPECIFIC_CATALOG 345
PARAMETER_SPECIFIC_NAME 345
parameters

in syntax diagrams 7
parts explosion problem 308
PASTE 114
POSITION 115
POWER 115
power 115
precedence

search conditions 163
PRECISION 345
precision 53
precompiled statement 280
precompiled statements 280
predicates 139, 151

ALL 153
ANY or SOME 153
basic 152
EXISTS 157
IN 154
LIKE 155
NULL 157
quantified 153
standard compliance 161, 164
syntax 151

PREPARE 378
PRIMARY KEY 286
primary keys 16

indexes 16
Primary level 25
privileges 23

about 24
access 24, 357
granting

access privileges 357
object privileges 359
system privileges 362

object 23, 359
revoking

access privileges 386
object privileges 389
system privileges 392

system 23, 362
procedure

dropping 326
procedures 17, 269

access-clause 257, 270, 271
calling 231
creating 269
leaving 371

returning result set data 384
variables 43

value assignment 402
program ident 14
PROGRAM idents 260
program idents

EXECUTE privilege 360
leaving 373
retaining resources 373

Q
quantified predicate 153
QUARTER 116
Quaternary level 26

R
radian 116
RADIANS 116
random 105
READ ONLY option 201
read-only result sets 397
REAL 52
recursive member 179
recursive query 179
REFERENCES privilege 357
referential integrity 21
REGEXP_MATCH 117
regular expression 117, 156
RELEASE 235
REMOVABLE 252
REOPENABLE 307
REPEAT 122, 380
REPLACE 122
reserved words 43, 517, 519
RESIGNAL 382
RESTRICT 225, 226, 325, 386, 390
RESULT OFFSET 184
result-offset-clause 173
RETAIN 373
retrieving single rows 399
RETURN 384
RETURNED_LENGTH 345
RETURNED_OCTET _LENGTH 345
REVOKE

ACCESS PRIVILEGE 386
OBJECT PRIVILEGE 389
SYSTEM PRIVILEGE 392

revoking privileges
recursive effects 390, 392

RIGHT 123
RIGHT OUTER JOIN 168
rights. See privileges
ROLLBACK 394
ROLLBACK BACKUP 394
ROUND 123

Mimer SQL Version 11.0 567
SQL Reference Manual

routines 17
ROW 59
row-expression 151

S
scalar subquery 143
scale 53
SCHEMA

privilege 362
schema 15, 273

creating 273
dropping 326

SCHEMA privilege 362
SCROLL 307
scrollable cursor 307, 337
SEARCH clause 180
search conditions 163

precedence 163
truth tables 163

search-clause 178
searched CASE 233
searching 163
SECOND 56, 124
secondary index 262

creating 262
dropping 325
maintaining 264
use 264

Secondary level 25
SELECT 396

… AS column-label 174
* 173
ALL 174
COLLATE 177
correlation names 175
DISTINCT 174
expression 174
FOR UPDATE OF 396
FROM 175
GROUP BY 176
HAVING 177
intermediate result sets 175
INTO 399
notes 185
privilege 357
restrictions 185
SELECT clause 173
statement 396

in dynamic SQL 331
table.* 174
table-reference 175
UNION 182
WHERE 176

SELECT … AS 174
SELECT clause 173
SELECT specification 171

standard compliance 185
select-expression 171
select-expression-body 172
select-specification 172
separator 5
sequence 19, 220, 275

creating 275
dropping 326

SESSION_USER 124
SET 402

CONNECTION 404
DATABANK 405
DATABASE 407
DESCRIPTOR 409
SESSION 411
SHADOW 414
TRANSACTION 416

SET COMPRESS 225
set functions 135
SET PAGESIZE 225
SET TRANSACTION

access mode 416
CHANGES 529
ISOLATION LEVEL 416
START 418

shadow 278
dropping 326

shadow databank
creating 278

shadow databank name 278
shadow databanks

dropping 326
shadow file extension 221
SHADOW privilege 362
shadows 18
SIGN 125
SIGNAL 420
simple CASE 233
SIN 125
sin 125
single-row SELECT 399
singleton 399
SINH 126
SMALLINT 52
SOME 153
sort order

character set 523
index 263

SOUNDEX 126
spatial data 58
SPECIFIC_NAME 353
specifying default values 76
SQL 9

access control statements 189
connection statements 189
data definition statements 190
embedded control statements 191

568 Index

standards 9
SQL descriptor area

allocate 196
COUNT field 196, 343, 409
deallocate 303
get values 342
in FETCH statements 338
item descriptor area 343

CHARACTER_SET_ CATALOG
343

CHARACTER_SET_ NAME 343
CHARACTER_SET_ SCHEMA

343
COLLATION_CATALOG 343
COLLATION_NAME 343
COLLATION_SCHEMA 343
DATA 343
DATETIME data types 347
DATETIME_INTERVAL _CODE

344
DATETIME_INTERVAL _PRE-

CISION 344
INDICATOR 344
INTERVAL data types 347
LENGTH 344
NAME 344
NULLABLE 344
OCTET_LENGTH 344
PARAMETER_MODE 345
PARAMETER_ORDINAL_POSI-

TION 345
PARAMETER_SPECIFIC_CATA-

LOG 345
PARAMETER_SPECI-

FIC_NAME 345
PARAMETER_SPECIFIC_SCHE-

MA 345
parameters 347
PRECISION 345
RETURNED_LENGTH 345
RETURNED_OCTET _LENGTH

345
SCALE 345
TYPE 345
TYPE field 346
UNNAMED 346

set values 409
setting the TYPE field 410

SQL statements 189
ALTER DATABANK 198
ALTER DATABANK RESTORE 203
ALTER IDENT 210, 220
ALTER SHADOW 221

SQL/PSM 9
SQLDA 321

in OPEN 376
in PREPARE 378

SQLERROR 432
SQLEXCEPTION 432
SQLSTATE 533

fields 533
SQLWARNING 432
SQRT 127
square root 127
standard compliance

assigning values 80, 83
data types 63
expressions 150
fixed values 76
identifiers 43
JOIN 170
literals 69
operators 75, 76
predicates 161, 164
scalar functions 133
SELECT specification 185
set functions 137
statements (also see individual

statements) 43
START 422
START BACKUP 422
start value 275
statement

dropping 326
statement-information 351
statements

access control 189
connection 189
data definition 190
embedded SQL control 191

static-method-invocation 149
STATISTICS privilege 362
status 533, 535
string

character 64
comparisons 80
empty 64
expressions 142
hexadecimal 68
literals 64
operators 72

string operators 72
subselect

in INSERT 367
in UNION queries 182, 183
in view definition 301

SUBSTRING 127
SUM 135
synonym 282

creating 282
dropping 327

synonyms 18
dropping 325

syntax diagrams

Mimer SQL Version 11.0 569
SQL Reference Manual

explanation 5
keywords 6

system databanks 13
system privileges 23, 362

granting 362
revoking 392

T
table 15, 283

adding columns 224
base 16
changing column defaults 224
changing definition 224
constraints

dropping 226
creating 283
deleting rows 315
dropping 327
inserting rows 366
reference 175
updating contents 424

tables
joined 165

TAIL 128
Tailorings 27
TAN 129
tan 129
TANH 129
target_variables 43
Tertiary level 26
TIME 53
TIMESTAMP 53
TRANSACTION option 200, 252
transactions

aborting 394
CHANGES setting 529
committing 239
conflict 239
control options 200, 252
default settings 411
isolation levels 416
read only 416
read write 416
rollback 394
START setting 418
starting 422

trigger 292
creating 292
dropping 327

triggers 19
TRIM 130
TRUNCATE 131
truncating string values 77
truth tables 82, 163
TYPE 345
TYPE fields 346

type precedence 551

U
unary operators 140
undefined values 59
Unicode delimited identifier 38
UNICODE_CHAR 131
UNICODE_CODE 132
unicode-character-string-literal 65
UNION 182
UNIQUE constraint 286
UNIQUE index 262
UNIQUE predicate 159
UNNAMED 346
updatable result sets 397
updatable views 301
UPDATE 424
UPDATE CURRENT 427
UPDATE privilege 357
UPDATE STATISTICS 430
update-rule 288
UPPER 132
usage modes 193

embedded 193
interactive 193
JDBC 193
ODBC 193
procedural 193

user databanks 13
specifying location 13

user ident 14
USER idents 260
UTC_TIMESTAMP 95
uuid 58

V
value specification 75
value specifications

standard compliance 76
value-expression 140
VALUES clause 182
VARBINARY 50
variables

declaring 313
value assignment 402

Vietnamese 36
view

dropping 327
views 16, 299, 300

CHECK OPTION 300
column names 300
creating 299, 300
dropping 327
inserting rows 366

570 Index

W
WEEK 133
WHENEVER 432
WHERE 176
WHILE 433
white-space 5
wildcards 155
WITH clause 177
WITH HOLD 194, 307
with-clause 171, 177
WITHOUT CHECK 205, 225, 226, 263
with-query 177
WORD_SEARCH 263
WORK option 200, 252

X
X/Open SQL 1995 9
X/Open-95 9

Y
YEAR 56, 133
YEAR-MONTH 54

Mimer SQL

Programmer’s
Manual

Version 11.0

Mimer SQL, Programmer’s Manual, Version 11.0, December 2024
© Copyright Mimer Information Technology AB.

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.

Mimer SQL Web Sites:
https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Mimer SQL Version 11.0 i
Programmer’s Manual

Contents
Chapter 1 Introduction ... 1

About this Manual ..1
Database APIs ..2

Prerequisites.. 3
Related Mimer SQL Publications.. 3
Suggestions for Further Reading.. 4
Definitions, Terms and Trademarks ... 5

Chapter 2 Mimer SQL and the ODBC API... 7
The Mimer ODBC Driver ..7
Required Files ..8
Unicode and ANSI Interfaces ..8

External Character Set Support .. 8
Mimer Specific Descriptor Fields ...9
Operating Systems ..12
Declarations ...12
Initializing the ODBC Environment...13

Making a Connection.. 13
Disconnecting.. 18

Error Handling..18
Retrieving Warning and Error Messages... 19

Transaction Processing ..19
Transaction Management Mode ... 20
Completing Transactions ... 20
Example Transaction.. 21
Setting the Transaction Isolation Level .. 21

ii Contents

Executing a Command...22
Repeating – Prepared Execution ..22

Prepared Statement Example .. 22
Stored Procedure Example... 23
Parameters in Procedure Calls .. 23

Result Set Processing ...24
Using SQLBindCOL... 24
Using SQLGetData .. 24
Combining Result Set Processing Methods ... 25

Updating Data ...25
Native SQL Escape Clauses..27

Escaped functions.. 27

Chapter 3 Mimer SQL and the JDBC API ... 31
The Mimer JDBC Driver ...31

Chapter 4 Embedded SQL ... 33
The Scope of Embedded Mimer SQL.. 33

General Principles for Embedding SQL Statements...34
Host Languages ... 34
Identifying SQL Statements .. 34
Included Code... 35
Comments... 35
Recommendations ... 35

Processing ESQL ...35
Preprocessing – the ESQL Command .. 35
Invoking the ESQL Preprocessor... 36
What Does the Preprocessor Do? ... 38
Processing ESQL – the Compiler .. 38
The SQL Compiler ... 38

Essential Program Structure ...39
Summary of Functions for Manipulating Data .. 39

Linking Applications ..41
Connecting to a Database ...42

The CONNECT Statement.. 42
Changing Connection .. 43
Disconnecting ... 43
PROGRAM Idents – ENTER and LEAVE... 44

Communicating with the Application Program ...46
Using Host Variables ... 46
External Character Set Support ... 48
The SQLSTATE Variable .. 49
The Diagnostics Area .. 50
The SQL Descriptor Area.. 50

Accessing Data...50
Retrieving Data Using Cursors... 50

Mimer SQL Version 11.0 iii
Programmer’s Manual

Retrieving Single Rows.. 55
Retrieving Data from Multiple Tables ... 55
Entering Data into Tables .. 58

Dynamic SQL..60
Principles of Dynamic SQL.. 60
General Summary of Dynamic SQL Processing... 62
SQL Descriptor Area .. 63
Preparing Statements... 64
Extended Dynamic Cursors... 64
Describing Prepared Statements.. 65
Handling Prepared Statements... 67
Example Framework for Dynamic SQL Programs.. 68

Handling Errors and Exceptions ..69
Syntax Errors... 69
Semantic Errors .. 70
Run-time Errors... 70

Chapter 5 Module SQL ... 75
The Scope of Mimer Module SQL...76
General Principles for SQL Modules..76

Host languages ... 76
Writing an SQL module .. 77

Processing MSQL ..80
Pre-processing - the MSQL command... 80
Invoking the MSQL Preprocessor... 80
What Does the Preprocessor Do?.. 83
Processing MSQL... 83
Connecting to a Database ... 84

Communicating with the Application Program...85
Indicator variables... 85
Accessing data.. 85

Dynamic SQL..87
Handling errors and exceptions ...88

Syntax Errors... 88
Semantic Errors .. 88
Run-time Errors... 88

Host Language Dependent Aspects...91
C header files .. 91
C data types... 92
COBOL data types.. 93
Fortran data types... 94
Pascal data types.. 95

Chapter 6 Mimer SQL C API... 97
Character String Formats... 98
Session Management... 98
Statement Management... 99

iv Contents

Data Input Routines ... 100
Data Output Routines .. 100
Detecting Data Types at Run-time... 107

Mimer SQL Version 11.0 v
Programmer’s Manual

Chapter 7 Mimer SQL C API Reference .. 117
MimerAddBatch..121
MimerBeginSession...122
MimerBeginSession8...123
MimerBeginSessionC ..124
MimerBeginStatement ...125
MimerBeginStatement8 ...127
MimerBeginStatementC...129
MimerBeginTransaction ..131
MimerCloseCursor...132
MimerColumnCount...133
MimerColumnName ...134
MimerColumnName8 ...135
MimerColumnNameC...136
MimerColumnType...137
MimerCurrentRow..138
MimerEndSession..139
MimerEndStatement ..140
MimerEndTransaction ...141
MimerExecute...142
MimerExecuteStatement ...143
MimerExecuteStatement8 ...144
MimerExecuteStatementC...145
MimerFetch...146
MimerFetchScroll ...147
MimerFetchSkip ...149
MimerGetBinary ...150
MimerGetBlobData...152
MimerGetBoolean ..153
MimerGetDouble ..154
MimerGetFloat ..155
MimerGetInt32 ..156
MimerGetInt64 ..157
MimerGetLob..158
MimerGetNclobData...160
MimerGetNclobData8...162
MimerGetNclobDataC ..164
MimerGetStatistics ..166

vi Contents

MimerGetString ..168
MimerGetString8 ..170
MimerGetStringC..172
MimerGetUUID ..174
MimerIsNull ...175
MimerNext ...176
MimerOpenCursor..177
MimerParameterCount...178
MimerParameterMode..179
MimerParameterName ...180
MimerParameterName8 ...181
MimerParameterNameC...182
MimerParameterType...183
MimerRowSize ..184
MimerSetArraySize...185
MimerSetBinary ..186
MimerSetBlobData ...188
MimerSetBoolean ...189
MimerSetDouble ...190
MimerSetFloat...192
MimerSetInt32...194
MimerSetInt64...196
MimerSetLob...197
MimerSetNclobData ...199
MimerSetNclobData8 ...200
MimerSetNclobDataC...201
MimerSetNull ..202
MimerSetString...203
MimerSetString8...205
MimerSetStringC ..207
MimerSetStringLen ..209
MimerSetStringLen8 ..211
MimerSetStringLenC..213
MimerSetUUID ..215

Chapter 8 Idents and Privileges .. 217
Mimer SQL Idents...217

USER... 217
PROGRAM.. 217

Mimer SQL Version 11.0 vii
Programmer’s Manual

GROUP .. 218
Database Privileges ...218

System Privileges ... 218
Object Privileges ... 218
Access Privileges.. 219
About Privileges .. 219

Chapter 9 Transaction Handling and Database Security............................ 221
Transaction Principles ..221

Optimistic Concurrency Control .. 221
Concurrency Control Guidelines... 222
Locking ... 223

Transactions and Logging ..224
Options ... 224

Protecting Against Data Loss...225
System Interruptions... 225
Hardware Failure .. 225

Transaction Control Statements...225
Starting Transactions.. 225
Ending Transactions... 226
Optimizing Transactions .. 227
Consistency Within Transactions.. 227
Exception Diagnostics Within Transactions .. 228
Setting Default Transaction Options... 228
Statements in Transactions ... 229
Cursors in Transactions ... 232
Error Handling in Transactions.. 233

Chapter 10 Distributed Transactions.. 235
Terms and Abbreviations..235
How Does it Work? ..236
Handling failures..236
Mimer SQL Support For Microsoft DTC on Windows...237
Mimer SQL Support for Java Enterprise Edition...237

Chapter 11 Mimer SQL Stored Procedures .. 239
About Routines ..239

Functions.. 240
Procedures... 242

Syntactic Components of a Routine Definition...245
Routine Parameters.. 245
Routine Language Indicator .. 247
Routine Deterministic Clause.. 247
Routine Access Clause .. 247
Scope in Routines – the Compound SQL Statement... 248
Declaring Variables... 250

viii Contents

The ROW Data Type ... 251
Using the ROW Data Type ... 252
Row Value Expression .. 252

Modules...253
SQL Constructs in Routines ...254

Assignment Using SET.. 254
Conditional Execution Using IF .. 254
Conditional Execution – the CASE Statement ... 255
Iteration.. 257
Invoking Procedures and Functions .. 259
Comments in Routines .. 260
Restrictions ... 260

Manipulating Data ..261
Write Operations .. 261
Using Cursors ... 262
SELECT INTO .. 263
Transactions ... 264

Result Set Procedures ...264
Managing Exception Conditions...267

About SQLSTATES ... 267
Condition Names.. 267
SIGNAL Statements... 267
Exception Handlers and Actions .. 267
RESIGNAL Statements ... 268
Declaring Condition Names .. 268
Declaring Exception Handlers .. 269
Types of Exception Handlers.. 271
Examples of Exception Handlers ... 272
Using the GET DIAGNOSTICS Statement ... 273

Access Rights...274
Using DROP and REVOKE ..275
The Mimer SQL PSM Debugger ..275

Requirements ... 275
Starting the PSM Debugger.. 276
Logging In.. 276
Choosing a Routine ... 277
Specifying the Input Parameters .. 277
Viewing the Source Code for a Routine .. 277
Watching Variables and Input Parameters ... 277
Setting Breakpoints.. 277
Executing a Routine... 277

Mimer SQL Version 11.0 ix
Programmer’s Manual

Chapter 12 Triggers.. 279
Creating a Trigger ..280
Trigger Time ...281
Trigger Event ..284
Trigger Action ..284

Altered Table Rows .. 285
Recursion... 285

Comments on Triggers..286
Using DROP and REVOKE ..286

Chapter 13 User-Defined Types And Methods... 287
Distinct Types ..287
Methods ..288

Creating Methods.. 288
Invoking Methods.. 289
Dropping Methods... 290

Chapter 14 Spatial Data.. 291
Geographical Data ...291

BUILTIN.GIS_LATITUDE... 291
BUILTIN.GIS_LONGITUDE... 294
BUILTIN.GIS_LOCATION ... 297

Coordinate System Data..301
BUILTIN.GIS_COORDINATE ... 301

Chapter 15 Universally Unique Identifier - UUID.. 305

Appendix A Host Language Dependent Aspects .. 307
ESQL in C/C++ Programs..308

SQL Statement Format .. 308
Host Variables in C/C++ .. 309
Preprocessor Output Format... 313
Scope Rules .. 313

ESQL in COBOL Programs ...314
SQL Statement Format .. 314
Restrictions .. 315
Host Variables in COBOL .. 315
Preprocessor Output Format... 317
Scope Rules .. 317

ESQL in Fortran Programs..318
SQL Statement Format .. 318
Margins... 318
Host Variables ... 319
Preprocessor Output Format... 320
Scope Rules .. 321

x Contents

Appendix B Return Codes ... 323
SQLSTATE Return Codes..323

List of SQLSTATE Values... 323
Native Mimer SQL Return Codes ..329

Warnings and Messages... 330
ODBC Errors and Warnings ... 330
Data-dependent Errors .. 335
Limits Exceeded ... 339
SQL Statement Errors ... 340
Program-dependent Errors ... 364
Databank and Table Errors... 369
Miscellaneous Errors ... 374
Internal Errors ... 379
Communication Errors... 386
JDBC Errors.. 391
Mimload Errors ... 391
Mimer SQL C API Return Codes ... 392
MimerPy Errors... 397

Appendix C Deprecated Features ... 399
INCLUDE SQLCA..399
SQLDA...399
VARCHAR(size) C language struct ...400
SET TRANSACTION ...400
DBERM4 ..400

 Index ... 401

Mimer SQL Version 11.0 1
Programmer’s Manual

Chapter 1

Introduction
Mimer SQL is an advanced relational database management system (RDBMS) developed
by Mimer Information Technology AB.
The main characteristics of Mimer SQL are zero maintenance, small footprint and high
performance. These are based on a number of unique technical solutions to handle some
of the more complicated functionality that a database management system must provide.
For example, Mimer SQL provides a solution to the problem of allowing simultaneous
access to the database without the danger of a deadlock occurring. This greatly simplifies
database management and allows truly scalable performance, even during heavy system-
load.
Another significant technical innovation is the data storage mechanism, which is
constantly optimized for the highest possible performance and ensures that no manual
reorganization of the database is ever needed.
Mimer SQL offers a uniquely scalable and portable solution, including multi-core
support. The product is available on a wide range of platforms from small embedded and
handheld devices running for example Android or Linux, to workgroup and enterprise
servers running Linux, Windows, macOS and OpenVMS. This makes Mimer SQL
ideally suited for open environments where interoperability, portability and small
footprint are important.
The database management language Mimer SQL (Structured Query Language) is
compatible in all essential features with the currently accepted SQL standards, see the
Mimer SQL Reference Manual, Chapter 3, Introduction to SQL Standards, for details.

About this Manual
The manual is intended for application developers working with Mimer SQL.
This manual describes the usage of SQL in application programs, and provides, together
with the Mimer SQL Reference Manual, the complete reference material for Mimer SQL.
For details on how to read the syntax diagrams that appear in this manual see the
Mimer SQL Reference Manual, Chapter 2, Reading SQL Syntax Diagrams.
This manual describes how SQL statements may be embedded in application programs
written in conventional host languages. It also describes how to create and use stored
procedures and triggers.

2 Chapter 1 Introduction
Database APIs

The information contained in this manual generally applies to all the platforms supported
by Mimer SQL. From time to time platform-specific notes appear in the general
description, presented as follows:

Database APIs
You can access Mimer SQL using the following native database application interfaces:

• ADO.NET
ADO.NET is the interface of choice when developing database applications in the
Microsoft .NET framework and it is the natural successor for ADO (ActiveX Data
Objects).
The Mimer Data Provider is used to connect to Mimer SQL from .NET. How it
works is described in https://developer.mimer.com/article/ado-net/.
The Mimer Data Provider is not included in the regular Mimer SQL distribution,
instead the latest release can be downloaded from https://developer.mimer.com/downloads.

• JDBC
JDBCTM is a Java database API. Through JDBC, Mimer SQL can support many
JDBC based tools.

• ODBC
ODBC is a database independent interface. Through ODBC, Mimer SQL can
support many ODBC based tools.

• Embedded SQL (ESQL)
ESQL is used through a host programming language (C/C++, COBOL or Fortran as
available on the host computer). SQL statements are included as part of the source
code for an application program, which is compiled and linked with the appropriate
language-specific facilities. The SQL statements are executed in the context of the
application program.

• Module SQL (MSQL)
MSQL enables you to call SQL statements in a host program written in C/C++,
COBOL, Fortran or Pascal, without embedding the actual SQL statements in the
host program. The SQL statements are explicitly put into a separate SQL module,
that is written in the Module language and maintained separately from the host
program.

• Mimer SQL C API
The Mimer SQL C API is a native C library suitable for tool integration and
application development in environments where API standardization is not a
requirement. The following characteristics describe the API:
• Simplicity

Linux: Denotes information that applies specifically to Linux and macOS platforms.

VMS: Denotes information that applies specifically to OpenVMS platforms.

Win: Denotes information that applies specifically to Windows platforms.

https://developer.mimer.com/downloads
https://developer.mimer.com/article/ado-net/

Mimer SQL Version 11.0 3
Programmer’s Manual

• Platform independence
• Small footprint
• Tight fit with the Mimer SQL application/database communication model.

• Mimer SQL Micro C API
The Mimer SQL Micro C API is mainly targeted for memory and CPU constrained
environments.

In addition, there are some additional interfaces supported by Mimer SQL, see
https://developer.mimer.com/doc/database-apis/.

Prerequisites
Application developers using this manual are assumed to have a working acquaintance
with the principles of the relational database model in general and of Mimer SQL in
particular.
Knowledge of Mimer SQL is of course an advantage, although experience with other
standard-compliant SQL implementations will suffice. Experience of Mimer SQL is best
gained through interactive use of DbVisualizer or BSQL, both included in the Mimer
SQL distribution.

Related Mimer SQL Publications
• Mimer SQL Reference Manual

contains a complete description of the syntax and usage of all statements in Mimer
SQL and is a necessary complement to this manual.

• Mimer SQL User’s Manual
contains a description of the BSQL facilities. A user-oriented guide to the SQL
statements is also included, which may provide help for less experienced users in
formulating statements correctly (particularly the SELECT statement, which can be
quite complex).

• Mimer SQL System Management Handbook
describes system administration functions, including export/import, backup/restore,
databank shadowing and the statistics functionality.
The information in that manual is used primarily by the system administrator, and
is not required by application program developers. The SQL statements that are part
of the System Management API are described in the Mimer SQL Reference Manual.

• Mimer SQL Platform-specific documents
contain platform-specific information. A set of one or more documents is provided,
where required, for each platform on which Mimer SQL is supplied.

• Mimer SQL Release Notes
contain general and platform-specific information relating to the Mimer SQL
release for which they are supplied.

https://developer.mimer.com/doc/database-apis/

4 Chapter 1 Introduction
Database APIs

• Mimer JDBC Driver Guide
is intended for Java application developers working with Mimer SQL. It covers all
available Mimer JDBC drivers. The guide describes the usage of SQL in Java
applications.

Suggestions for Further Reading
We can recommend the many works of C. J. Date. His insight into the potential and
limitations of SQL, coupled with his pedagogical talents, make his books invaluable
sources of study material in the field of SQL theory and usage. In particular, we can
mention:
A Guide to the SQL Standard (Fourth Edition, 1997). ISBN: 0-201-96426-0. This work
contains much constructive criticism and discussion of the SQL standard, including SQL-
99.
SQL: 1999 - Understanding Relational Language Concepts, by Jim Melton, Alan R.
Simon, and Jim Gray. ISBN: 1-55860-456-1. Explains SQL-99.
Advanced SQL: 1999 - Understanding Object-Relational and Other Advanced Features,
by Jim Melton. ISBN: 1-55860-677-7. In-depth guide to SQL-99’s practical application.

JDBC
JDBC information can be found on the internet at:
https://www.oracle.com/technetwork/java/index.html.
For information on specific JDBC methods, please see the documentation, which is
normally included in the Java development environment.
JDBC™ API Tutorial and Reference, 2nd edition. ISBN: 0-201-43328-1. A useful book
published by JavaSoft.

ODBC
Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide for Microsoft Windows
and Windows NT. ISBN: 1-57231-516-4. This manual contains information about the
Microsoft Open Database Connectivity (ODBC) interface, including a complete API
reference.

SQL Standards
Official documentation of the accepted SQL standards may be found in:
ISO/IEC 9075:2016(E) Information technology - Database languages - SQL. This
document contains the standard referred to as SQL-2016.
CAE Specification, Data Management: Structured Query Language (SQL), Version 2.
X/Open document number: C449. ISBN: 1-85912-151-9. This document contains the
X/Open-95 SQL specification.

https://www.oracle.com/technetwork/java/index.html

Mimer SQL Version 11.0 5
Programmer’s Manual

Definitions, Terms and Trademarks

All other trademarks are the property of their respective holders.

ANSI American National Standards Institute, Inc.

API Application Programming Interface

BSQL The Mimer SQL facility for using SQL interactively or by running a
command file

ESQL The preprocessor for embedded Mimer SQL

IEC International Electrotechnical Commission

ISO International Standards Organization

JDBC The Java database API specified by Oracle Corporation

MSQL Mimer Module SQL preprocessor.

ODBC Open Database Connectivity

PSM Persistent Stored Modules, the term used by ISO/ANSI for stored
procedures

SQL Structured Query Language

X/Open X/Open is a trademark of Open Group

6 Chapter 1 Introduction
Database APIs

Mimer SQL Version 11.0 7
Programmer’s Manual

Chapter 2

Mimer SQL and the
ODBC API

ODBC enables your Mimer SQL database to become an integral part of an application.
SQL statements can be incorporated into the application, allowing the application to
retrieve and update values from a database. Values from the database can be placed in
program variables for manipulation by the application. Conversely, values in program
variables can be written to the database.
This chapter is not intended to be a complete guide to the functionality provided by
ODBC. It is written to introduce you to accessing Mimer SQL through ODBC.
For a more detailed discussion of Mimer SQL, ODBC and other database API’s, please
see https://developer.mimer.com/doc/database-apis/.

The Examples in this Chapter
The ODBC function calls in the examples use ODBC 3.5 syntax, although they are not
generally dependent on a Windows platform. It should be possible to use the examples as
a basis for translation into other languages.
In the examples, there are various references to macros (e.g. SQL_ERROR), these are
defined in the sql.h header file. SQL_NTS indicates a null terminated string; hopefully
other names are self-explanatory.

The Mimer ODBC Driver
Mimer SQL-specific versions of ODBC functions are implemented in the Mimer SQL
native ODBC driver. The driver passes SQL statements to the Mimer SQL server and
returns the results of the statements to the application.
The Mimer SQL setup process automatically installs the ODBC driver when the Mimer
SQL client is installed on a Windows, Linux or macOS platform.
Mimer SQL programs that are written using the ODBC API, communicate with Mimer
SQL through C function calls.

https://developer.mimer.com/doc/database-apis/

8 Chapter 2 Mimer SQL and the ODBC API
Required Files

Required Files
To make ODBC function calls, a C or C++ program must include the sqlext.h header
file. By including this header file, sqltypes.h, sqlucode.h and sql.h are
automatically included.
ODBC applications are linked with the ODBC Driver Manager. On Windows, this is the
file ODBC32.LIB, on other platforms you will need to check the documentation supplied
with the ODBC Driver Manager.
ODBC applications can also be linked directly to the native Mimer ODBC driver library,
bypassing the ODBC Driver Manager.
To compile ODBC applications using Mimer specific functions and attributes, include the
file mimodbc.h, which is supplied with the distribution. See Mimer Specific Descriptor
Fields on page 9 for details.

Unicode and ANSI Interfaces
The Mimer ODBC driver is Unicode based. This allows applications to use both the ANSI
and Unicode interfaces when using Mimer SQL. Unicode based applications can both
store and retrieve Unicode data through SQL statements and/or Unicode host variables.
ANSI applications can use Unicode host variables, but are restricted to character (8-bit)
characters when passing data with SQL statements. Please note that database objects still
have to be named with the same character set as before.
The Unicode SQL data types in Mimer SQL are called NATIONAL CHARACTER (or
NCHAR), NATIONAL CHARACTER VARYING (NCHAR VARYING) and NATIONAL
CHARACTER LARGE OBJECT (NCLOB).
You can find more information about these data types in the Mimer SQL Reference
Manual. The ODBC documentation contains specifics about the SQL_WCHAR database
type and the SQL_C_WCHAR and SQL_C_WLONGVARCHAR host language types.

External Character Set Support
The system follows the current locale setting on the machine to determine what characters
are stored/retrieved when an application passes single-byte character strings to ODBC.
When character data is stored in Mimer SQL it can be stored in CHAR or VARCHAR
columns or in NCHAR or NVARCHAR columns. Data in CHAR and VARCHAR columns use
the Latin-1 character representation (also called ISO 8859-1). This character set can only
be used to store 256 different characters. For the exact characters that can be stored see
Mimer SQL Reference Manual, Appendix B, Character Sets. To store any other
characters the data type NCHAR or NVARCHAR must be used. These column types can store
any character.
If a locale is used by the application that has characters that are not included in Latin-1,
it means that the columns in the database data must use an NCHAR or NVARCHAR column
to store the correct characters. Previously, each character in the application was simply
stored in a character column. When these characters were retrieved with, for example,
DbVisualizer or other Unicode enabled applications, the interpretation of the characters
were done differently and the wrong characters were displayed. With locale support the
Mimer SQL client understands the representation of the characters in the application and
maps them accordingly to its internal representation.

Mimer SQL Version 11.0 9
Programmer’s Manual

When retrieving data from the database, the translation works the other way. I.e. when
retrieving data from a CHAR or NCHAR column to a SQL_C_CHAR variable, the current
locale must be able to represent all the characters returned from the database. When this
is not possible, a conversion error -10401 is returned. If characters stored in the database
have no representation in the chosen locale, a wide character data type must be used by
the application instead (SQLWCHAR rather than SQLCHAR).
Win: On Windows the setting used for the external character set is set in the Regional

and Language Options in the Control Panel under the tab Advanced. This setting
is used automatically by the Mimer ODBC client.
On Windows the environment variable is set to the desired code page, i.e. only
numeric values may be specified (for example: 1250: ANSI Central Europe,
1251: ANSI Cyrillic, 1252: Latin1, 1253: ANSI Greek, 1254: ANSI Turkish, and
so on.)

VMS: On VMS the system continues to use the Latin-1 character representation
regardless of locale settings.

Linux: On other platforms (Linux, macOS, others) the application must call the runtime
library routine setlocale to pick the locale to use. For example, the call
setlocale(LC_CTYPE, "") sets the default locale as decided by the
environment setting. The actual conversions made by the Mimer client are
through the library routines mbstowcs (multibyte character set to wide char set)
and wcstombs. Please note that if an application does not call setlocale a
default 7-bit locale is used. This means that no 8-bit characters can be used
without getting a conversion error. For applications where the source is not
available it is possible to set an environment variable MIMER_LOCALE that will
be used when calling the Mimer client. The value of the environment variable is
used as the second argument to setlocale. For details, see the man-page for
setlocale.

To use the default locale set MIMER_LOCALE to current.
The fact that the character type is considered a multi-byte character set allows any
external character representation to be used. In particular various character sets such as
Traditional Chinese Big5 and Japanese Shift-JIS may be used. The character set can also,
of course, be a single byte character set as such as the Greek Latin-7 character set (code
page 1253 on Windows). On Linux platforms the prevalent representation is UTF-8 that
allows any Unicode character to be stored in a character variable.

Mimer Specific Descriptor Fields
Mimer SQL supports large objects of up to 8 terabytes. This poses a problem to ODBC
applications since the ODBC API specifies length fields to be 32 bits. An ODBC
compliant application is therefore unable to work with any objects larger than 2
gigabytes. The SQL/CLI standard has the same problem, so we won’t get much help
there.
To remedy this situation, the Mimer ODBC driver has four vendor specific descriptor
attributes. Each attribute mimics the behavior of an existing attribute, the only difference
is that the existing attribute is working with a 32-bit integer while ours use 64-bit integers.
C-definitions for these attributes are available in the mimodbc.h header file. Include this
file along with the regular ODBC include files (sql.h, sqlext.h) to gain access to
these features.

10 Chapter 2 Mimer SQL and the ODBC API
Mimer Specific Descriptor Fields

Note that, although these attributes are most useful when working with large objects, they
may be used for any type of data.
The Mimer specific descriptor attributes:

SQL_DESC_DISPLAY_SIZE_64 [IRDs]

This read-only SQLBIGINT record field contains the maximum number of characters
required to display the data from the column. The value in this field is not the same as the
descriptor field SQL_DESC_LENGTH because the SQL_DESC_LENGTH field is undefined
for all numeric types.

SQL_DESC_LENGTH_64 [Implementation descriptors]

This SQLUBIGINT record field is either the maximum or actual character length of a
character string or a binary data type. It is the maximum character length for a fixed-
length data type, or the actual character length for a variable-length data type. Its value
always excludes the null-termination character that ends the character string. For values
whose type is SQL_TYPE_DATE, SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, or one of
the SQL interval data types, this field has the length in characters of the character string
representation of the datetime or interval value. Note that this field is a count of
characters, not a count of bytes.
The value in this field may be different from the value for “length” as defined in ODBC
2.x. For more information, see Microsoft ODBC 3.0 Programmer’s Reference, Appendix
D, “Data Types.”

SQL_DESC_OCTET_LENGTH_64 [Implementation descriptors]

This SQLBIGINT record field contains the length, in bytes, of a character string or binary
data type. For fixed-length character or binary types, this is the actual length in bytes. For
variable-length character or binary types, this is the maximum length in bytes. This value
always excludes space for the null-termination character.

Record field name Type R/W Default

SQL_DESC_DISPLAY_SIZE_64 SQLBIGINT ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_LENGTH_64 SQLUBIGINT ARD: Unused

APD: Unused

IRD: R

IPD: R/W

ARD: Unused

APD: Unused

IRD: D

IPD: ND

SQL_DESC_OCTET_LENGTH_64 SQLBIGINT ARD: Unused

APD: Unused

IRD: R

IPD: R/W

ARD: Unused

APD: Unused

IRD: D

IPD: ND

SQL_DESC_OCTET_LENGTH_PTR_64 SQLBIGINT* ARD: R/W

APD: R/W

IRD: Unused

IPD: Unused

ARD: Null ptr

APD: Null ptr

IRD: Unused

IPD: Unused

Mimer SQL Version 11.0 11
Programmer’s Manual

SQL_DESC_OCTET_LENGTH_PTR_64 [Application descriptors]

This SQLBIGINT* record field points to a variable that will contain the total length in
bytes of a dynamic argument (for parameter descriptors) or of a bound column value (for
row descriptors).
For an APD, this value is ignored for all arguments except character string and binary; if
this field points to SQL_NTS, the dynamic argument must be null-terminated. To indicate
that a bound parameter will be a data-at-execution parameter, an application sets this field
in the appropriate record of the APD to a variable that, at execute time, will contain the
value SQL_DATA_AT_EXEC or the result of the SQL_LEN_DATA_AT_EXEC macro. If
there is more than one such field, SQL_DESC_DATA_PTR can be set to a value uniquely
identifying the parameter to help the application determine which parameter is being
requested.
If the OCTET_LENGTH_PTR_64 field of an ARD is a null pointer, the driver does not
return length information for the column. When setting the
SQL_DESC_OCTET_LENGTH_PTR_64 field to anything other than a null pointer, this
field overrides the SQL_DESC_OCTET_LENGTH_PTR field. When both
SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_OCTET_LENGTH_PTR_64 are set to
null pointers the driver assumes that character strings and binary values are null-
terminated. (Binary values should not be null-terminated, but should be given a length to
avoid truncation.)
If the call to SQLFetch or SQLFetchScroll that fills in the buffer pointed to by this
field did not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the buffer contents
are undefined. This field is a deferred field: It is not used at the time it is set, but is used
at a later time by the driver to determine or indicate the octet length of the data.

12 Chapter 2 Mimer SQL and the ODBC API
Operating Systems

Operating Systems
Mimer SQL supports ODBC as one of its native APIs for applications written in C, C++,
Microsoft Visual Basic and a large number of other development tools.

Declarations
A C program that calls the ODBC API typically requires the following declarations:

#if defined(WIN32)
#include <windows.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "sqlext.h"
#include "mimodbc.h"

SQLHENV henv; // Environment handle for application
SQLHDBC hdbc; // Connection handle
SQLHSTMT hstmt; // Statement handle

Handles identify a particular item; in ODBC this item can be an environment, connection,
statement or descriptor. When the application calls SQLAllocHandle, the Driver
Manager creates a new item of the specified type and returns the handle to the application.
The application uses the handle to identify that item when calling ODBC functions.

Linux: Information on the availability and use of Driver Managers for ODBC on
Linux and macOS platforms can be provided by your Mimer SQL distributor.
The library to specify as the ODBC driver when defining a Mimer ODBC data
source is libmimer or libmimodbc. An ODBC SDK (various versions
available) is also useful in order to develop applications.
As an example on how to link an ODBC application, see the supplied
ex_makefile example makefile.

VMS: An ODBC driver is supplied with Mimer SQL on OpenVMS and client
applications can link with it to use ODBC on OpenVMS platforms. The Driver
Manager for ODBC on OpenVMS is not yet available. For further assistance,
contact your Mimer SQL representative.
A Mimer SQL database server running on an OpenVMS node can always be
accessed remotely by a client application using ODBC from another type of
platform via the client/server interface.

Win: When a Mimer SQL client is installed on a Windows platform, the ODBC driver
manager and other resources needed to use ODBC are also installed.
The ODBC SDK (available from Microsoft) is also required in order to develop
applications.

Mimer SQL Version 11.0 13
Programmer’s Manual

Initializing the ODBC Environment
The first task for any ODBC application is to initialize the ODBC environment by
allocating an environment handle (SQL_HANDLE_ENV):

/* Allocate environment handle */
if (SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE,
&henv) == SQL_ERROR)

{
printf("Failed to allocate environment handle\n");
. . .

}

Before an application allocates a connection, it should declare the version of ODBC that
it has been written for (this mainly affects SQLSTATE values and datetime data types) and
then allocate a connection handle:

/* Set the ODBC version environment */
SQLSetEnvAttr(henv,

SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3,
SQL_IS_INTEGER);

/* Allocate connection handle */
if (SQLAllocHandle(SQL_HANDLE_DBC,

henv,
&hdbc) == SQL_ERROR)

{
printf("Failed to allocate connection handle\n");
. . .

}

Making a Connection
If an ODBC data source has been defined, ODBC applications can connect to Mimer SQL
by using the data source name. Alternatively SQLDriverConnect can be used.
There are a number of mechanisms to get the information required to make a connection;
some applications supply the connection details, others use the ODBC dialog box to allow
the user to complete the information.
The simplest form of connection uses SQLConnect, which requires a data source name,
user ID and password, for example:

SQLRETURN retcode;
. . .

/* Set connection timeout - 10 seconds */
SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)10, 0);

/* Connect - DSN, User ID, Password */
retcode = SQLConnect(hdbc,

(SQLCHAR*) "EXAMPLEDB", SQL_NTS,
(SQLCHAR*) "MIMER_ADM", SQL_NTS,
(SQLCHAR*) "admin",
SQL_NTS);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{

/* User connected */

14 Chapter 2 Mimer SQL and the ODBC API
Initializing the ODBC Environment

SQLDriverConnect allows the driver to connect by supplying the connection
information as a number of keyword-value pairs:

"DSN=EXAMPLEDB;UID=MIMER_ADM;PWD=admin;"

There is an option for the Driver Manager to enter into a dialog with the user to complete
any missing connection information (the handle of the parent window needs to be
supplied to use this facility).
In the following Windows example, the Driver Manager displays a window containing a
combo box listing all the Mimer SQL database names and prompts for the username and
password:

SQLCHAR OutConnectString[256];
SQLSMALLINT StringLength;
SQLHWND hwnd;

hwnd = GetDesktopWindow();
. . .

retcode = SQLDriverConnect(hdbc,
hwnd,
(SQLCHAR*) "DRIVER=Mimer;", SQL_NTS,
(SQLCHAR*)OutConnectString,
sizeof(OutConnectString),
&StringLength,
SQL_DRIVER_COMPLETE);

if (SQL_SUCCEEDED(retcode))
{

/* User connected */
printf("connection string used: %s\n, OutConnectString);

Note: The macro SQL_SUCCEEDED replaces the test against SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO.

On other platforms, such as Linux, the driver does not implement a GUI popup box.
Instead the user will be prompted for the required login attributes. In this case, referring
to the previous example, the hwnd variable is set to null:

hwnd = NULL;

Mimer SQL Version 11.0 15
Programmer’s Manual

Controlling Interaction with the User
You may wish to have more control over the interaction with the user, SQLDataSources
provides a mechanism to get information about the data sources configured on the client:

SQLCHAR DSNname[SQL_MAX_DSN_LENGTH+1];
SQLCHAR driver[33];

. . .

/* Enumerate the system data source names */
retcode = SQLDataSources(henv,

SQL_FETCH_FIRST_SYSTEM,
(SQLCHAR*)DSNname,
sizeof(DSNname),
NULL,
SQLCHAR*)driver,
sizeof(driver),
NULL);

while (SQL_SUCCEEDED(retcode))
{

printf("%-32s %s\n", DSNname, driver); // Display details

/* Fetch next */
retcode = SQLDataSources(henv,

SQL_FETCH_NEXT,
(SQLCHAR*)DSNname,
sizeof(DSNname),
NULL,
(SQLCHAR*)driver,
sizeof(driver),
NULL);

}

Connecting Using a File Data Source
Another way of making a connection is to create a file data source. The file contains
keyword-value pairs to make the connection. On Windows, this file has a .dsn extension.
Although it is possible to include the password, this would make the system insecure and
therefore is not recommended:

[ODBC]
DSN=EXAMPLEDB
UID=MIMER_ADM

To make a connection using a file data source, use the option for the Driver Manager to
enter into a dialog with the user to complete any missing connection information (again,
the handle of the parent window needs to be supplied to use this facility):

retcode = SQLDriverConnect(hdbc,
hwnd,
(SQLCHAR*) "FILEDSN=example.dsn;",
SQL_NTS,
(SQLCHAR*)OutConnectString,
sizeof(OutConnectString),
&StringLength,
SQL_DRIVER_COMPLETE);

if (SQL_SUCCEEDED(retcode))
{

/* User connected */

16 Chapter 2 Mimer SQL and the ODBC API
Initializing the ODBC Environment

Mimer Specific Keywords to SQLDriverConnect
To allow an application to connect without specifying a data source in the connection
string, the following driver-specific keywords have been added for the Mimer ODBC
Driver:
• PROTOCOL

• NODE

• SERVICE

• INTERFACE

The PROTOCOL keyword is mandatory for this option to be used. The regular keyword
DATABASE must also be specified. Other driver-specific keywords should be used
depending on the specified protocol. When PROTOCOL is specified, no data source lookup
is done in the registry (Windows) or MIMER_SQLHOSTS (Linux and VMS).
Supported protocols are LOCAL (shared memory), TCP, NAMEDPIPES (only for
Windows), RAPI (only for Windows), and DECNET (only for VMS).
The protocol TCP requires keyword NODE specifying the network node name. If keyword
SERVICE is not specified, 1360 is used as default.
Win: The protocol NAMEDPIPES requires keyword NODE. If keyword SERVICE is not

specified, the database name is used as default.
VMS: The protocol DECNET requires keyword NODE.
Note: SQLDriverConnect has a parameter that enables prompting for missing

information. When PROTOCOL is specified, this is not possible.
Examples of connection strings that can be used:

"DRIVER={Mimer};DATABASE=cartoons;UID=mickey;PWD=mouse;PROTOCOL=local"

"DRIVER={Mimer};DATABASE=musix;UID=discux;PWD=records;PROTOCOL=local"

"DRIVER={Mimer};DATABASE=strips;UID=winnie;PWD=thepooh;PROTOCOL=tcp;
NODE=milne;SERVICE=1360"

"DRIVER={Mimer};DATABASE=pip;UID=mickey;PWD=mouse;PROTOCOL=NamedPipes;
NODE=winpix;SERVICE=pip"

"DRIVER={Mimer};DATABASE=disney;UID=donald;PWD=duck;PROTOCOL=decnet;
NODE=pictvms;INTERFACE=BG"

Mimer SQL Version 11.0 17
Programmer’s Manual

Determining Driver and Data Source Capabilities
After connection to the database, use SQLGetInfo to determine the capabilities of the
driver and the data source associated with the connection:

/* Display DBMS version details */
SQLGetInfo(hdbc,

SQL_DBMS_VER,
(SQLPOINTER)&str_value,
sizeof(str_value),
&str_len);

printf("%s\n", str_value);

/* Display SQL conformance level */
SQLGetInfo(hdbc,

SQL_SQL_CONFORMANCE,
(SQLPOINTER)&int_value,
sizeof(int_value),
NULL);

if (int_value & SQL_SC_SQL92_ENTRY)
printf("Entry level SQL-92\n");

if (int_value & SQL_SC_FIPS127_2_TRANSITIONAL)
printf("FIPS 127-2 transitional level\n");

if (int_value & SQL_SC_SQL92_INTERMEDIATE)
printf("Intermediate level SQL-92\n");

if (int_value & SQL_SC_SQL92_FULL)
printf("Full level SQL-92\n");´</pre>

Connecting on Linux and similar platforms
On Linux, it is possible to link an ODBC application directly to the Mimer ODBC library,
libmimodbc.so. But, usually an ODBC Driver Manager is used, mainly to be able to
handle several ODBC Data Sources. In that case the Driver Manager library is linked to
the application and the Mimer ODBC library is pointed out as the Driver in the ODBC
Data Source definition.
When a connection attempt is made using ODBC, a DSN (Data Source Name) is specified
via one of the connection methods describe above. The ODBC Driver Manager looks up
the given ODBC Data Source in an odbc.ini file. There can be a system wide odbc.ini
file located in a known location for the platform, usually in /etc. Alternatively, the user
can have a personal .odbc.ini located in the home directory. Or, the ODBCINI
environment variable can be set to point out the data source definition file to be used.
A possible match between the given DSN and an entry in the odbc.ini file gives the
connection information needed to load the relevant ODBC Driver dynamically and to
proceed with the database access.
The following is an example of an odbc.ini file, describing two DSN specifications, with
their names within straight brackets:

[dsn_dbcust]
Driver=/opt/MimerSQL-11.0.1A/lib/libmimodbc.so
Database=customers
Host=kixie
Port=1360

[dsn_dbext]
Driver=/opt/MimerSQL-11.0.1A/lib/libmimodbc.so
Database=external

In the first case above the information defined is enough to do a direct access to the
database named ‘customers’ on the network node ‘kixie’, using the port number 1360.
When reaching the database the user will have to provide a database username (ident
name) and a password.

18 Chapter 2 Mimer SQL and the ODBC API
Error Handling

In the second definition there is not enough information to do a direct access. Instead the
given database is looked for in the Mimer SQL database registry file called
/etc/sqlhosts, and if found there, that information will be used to proceed with the
connection. In this case, if the DSN name is the same as the database name, the Database
attribute is optional.
The following are valid DSN attributes in the odbc.ini file when read by the Mimer
ODBC Driver:

Disconnecting
When the application has finished using a data source, it calls SQLDisconnect.
After disconnecting, the application should call SQLFreeHandle to release the
connection handle and, if appropriate, to release the environment handle.

Error Handling
ODBC returns diagnostic information in two ways:
• a return code indicating the success or failure of the ODBC function
• diagnostics records, providing detailed information.
In general, program logic uses the return code to detect a failure and then the diagnostic
records to detail the reason for the failure.

Database Mimer SQL database name

Driver Mimer ODBC driver library path. Or, a driver name that should
be defined in the odbcinst.ini file, usually the name is
‘mimersql’.

Host, Node,
Server or
Servername

Network node that the database resides on

Port or Service TCP/IP port number

User, Username or
Uid

Database username (ident name)

Password or Pwd Password string (not recommended to provide this way)

Mimer SQL Version 11.0 19
Programmer’s Manual

Retrieving Warning and Error Messages
If the ODBC driver returns a code indicating anything other than SQL_SUCCESS then the
application can call SQLGetDiagRec to retrieve any warning or error messages:

SQLCHAR msg[SQL_MAX_MESSAGE_LENGTH+1];
SQLCHAR sqlstatus[6];
SQLSMALLINT msglen, msgno;
SQLINTEGER nativeerror;

. . .

msgno = 1;
while (SQLGetDiagRec(SQL_HANDLE_DBC,

hdbc,
msgno++,
sqlstatus,
&nativeerror,
msg,
sizeof(msg),
&msglen) == SQL_SUCCESS)

{
msg[msglen] = '\0';

printf("SQLSTATE: %s\n", sqlstatus);
printf("Native: %d\n", nativeerror);
printf("Message: %s\n", msg);
printf("\n");

}

Diagnostic records are associated with the ODBC handles: environment, connection,
statement and descriptor. SQLGetDiagRec requires the handle type and the handle,
making the coding of a general-purpose error handler more complex than other
programming interfaces.
A warning is indicated by an SQLSTATE class value of '01' (e.g. '01000').
See Appendix B Return Codes for details.

Transaction Processing
A transaction is an essential part of database programming. It defines the beginning and
end of a series of database operations that are regarded as a single unit.
For example, to transfer money between two bank accounts, an amount is subtracted from
one account and the same amount is added to the other account. It is essential that either
both of these operations succeed or neither does.
Mimer SQL uses a method for transaction management called Optimistic Concurrency
Control (OCC). OCC does not involve any locking of rows as such, and therefore cannot
cause a deadlock.
Transactions in ODBC are usually managed at the connection level, although there is the
option of applying a commit or rollback for all connections within an environment.

20 Chapter 2 Mimer SQL and the ODBC API
Transaction Processing

Transaction Management Mode
There are two modes for managing transactions within ODBC, Autocommit and Manual-
commit. SQLSetConnectAttr is used to switch between the modes.

Autocommit Mode
Autocommit mode is the default transaction mode for ODBC; when a connection is made,
it is in autocommit mode until SQLSetConnectAttr is used to switch to manual commit
mode.
In autocommit mode each individual statement is automatically committed when it
completes successfully, no explicit transaction management functions are necessary.
However, the return code from the function must still be checked as it is possible for the
implicit transaction to fail.

Manual-commit Mode
When in manual commit mode, all executed statements are included in the same
transaction until calling SQLEndTran specifically completes it.
When an application turns autocommit off, the next statement against the database starts
a transaction. The transaction continues until SQLEndTran is called with either
SQL_COMMIT or SQL_ROLLBACK. The next command sent to the database after that starts
a new transaction.

Completing Transactions
Transactions are completed (either committed or rolled back) by use of the ODBC
function SQLEndTran rather than using the SQL COMMIT or ROLLBACK statements.
Calling SQLEndTran with a request to rollback a transaction causes Mimer SQL to
discard any changes made since the start of the transaction and to end the transaction.

Mimer SQL Version 11.0 21
Programmer’s Manual

Example Transaction
/* Disable transaction autocommit mode */
SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

retry:
/* First statement against Mimer SQL starts a transaction */
SQLExecDirect(hstmt,

"UPDATE mimer_store.currencies \
SET exchange_rate = exchange_rate * 1.05 \
WHERE code = 'USD'", SQL_NTS);

SQLExecDirect(hstmt,
"UPDATE mimer_store.currencies \

SET exchange_rate = exchange_rate * 1.08 \
 WHERE code = 'GBP'", SQL_NTS);

printf("Commit transaction? : ");
scanf("%s", ans);
if (ans[0] == 'Y'
|| ans[0] == 'y')
{

retcode = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
if (retcode == SQL_ERROR)
{

/* Check SQLSTATE for transaction conflict */
SQLGetDiagField (hdbc,

1,
SQL_DIAG_SQLSTATE,
sqlstatus,
sizeof(sqlstatus),
&msglen);

if (strcmp(sqlstatus, "40001") == 0) goto retry;
goto display_error;

}
}
else
{

SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
}

Setting the Transaction Isolation Level
To set the transaction isolation level, use the SQL_ATTR_TXN_ISOLATION connection
attribute.
The default isolation level for Mimer SQL is SQL_TXN_REPEATABLE_READ.

22 Chapter 2 Mimer SQL and the ODBC API
Executing a Command

Executing a Command
The simplest way to execute a statement is to execute it directly using the
SQLExecDirect function.
Each INSERT, UPDATE and DELETE statement returns the number of rows affected by the
operation, the function SQLRowCount returns this count.
For example:

SQLINTEGER rowcount;
. . .

/* Allocate statement handle */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
SQLExecDirect(hstmt,

"UPDATE mimer_store.currencies \
SET exchange_rate = exchange_rate * 1.05 \
WHERE code = 'USD'", SQL_NTS);

SQLRowCount(hstmt, &rowcount);
printf("%d rows have been updated\n", rowcount);

Repeating – Prepared Execution
Where an SQL statement will be repeatedly executed, it is more usual to use prepared
execution, as a means to reduce the parsing and compilation overheads.
Mimer SQL reduce the performance difference between direct and prepared execution by
maintaining and re-using compiled statements on the server.

Prepared Statement Example
In this example each of the parameters in the prepared SQL statement (indicated by ?) are
bound to a variable in the application before the statement is executed:

SQLFLOAT increase;
SQLCHAR code[4];
SQLINTEGER increaseInd, codeInd;
. . .

SQLPrepare(hstmt,
"UPDATE mimer_store.currencies \

SET exchange_rate = exchange_rate * ? \
WHERE code = ?", SQL_NTS);

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_DOUBLE,
SQL_REAL, 7, 0,
&increase, 0, &increaseInd);

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, 4, 0,
code, sizeof(code), &codeInd);

/* Set parameter values and length/indicator */
increase = 1.05;
strcpy(code, "USD");
codeInd = SQL_NTS;

SQLExecute(hstmt);
SQLRowCount(hstmt, &rowcount);
printf("%d rows have been updated\n", rowcount);

Mimer SQL Version 11.0 23
Programmer’s Manual

Stored Procedure Example
Similarly, it is possible to prepare an SQL statement that calls a stored procedure:

SQLINTEGER order_id, item_id;
SQLSMALLINT quantity;
SQLINTEGER orderInd = 0, itemInd = 0, quantityInd = 0;
. . .

SQLPrepare(hstmt,
"{CALL mimer_store.order_item(?, ?, ?)}",
SQL_NTS);

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0,
&order_id, SQL_IS_INTEGER, &orderInd);

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0,
&item_id, SQL_IS_INTEGER, &itemInd);

SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_SSHORT,
SQL_INTEGER, 0, 0,
&quantity, SQL_IS_SMALLINT, &quantityInd);

/* Set parameter values */
order_id = 700001;
item_id = 60158;
quantity = 2;

SQLExecute(hstmt);

Parameters in Procedure Calls
Parameters in procedure calls can be input, input/output, or output. A more complicated
example illustrates how to handle an output parameter:

SQLCHAR country[3];
SQL_INTERVAL_STRUCT interval;
SQLINTEGER countryInd, intervalInd;
SQLSMALLINT numparams;
. . .

SQLPrepare(hstmt,
"{CALL mimer_store.age_of_adult(?, ?)}",
SQL_NTS);

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, 3, 0,
country, sizeof(country), &countryInd);

SQLBindParameter(hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_INTERVAL_YEAR,
SQL_INTERVAL_YEAR, 0, 0,
&interval, sizeof(SQL_INTERVAL_STRUCT),
&intervalInd);

SQLNumParams(hstmt, &numparams);
printf("statement contains %d parameters\n", numparams);

/* Set input parameter value and length */
strcpy(country, "US");
countryInd = SQL_NTS;

SQLExecute(hstmt);
printf("%d years\n", interval.intval.year_month.year);

24 Chapter 2 Mimer SQL and the ODBC API
Result Set Processing

A statement handle is released by calling SQLFreeHandle; however, it is more efficient
to reuse statement handles rather than freeing them and allocate new ones. When
SQLFreeHandle is called, the driver releases the associated structure. SQLDisconnect
automatically frees all statements on a connection.

Result Set Processing
There are two ways of processing a result set. One method uses SQLBindCol to bind
applications variables to the columns of the result set. The second method of processing
the result set is to use SQLGetData.

Using SQLBindCOL
When each row of data is fetched, the column data is copied to the application variables.
The following example also illustrates how to use the indicator variable; this either
returns the length of character data (a negative length indicates that truncation has taken
place), or SQL_NULL_DATA if the data is null:

SQLCHAR code[4];
SQLCHAR currency[33];
SQLINTEGER codeInd, currencyInd;
. . .
/* Allocate statement handle */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

SQLExecDirect(hstmt,
"SELECT code, currency \

FROM mimer_store.currencies",
SQL_NTS);

SQLBindCol(hstmt, 1, SQL_C_CHAR,
code, sizeof(code), &codeInd);

SQLBindCol(hstmt, 2, SQL_C_CHAR,
currency, sizeof(currency), ¤cyInd);

while ((retcode = SQLFetch(hstmt)) != SQL_NO_DATA)
{

printf("%s %s\n", code, currency);
}

/* Close the cursor */
SQLCloseCursor(hstmt);

Using SQLGetData
The second method of processing the result set is to use SQLGetData; the equivalent of
the previous example can be written:

SQLExecDirect(hstmt,
"SELECT code, currency \

FROM mimer_store.currencies",
SQL_NTS);

while ((retcode = SQLFetch(hstmt)) != SQL_NO_DATA)
{

SQLGetData(hstmt, 1, SQL_C_CHAR,
code, sizeof(code), &codeInd);

SQLGetData(hstmt, 2, SQL_C_CHAR,
currency, sizeof(currency), ¤cyInd);

printf("%s %s\n", code, currency);

Mimer SQL Version 11.0 25
Programmer’s Manual

Combining Result Set Processing Methods
SQLBindCol and SQLGetData can be combined. The previous two examples used
forward-only cursors, which means that they only support fetching rows serially from the
start to the end of the cursor.
In modern screen-based application, the user expects to be able to scroll backwards and
forwards through the data. While it is possible to cache small result sets in memory on the
client, this is not feasible when dealing with large result sets. Scrollable cursors provide
the answer.

Scrollable Cursors
Scrollable cursors allow you to move forward and backward to any row within the result
set. A statement attribute of SQL_SCROLLABLE specifies that the cursor will be opened in
scroll mode.
The function SQLFetchScroll supports fetching the next, prior, first and last rows, as
well as absolute and relative positioning.
For example:

/* Allocate statement handle */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

/* Set cursor scrollable */
retcode = SQLSetStmtAttr(hstmt, SQL_ATTR_CURSOR_SCROLLABLE,

(SQLPOINTER)SQL_SCROLLABLE, 0);
if (retcode == SQL_ERROR) goto error;

SQLExecDirect(hstmt,
"SELECT code, currency \
FROM mimer_store.currencies \
WHERE code LIKE 'A%'",
SQL_NTS);

SQLBindCol(hstmt, 1, SQL_C_CHAR,
code, sizeof(code), &codeInd);

SQLBindCol(hstmt, 2, SQL_C_CHAR,
currency, sizeof(currency), ¤cyInd);

printf("Original sort order\n");
while ((SQLFetchScroll(hstmt, SQL_FETCH_NEXT, 0)) != SQL_NO_DATA)

printf("%s %s\n", code, currency);

printf("\nReverse order\n");
while ((SQLFetchScroll(hstmt, SQL_FETCH_RELATIVE, -1)) != SQL_NO_DATA)

printf("%s %s\n", code, currency);

/* Close the cursor */
SQLCloseCursor(hstmt);

Updating Data
Applications can update data by executing the UPDATE, DELETE and INSERT statements.
An alternative method is to position the cursor on a particular row and then use DELETE
CURRENT, or UPDATE CURRENT statements.

26 Chapter 2 Mimer SQL and the ODBC API
Updating Data

The following example illustrates how this can be done by using two statement handles:
SQLHSTMT cscroll, cupdate;
SQLCHAR code[4];
SQLCHAR currency[33];
SQLINTEGER codeInd, currencyInd;
. . .

/* Allocate statement handles */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &cscroll);
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &cupdate);

/* Set scroll cursor attributes */
SQLSetStmtAttr(cscroll, SQL_ATTR_CURSOR_SCROLLABLE,

(SQLPOINTER)SQL_SCROLLABLE, 0);
SQLSetStmtAttr(cscroll, SQL_ATTR_CONCURRENCY,

(SQLPOINTER)SQL_CONCUR_VALUES, 0);

/* Name the cursor */
SQLSetCursorName(cscroll, "CRN", SQL_NTS);

SQLExecDirect(cscroll,
"SELECT code, currency \
FROM mimer_store.currencies \
FOR UPDATE OF currency",
SQL_NTS);

SQLBindCol(cscroll, 1, SQL_C_CHAR,
code, sizeof(code), &codeInd);

SQLBindCol(cscroll, 2, SQL_C_CHAR,
currency, sizeof(currency), ¤cyInd);

/* Set the update cursor to use optimistic concurrency */
SQLSetStmtAttr(cupdate, SQL_ATTR_CONCURRENCY,

(SQLPOINTER)SQL_CONCUR_VALUES, 0);

/* Prepare the positioned update statement using scroll cursor name */
SQLPrepare(cupdate,

"UPDATE mimer_store.currencies \
SET currency = ? \

WHERE CURRENT OF crn",
SQL_NTS);

/* Bind the code parameter in the update statement */
SQLBindParameter(cupdate, 1, SQL_PARAM_INPUT, SQL_C_CHAR,

SQL_CHAR, 33, 0,
currency, sizeof(currency), ¤cyInd);

/* Position within the result set on the scrolling cursor */
SQLFetchScroll(cscroll, SQL_FETCH_ABSOLUTE, 3);
SQLSetPos(cscroll, 1, SQL_POSITION, SQL_LOCK_NO_CHANGE);

/* Update currency name using update statement handle */
if (strncmp(currency, "Leke", 4) == 0)

strcpy(currency, "Albanian Leke");
else

strcpy(currency, "Leke");
currencyInd = SQL_NTS;

SQLExecute(cupdate);

Mimer SQL Version 11.0 27
Programmer’s Manual

Native SQL Escape Clauses
Using native SQL escape clauses with short-form syntax is supported by the Mimer SQL
Experience server, not only from the ODBC driver, but from all Mimer database API’s,
including scripted or interactive execution from BSQL.
Long-form escape clauses are supported, but need to be handled by the ODBC driver
before execution.

Short- and long-form syntax examples:
{ d'2001-01-01' }
--(* vendor(Microsoft), product(ODBC) d'2001-01-01' *)--

The function SQLNativeSQL transforms a long-form escape clause to a short-form
escape clause, making it directly executable.

SQLNativeSql(hdbc,
 "UPDATE mimer_store.items SET release_date =
 --(* vendor(Microsoft), product(ODBC) d '2001-01-01' *)--
 WHERE product_id = 100",
 SQL_NTS, (keep)szSqlStr, 1200, pcbSqlStr);
SQLExecDirect(hstmt, szSqlStr, SQL_NTS);

The only accepted vendor is Microsoft, and the only accepted product is ODBC. All long-
form escape clauses with other vendors or products will be discarded. A syntactically
incorrect long-form escape clause will not be transformed.

Escaped functions
The first column lists functions supported in escaped function calls.
The second column tells if a function is supported in an unescaped form as well.
The third column describes the regular Mimer SQL equivalence, when different from the
escaped function call form.

Escaped function Also un-
escaped

Mimer SQL equivalence

{fn ABS(value)} yes

{fn ACOS(value)} yes

{fn ASCII(string)} no ASCII_CODE(string)

{fn ASIN(value)} yes

{fn ATAN(value)} yes

{fn ATAN2(value1,value2)} yes

{fn BIT_LENGTH(string)} yes

{fn CEILING(value)} yes

{fn CHAR(string)} no ASCII_CHAR(string)

{fn CHAR_LENGTH(string)} yes

{fn CHARACTER_LENGTH(string)} yes

28 Chapter 2 Mimer SQL and the ODBC API
Native SQL Escape Clauses

{fn CONCAT(string1,string2, ...)} yes string1 || string2 ...

{fn COS(value)} yes

{fn COT(value)} yes

{fn CURDATE()} no CURRENT_DATE

{fn CURRENT_DATE()} no CURRENT_DATE

{fn CURRENT_TIME()} no -

{fn CURRENT_TIMESTAMP() no -

{fn CURTIME()} no -

{fn DATABASE()} no -

{fn DAYNAME(value)} no ODBC.DAYNAME(value)

{fn DAYOFMONTH(value)} yes EXTRACT(DAY FROM value)

{fn DAYOFWEEK(value)} yes

{fn DAYOFYEAR(value)} yes

{fn DEGREES(value)} yes

{fn DIFFERENCE(string,string)} no -

{fn EXP(value)} yes

{fn EXTRACT(field FROM value)} yes

{fn FLOOR(value)} yes

{fn HOUR(value)} yes EXTRACT(HOUR FROM value)

{fn IFNULL(expr1,expr2,...)} yes COALESCE(expr1,expr2,...)

{fn INSERT(str1,start,len,str2)} no PASTE(str1,start,len,str2)

{fn LCASE(string)} no LOWER(string)

{fn LEFT(string, length)} yes SUBSTRING(string FROM 1 FOR
length)

{fn LENGTH(string)} no CHAR_LENGTH(TRIM(TRAILING FROM
string))

{fn LOCATE(str1,str2[,start])} yes

{fn LOG(value)} no LN(value)

{fn LOG10(value)} yes

{fn LTRIM(string)} no TRIM(LEADING FROM string)

{fn MINUTE(value)} yes EXTRACT(MINUTE FROM value)

{fn MOD(value,value)} yes

Escaped function Also un-
escaped

Mimer SQL equivalence

Mimer SQL Version 11.0 29
Programmer’s Manual

{fn MONTH(value)} yes EXTRACT(MONTH FROM value)

{fn MONTHNAME(value)} no ODBC.MONTHNAME(value)

{fn NOW()} no LOCALTIMESTAMP

{fn OCTET_LENGTH(string)} yes

{fn PI()} no -

{fn POSITION(substring, source)}; yes POSITION(substring IN source)

{fn POWER(value, value)} yes

{fn QUARTER(value)} yes

{fn RADIANS(value)} yes

{fn RAND()} no CAST(IRAND() AS DOUBLE
PRECISION) / 2147483647

{fn REPEAT(string,value)} yes

{fn REPLACE(source,str1,str2)} yes

{fn RIGHT(string,value)} yes

{fn ROUND(value,number)} yes

{fn RTRIM(string)} no TRIM(TRAILING FROM string)

{fn SECOND(value)} yes EXTRACT(SECOND FROM value)

{fn SIGN(value)} yes

{fn SIN(value)} yes

{fn SOUNDEX(value)} yes

{fn SPACE(value)} no REPEAT(' ', value)

{fn SQRT(value)} yes

{fn SUBSTRING(string,start[,length]) yes SUBSTRING(string FROM start [FOR
length])

{fn TAN(value)} yes

{fn
TIMESTAMPADD(tsi_type,val1,val2)}

no -

{fn
TIMESTAMPDIFF(tsi_type,val1,val2)}

no -

{fn TRUNCATE(value,digits)} yes

{fn UCASE(string)} no UPPER(string)

{fn USER()} no CURRENT_USER

{fn WEEK(value)} yes

Escaped function Also un-
escaped

Mimer SQL equivalence

30 Chapter 2 Mimer SQL and the ODBC API
Native SQL Escape Clauses

{fn YEAR(value)} yes EXTRACT(YEAR FROM value)

Escaped function Also un-
escaped

Mimer SQL equivalence

Mimer SQL Version 11.0 31
Programmer’s Manual

Chapter 3

Mimer SQL and the
JDBC API

JDBC is the de-facto standard for accessing relational database systems from the Java
programming language. It defines a framework that provides a uniform interface to a
number of different database connectivity modules.
Mimer SQL supports JDBC as one of its native application programming interfaces
(API).
The Mimer JDBC Driver is a Type 4 - Native Protocol All-Java Driver, also known as a
Java thin driver. The Type 4 architecture uses a message protocol that is specific to Mimer
SQL; as this means that there is no need for any intervening processes or translation, this
architecture is extremely efficient.
This chapter is not intended to be a complete guide to the functionality provided by JDBC.
It is written to introduce you to accessing Mimer SQL through JDBC.

The Mimer JDBC Driver
The Mimer JDBC Driver is required in order to access a Mimer SQL database over
TCP/IP from a Java application.
You can use the Mimer JDBC driver on any client computer that has the Java runtime
environment is installed.
The driver is extremely small in size, so that it can be simply incorporated into an applet
that can be downloaded over the Internet.
The Mimer JDBC driver is distributed with the Mimer SQL software. You can also
download it from: https://developer.mimer.com/downloads. No other Mimer SQL software is
required to be installed on the Java client, eliminating any need for configuration
management on the client side.
To install Java, download the Java SDK. You can find the latest version here:
https://www.oracle.com/technetwork/java/index.html

All further information about the Mimer JDBC drivers, including programming aspects,
are found in the Mimer JDBC Driver Guide.

https://developer.mimer.com/downloads
https://www.oracle.com/technetwork/java/index.html

32 Chapter 3 Mimer SQL and the JDBC API
The Mimer JDBC Driver

Mimer SQL Version 11.0 33
Programmer’s Manual

Chapter 4

Embedded SQL
In previous chapters, we discussed the ODBC and JDBC APIs. This chapter discusses the
scope, principles, processing and structure of embedded SQL (ESQL).
ESQL enables you to code SQL statements in a host program written in C/C++, COBOL
or Fortran. You can specify SQL statements directly in the host program's source code.
However, because the host language's compiler won't recognize the SQL statements as
valid, a preprocessor is required.

The Scope of Embedded Mimer SQL
The following groups of SQL statements are common to ESQL and interactive SQL:
• Data manipulation statements for reading or changing the contents of the database

and invoking stored routines. These are basically similar between interactive SQL
and ESQL, but differ in certain details as a result of the different environments in
which the statements are used.

• Transaction control statements for grouping database operations in transactions
(indivisible units of work).

• Access control statements for allocating privileges and access rights to users of the
system. These are identical between interactive SQL and ESQL.

• Data definition statements for creating and altering objects in the database. These
are identical between interactive SQL and ESQL.

• Connection statements for identifying the current user of the system.
• System administration statements for controlling the availability of the database

and its physical components, managing backups and updating database statistics.
There are a number of commands provided for use with BSQL which are not included in
the Mimer SQL interface, these are described in the Mimer SQL User’s Manual,
Chapter 9, Mimer BSQL.
Note: In the Mimer SQL Reference Manual, Chapter 12, Usage Modes, Mimer SQL

statements are identified as valid for use in ESQL, for interactive use or both.

34 Chapter 4 Embedded SQL
General Principles for Embedding SQL Statements

General Principles for Embedding SQL Statements
The following sections discuss host languages, preprocessors, identifying SQL
statements, code, comments and recommendations.

Host Languages
You can embed Mimer SQL statements in application programs written in C/C++,
COBOL or Fortran. The basic principles for writing ESQL programs are the same in all
languages and all ESQL statements are embedded in the same way.
Information given in this manual applies to all languages unless otherwise explicitly
stated. Language-specific information is detailed in Host Language Dependent Aspects
on page 307.

ESQL Preprocessors
Because host language compilers do not recognize ESQL statements as valid, an ESQL
preprocessor is required. An ESQL preprocessor processes the SQL statements embedded
in a host language.

Identifying SQL Statements
SQL statements are included in the host language source code exactly as though they were
ordinary host language statements (i.e. they follow the same rules of conditional
execution, etc., which apply to the host language).
SQL statements are identified by the leading keywords EXEC SQL (in all host languages)
and are terminated by a language-specific delimiter. Every separate SQL statement must
be delimited in this way.
Blocks of several statements may not be written together within one set of delimiters. For
instance, in COBOL, two consecutive DELETE statements must be written as:

EXEC SQL DELETE FROM countries END-EXEC.
EXEC SQL DELETE FROM producers END-EXEC.

and not
EXEC SQL DELETE FROM countries

DELETE FROM producers END-EXEC.

Single SQL statements can however be split over several lines, following the host
language rules for line continuation.
The following embedded statement is thus acceptable in a Fortran program (the
continuation mark is a + in column 6 on the second line):

Linux: Mimer SQL supports an ESQL preprocessor for the C/C++ and Fortran host
languages on Linux platforms.

VMS: Mimer SQL supports an ESQL preprocessor for the C/C++, COBOL and
Fortran host languages on OpenVMS platforms.

Win: Mimer SQL supports an ESQL preprocessor for the C/C++ host language on
Windows platforms.

Mimer SQL Version 11.0 35
Programmer’s Manual

EXEC SQL DELETE FROM countries
+ WHERE code = 'BA' END-EXEC.

The keywords EXEC SQL may not be split over more than one line.

Included Code
Any code which is included in the program by the host language compiler (as directed by
host language INCLUDE statements) is not recognized by the ESQL preprocessor.
If external source code modules containing SQL statements are to be included in the
program, the non-standard SQL INCLUDE statement must be used, for example:

EXEC SQL INCLUDE 'filename'

Files included in this way are physically integrated into the output from the preprocessor.

Comments
Comments may be written in the ESQL program according to the rules for writing
comments in the host language. Thus comments may be written within an SQL statement
if the host language accepts comments within host language statements.
The following statement is valid in C/C++:

exec sql DELETE FROM countries /* Remove Bosnia and Herzegovina */
WHERE code = 'BA';

Note: The keywords EXEC and SQL may not be separated by a comment.

Recommendations
We recommend the following, when using ESQL:
• Avoid variable names beginning with the letters SQL (except for SQLSTATE and

SQLCODE, which should be used when appropriate).
• Avoid subroutine or subprogram names ending with a number.
Language-specific restrictions are described in Host Language Dependent Aspects on
page 307.

Processing ESQL
The following sections discuss preprocessing and processing ESQL.

Preprocessing – the ESQL Command
An application program containing ESQL statements must first be preprocessed using the
ESQL command before it can be passed through the host language compiler, since the host
language itself does not recognize the ESQL syntax.
Preprocessors are available for the host languages supported on each platform, see Host
Languages on page 34.
The input to the preprocessor is thus a source code file containing host language
statements and ESQL statements.

36 Chapter 4 Embedded SQL
Processing ESQL

The output from the preprocessor is a source code file in the same host language, with the
ESQL statements converted to source code data assignment statements and subroutine
calls that pass the SQL statements to the Mimer SQL database manager.
The original ESQL statements are retained as comments in the output file, to help in
understanding the program if a source code debugger is used.
The output from the preprocessor is human-readable source code, still retaining a large
part of the structure and layout of the original program, which is used as input to the
appropriate host language compiler to produce object code.
The default file extensions for preprocessor input and output files depend on the host
language used and are shown in the table below:

Invoking the ESQL Preprocessor
The ESQL preprocessor has the following syntax:

esql [-c|-h|-b|-f] [-l] [-n] infile [outfile]

esql [--c|--header|--cobol|--fortran] [--line] [--nologo] infile [outfile]

esql [-v|--version] | [-?|--help]

Language

Options

Language Input file extension Output file extension

C .ec .c

C header .eh .h

COBOL .eco .cob

Fortran .efo .for

Unix-style VMS-style Function

-c
--c

/C Indicates that the input file is written using the C/C++
host language.

-h
--header

/HEADER Indicates that the input is a C/C++ host language
header file.

-b
--cobol

/COBOL Indicates that the input file is written using the
COBOL host language.

-f
--fortran

/FORTRAN Indicates that the input file is written using the Fortran
host language.

Unix-style VMS-style Function

-?
--help

/HELP Display usage information.

Mimer SQL Version 11.0 37
Programmer’s Manual

Input-file and Output-file

Note: As an application programmer, you should never attempt to directly modify the
output from the preprocessor.
Any changes that may be required in a program should be introduced into the
original ESQL source code. Mimer Information Technology AB cannot accept
any responsibility for the consequences of modifications to the preprocessed
code.

File Format Handling
When the ESQL preprocessor reads the input file it needs to make decisions about what
kind of file format that is used. If the input file has a leading BOM (Byte Order Mark),
which is especially common on the Windows platform, the file format is assumed to be
according to this information. For example, this can indicate that the file is UTF-8 or
UTF-16.
If no BOM is located, which usually is the case on other platforms than Windows, the file
format is presumed to be in line with the current locale setting.
If the input file is written in plain ASCII, without using a BOM, the file format is not an
issue. All steps in the build process for the source file will likely work without problems.
In other cases, if a specific encoding is used, the file format must be considered in the
translation and execution environments used.

-l
--line

/LINE Generates #line preprocessing directives for source
written in the C language. These force the C compiler
to produce diagnostic messages with line numbers
relating to the input C source code rather than the code
generated by the preprocessor (and thus compiled by
the C compiler.)

-n
--nologo

/NOLOGO Suppresses the display of the copyright message and
input filename on the screen (warnings and errors are
always displayed on the screen.)

-v
--version

/VERSION Display version information.

Unix-style VMS-style Function

Unix-style VMS-style Function

infile infile The input-file containing the source code to be
preprocessed.
If no file extension is specified, the appropriate file
extension for the source language is assumed
(previously described in this section.)

[outfile] [outfile] The output-file which will contain the compiler source
code generated by the preprocessor.
If not specified, the output file will have the same
name as the input file, but with the appropriate default
output file extension (previously described in this
section.)

38 Chapter 4 Embedded SQL
Processing ESQL

The output file produced by ESQL is of the same format as the input file.

Example
The following example, on OpenVMS, shows how to preprocess the DSQLSAMP program:

$ ESQL/C MIMER$EXAMPLES:DSQL

What Does the Preprocessor Do?
The preprocessor checks the syntax and to some extent the semantics of the ESQL
statements. (See Handling Errors and Exceptions on page 69 for a more detailed
discussion of how errors are handled). Syntactically invalid statements cannot be
preprocessed and the source code must be corrected.

Processing ESQL – the Compiler
The output from the ESQL preprocessor is compiled in the usual way using the
appropriate host language compiler, and linked with the appropriate routine libraries.

Note: Other compilers, from other software distributors, may or may not be able to
compile the ESQL preprocessor output. Mimer Information Technology
cannot guarantee the result of using a compiler that is not supported.

The SQL Compiler
At run-time, database management requests are passed to the SQL compiler responsible
for implementing the SQL functions in the application program.
The SQL compiler performs two functions:
• It checks SQL statements semantically against the data dictionary.
• It optimizes operations performed against the database (i.e. internal routines

determine the most efficient way to execute the SQL request, with regard to the
existence of secondary indexes and the number of rows in the tables addressed by
the statement). You, as a programmer, do not need to worry, for instance, about the
order in which tables are addressed in a complex selection condition. This
optimization process is completely transparent.

Linux: On Linux platforms, the gcc and gfortran compilers are supported.

VMS: The following compilers are supported on the OpenVMS platform:
– DEC C, VSI C
– DEC Fortran, VSI Fortran
– DEC COBOL, VSI COBOL

Note: For COBOL, the source program must be formatted according to the ANSI
rules. Use the /ANSI option when compiling the resulting COBOL program.

Win: On Windows platforms, the C compiler identified by the cc symbol in the file
.\dev\samples\makefile.mak below the installation directory is
supported.

Mimer SQL Version 11.0 39
Programmer’s Manual

Note: Since all SQL statements are compiled at run-time, there can be no conflict
between the state of the database at the times of compilation and execution.
Moreover, the execution of SQL statements is always optimized with reference
to the current state of the database.

Essential Program Structure
All application programs using embedded Mimer SQL must include certain basic
components, summarized below in the order in which they appear in a program.

1 Host Variable Declarations
A host variable is a variable used in the embedded program for entering data to the
database or retrieving data from the database. Host variables must be declared inside
the SQL DECLARE SECTION to be recognized. Host variables can be used in
embedded statements where an expression can be used.
See the section Using Host Variables on page 46 for more details.

2 The Status Information Variable: SQLSTATE
The status information variable SQLSTATE, if used, must be declared inside the
SQL DECLARE SECTION. This variable provides the application with status
information for the most recently executed SQL statement.

3 Executable SQL Statements
This is the body of the program, and performs the required operations on the
database. Normally, these begin with connecting to Mimer SQL and performing the
required transactions before finally disconnecting from Mimer SQL.

Summary of Functions for Manipulating Data
The following table summarizes the functions for data manipulation in interactive SQL
and ESQL.

Operation Interactive SQL ESQL

Retrieve data SELECT generates
a result table
directly.

Declare a cursor for the SELECT statement. The
cursor must be opened and positioned. Data is
retrieved into host variables one row at a time
with FETCH.
Alternative: SELECT INTO retrieves a single-
row result set directly into host variables.

Update data UPDATE operates
on a set of rows or
columns.

UPDATE operates on a set of rows.
UPDATE CURRENT operates on a single row
through a cursor.

Insert data INSERT inserts one
or many rows at a
time.

INSERT inserts one or many rows at a time.

Delete data DELETE operates
on a set of rows.

DELETE operates on a set of rows.
DELETE CURRENT operates on a single row
through a cursor.

40 Chapter 4 Embedded SQL
Essential Program Structure

Many SQL statements (e.g. data definition statements) are simply embedded in their
logical place in the application program and are executed without direct reference to other
parts of the program.
Some features of ESQL however require special consideration, and are dealt with in detail
in the chapters that follow:
• Access authorization through the use of user and program idents.
• Data manipulation statements which require the use of cursors (FETCH, UPDATE

CURRENT, DELETE CURRENT). These together with cursor handling statements are
probably the most commonly used statements in ESQL.

• Transaction control, which is essential for a consistent database.
• Dynamic SQL, which is a special set of statements allowing an application

program to process SQL statements entered by the user at run-time.
• Exception handling, which controls the action taken when, for instance, the end of

a result set is reached.

Invoke
routine

CALL is used to
execute all stored
procedures, i.e.
both result set and
non-result set
procedures are
handled the same
way.
Functions can be
specified where an
expression could be
used and are
invoked when an
expression used in
the same context
would be
evaluated.

Result set procedures are called by using the
CALL clause in a cursor declaration and then
using FETCH.
The CALL statement is used directly for non-
result set procedures.
Functions can be specified where an expression
could be used and are invoked when an
expression used in the same context would be
evaluated.

Assignment SET The set statement can be used to assign values
to a host variable. E.g. if you want to invoke a
user defined function or method and assign the
result to a host variable, a statement such as
SET :hv = Capitalize('john brown'),
can be used.

Operation Interactive SQL ESQL

Mimer SQL Version 11.0 41
Programmer’s Manual

Linking Applications

If applications are linked as recommended above to reference the Mimer SQL shared
library, they will automatically use a new version of Mimer SQL when it is installed,
without having to be re-linked.

Linux: The example makefile ex_makefile, found in the installation examples
directory, provides a verified example of the recommended way to build C
applications on Linux platforms.
For Fortran, see the ex_makefile_f example makefile.
Applications built using the procedure contained in this makefile will reference
the Mimer SQL shared library called libmimer.

VMS: All Mimer SQL applications should be linked with the options file
MIMER$SQL.OPT, as shown in the following example:
$ LINK main,MIMER$LIB:MIMER$SQL/OPT

The MIMER$SQL.OPT file includes the following:
– MIMER$LIB:MIMER$SQL.EXE (shareable library)

If an image linked in this fashion is activated, it will translate the logical name
MIMER$SQL to get the name of the Mimer SQL shareable library to be used.
The logical name is defined by the SYS$MANAGER:MIMER$SETUP_xxxxx
command procedure.

Win: The example makefile .\dev\samples\makefile.mak in the installation
directory should be copied and used in the recommended way to build
applications on Windows platforms.

42 Chapter 4 Embedded SQL
Connecting to a Database

Connecting to a Database
A database in Mimer SQL refers to the complete collection of databanks that may be
accessed from one Mimer SQL system.
Mimer ESQL supports the ability to change between different connections (i.e. access
different databases) from within the same application program. An application program
may have several database connections open simultaneously, although only one is active
at any one time.
Only idents of type USER are allowed to log on to Mimer SQL.

The CONNECT Statement
Logging on is requested from an application program with the CONNECT statement, see
the Mimer SQL Reference Manual, Chapter 12, CONNECT, for the syntax description.
The CONNECT statement establishes a connection between a USER ident and a database

exec sql CONNECT TO 'db' AS 'con1' USER 'ident' USING 'pswd';

To connect using an OS_USER login with the same name as the current operating system
user, provide an empty ident name string. E.g.

exec sql CONNECT TO 'db' AS 'con2' USER ' ' USING ' ';

Local and Remote Databases
A connection may be established to any local or remote database, which has been made
accessible from the current machine, see the Mimer SQL System Management Handbook,
Chapter 3, Creating a Mimer SQL Database, for details, by specifying the database by
name or by using the keyword DEFAULT.

Default or Named Database
If the keyword DEFAULT is used, an OS_USER login is used for the connection attempt.

exec sql CONNECT TO DEFAULT;

If the database name is given as an empty string, the DEFAULT database is used.
exec sql CONNECT TO ' ' AS 'con1' USER 'ident' USING 'pswd';

The database may be given an explicit connection name for use in DISCONNECT and SET
CONNECTION statements. If no explicit name is given, the database name is used as the
connection name.

exec sql CONNECT TO 'db' USER 'ident' USING 'pswd';

Implicit Connection
Normally, CONNECT should be the first SQL statement executed in an application
program using ESQL. However, if another SQL statement is issued before any
connection has been established in the current application, an implicit connection will be
attempted.
An implicit connection is made to the DEFAULT database using the current operating
system user.

Mimer SQL Version 11.0 43
Programmer’s Manual

In order for the implicit connect attempt to be successful, the current operating system
user must be defined as an OS_USER login in Mimer SQL and the DEFAULT database must
be defined as a local database on the machine on which the current operating system user
is defined.
If an implicit connection has previously been established in the application and there is
no current connection, issuing an executable statement will result in a new attempt to
make the same implicit connection. However, if an explicit connection has previously
been established in the application and there is no current connection, issuing an
executable statement will cause an error.

Changing Connection
A connection established by a successful CONNECT statement is automatically active.
An application program may make multiple connections to the same or different
databases using the same or different idents, provided that each connection is identified
by a unique connection name.
Only the most recent connection is active. Other connections are dormant, and may be
made active by the SET CONNECTION statement. Resources such as cursors used by a
connection are saved when the connection becomes dormant, and are restored by the
appropriate SET CONNECTION statement.
The statement sequence below connects to a user-specific database as a specified ident
name and to the DEFAULT database using an OS_USER login. The user-specific
connection is initially active. Then the DEFAULT connection is activated. Finally the user-
specific connection is activated again using SET CONNECTION.

EXEC SQL CONNECT TO 'db' AS 'con1' USER 'ident' USING 'pswd';
...
EXEC SQL CONNECT TO DEFAULT;
...
-- Set activate connection to CON1
EXEC SQL SET CONNECTION 'con1';

Note: If different connections are made with different idents, the apparent access
rights of the application program may change when the current connection is
changed.

Disconnecting
The DISCONNECT statement breaks the connection between a user and a database and
frees all resources allocated to that user for the specified connection (all cursors are closed
and all compiled statements are dropped). The connection to be broken is specified as the
connection name or as one of the keywords ALL, CURRENT or DEFAULT. (If a transaction
is active when the DISCONNECT is executed, an error is raised and the connection remains
open).
A connection does not have to be active in order to be disconnected. If an inactive
connection is broken, the application still has uninterrupted access to the database through
the current (active) connection, but the broken connection is no longer available for
activation with SET CONNECTION.
If the active connection is broken, the application program cannot access the database
until a new CONNECT or SET CONNECTION statement is issued.

44 Chapter 4 Embedded SQL
Connecting to a Database

Note: The distinction between breaking a connection with DISCONNECT and making
a connection inactive by issuing a CONNECT or SET CONNECTION for a
different connection is, a broken connection has no saved resources and cannot
be reactivated by SET CONNECTION.

The table below summarizes the effect on the connection con1 of CONNECT,
DISCONNECT and SET CONNECTION statements depending on the state of the
connection.

PROGRAM Idents – ENTER and LEAVE
PROGRAM idents may be entered from within an application program by using the ENTER
statement, see the Mimer SQL Reference Manual, Chapter 12, ENTER for the syntax
description. This statement must be issued in a context where a user is already connected
as PROGRAM idents cannot connect directly to the system.
When a PROGRAM ident is entered, any privileges granted to that ident become current and
privileges belonging to the previous ident (i.e. the ident issuing the ENTER statement) are
suspended. However, any cursors opened by the previous ident remain open.
PROGRAM idents are disconnected with the LEAVE statement. If LEAVE is requested with
the optional keyword RETAIN, the full environment of the PROGRAM ident being left is
kept.
Cursors left open by the PROGRAM ident are deactivated but not closed, and retain their
positions in the respective result tables. The environment is restored if the PROGRAM ident
is re-entered.
If LEAVE is requested without RETAIN, the environment of the PROGRAM ident being left
is dropped. This means that all cursors and compiled statements are destroyed.

Statement con1 non-
existent

con1 current con1 inactive

CONNECT TO db1 AS con1 con1 current error –
connection
already exists

error –
connection
already exists

DISCONNECT con1 error –
connection
does not exist

con1
disconnected

con1
disconnected

SET CONNECTION con1 error –
connection
does not exist

ignored con1 made
current

CONNECT TO db2 AS con2 – con1 made
inactive

con1
unaffected

DISCONNECT con2 – con1
unaffected

con1
unaffected

SET CONNECTION con2 – con1 made
inactive

con1
unaffected

Mimer SQL Version 11.0 45
Programmer’s Manual

Note: The distinction between leaving a PROGRAM ident with the option RETAIN and
entering a new PROGRAM ident is, while both operations save the environment
of the PROGRAM ident, cursors left open at ENTER may still be used but those
left open at LEAVE RETAIN are inaccessible until the program ident is re-
entered.

The statements ENTER and LEAVE may not be issued within transactions, see Transaction
Handling and Database Security on page 221.

46 Chapter 4 Embedded SQL
Communicating with the Application Program

Communicating with the Application Program
Information is transferred between the embedded SQL (ESQL) application program and
the Mimer SQL database manager in four ways:
• through host variables used in SQL statements
• through the status variable SQLSTATE
• through the diagnostics area, accessed by the SQL statement GET DIAGNOSTICS
• through an SQL descriptor area.

Using Host Variables
Host variables are used in SQL statements to pass values between the database and the
application program.

Declaring Host Variables
All variables used in SQL statements must be declared for the preprocessor. This is done
by enclosing the variable declarations between the SQL statements BEGIN DECLARE
SECTION and END DECLARE SECTION.
The following example in C declares the character variables user and passw for use in
SQL statements:

int rc, pf, cnt;

exec sql BEGIN DECLARE SECTION;
char user[129],

passw[129]; /* 128 character column, and a null byte */
exec sql END DECLARE SECTION;

Any variables declared outside the DECLARE SECTION will not be recognized by the
preprocessor.
Variables are declared within the section using the normal host language syntax.
Variables which are not used in SQL statements may also be declared in the SQL
DECLARE SECTION. (This will however extend the symbol table established by the
preprocessor more than is necessary.)
The use of array variables is currently not supported in embedded Mimer SQL (except for
character string variables).

Using Variables in Statements
Host variables may be used:
• to receive information from the database (SELECT INTO, FETCH, CALL and SET

statements)
• to assign values to columns in the database (CALL, INSERT and UPDATE

statements)
• to manipulate information taken from the database or contained in other variables

(in expressions)
• to get descriptor and diagnostics information (GET DESCRIPTOR, SET

DESCRIPTOR and GET DIAGNOSTICS)
• in dynamic SQL statements.

Mimer SQL Version 11.0 47
Programmer’s Manual

In all these contexts, the data type of the host variable or database column must be
compatible with the data type of the corresponding database value or host variable.
General considerations of data type compatibility may be found in the Mimer SQL
Reference Manual. Host language specific aspects are described in Host Language
Dependent Aspects on page 307 of this manual.
If you have an INTEGER column containing values that do not fit into the largest integer
variable allowed on your machine (remember that Mimer SQL supports INTEGER values
with a precision of up to 45 digits), you can, for example, use a character string or float
host variable for that column. In this case, Mimer SQL automatically performs the
necessary conversions.
Host variables are preceded by a colon when used in SQL statements, see the Mimer SQL
Reference Manual, Chapter 6, Host Identifiers.
Note: The colon is not part of the host variable, and should not be used when the

variable is referenced in host language statements.

Example
EXEC SQL SELECT COUNT(*)

INTO :VAR
FROM table
WHERE condition;

if VAR < LIMIT then ...

Indicator Variables
In ESQL, indicator variables associated with main variables are used to handle null values
in database tables.
Indicator variables should be an exact numeric data type with scale zero and are declared
in the same way as main variables in the SQL DECLARE SECTION.
See Declarations on page 309 for a description of how main and indicator variables
should be declared in the specific host languages.
Indicator variables are used in SQL statements by either specifying the name of the
indicator variable, preceded by a colon, after the main variable name or by using the
keyword INDICATOR, for example:

:main_variable :indicator_variable

or
:main_variable INDICATOR :indicator_variable

Transfer from Tables to Host Variables
When a null value is retrieved into a host variable by a FETCH, SELECT INTO, EXECUTE,
SET or CALL statement, the value of the main variable is undefined and the value of the
indicator variable is set to -1.
An error occurs if the main variable is not associated with an indicator variable in the SQL
statement. It is therefore recommended as a precaution that indicator variables are used
for all columns which are not defined as NOT NULL in the database.
An indicator variable should always be used when a host variable is used for a routine
parameter with mode OUT or INOUT because a null value can always be returned via a
routine parameter.

48 Chapter 4 Embedded SQL
Communicating with the Application Program

When a non-null value is assigned to a main variable associated with an indicator
variable, the indicator variable is set to zero or a positive value. A positive value indicates
that the value assigned to a main character variable was truncated, and gives the length of
the original value before truncation.

Transfer from Host Variables to Tables
When the host variable associated with an indicator variable is used to assign a value to
a column, the value assigned is null if the value of the indicator variable is set to -1.
In such a case, the value of the main variable is irrelevant. If the indicator variable has a
value of zero or a positive value, or if the main variable is not associated with an indicator
variable, the value of the main variable itself is assigned to the column.

External Character Set Support
The handling of the single byte character data types follows the current locale setting on
the machine to determine what characters are stored/retrieved when an embedded SQL
application passes single-byte character strings to the Mimer client.
When character data is stored in Mimer SQL it can be stored in CHAR, VARCHAR or CLOB
columns, or in NCHAR, NVARCHAR or NCLOB columns. Data in CHAR, VARCHAR and CLOB
columns use the Latin-1 character representation (also called ISO 8859-1). This character
set can only be used to store 256 different characters. For the exact characters that can be
stored see Mimer SQL Reference Manual, Appendix B, Character Sets. To store any other
characters the data type NCHAR, NVARCHAR or NCLOB must be used. These column types
can store any character.
If a locale is used by the application that has characters that are not included in Latin-1,
it means that the columns in the database data must use an NCHAR, NVARCHAR, or NCLOB
column to store the correct characters. With the locale support the Mimer SQL client
understands the representation of the characters in the application and maps them
accordingly to its internal representation.
When retrieving data from the database, the translation work the other way. I.e. when
retrieving data from a CHAR or NCHAR column to a single-byte character variable, the
current locale must be able to represent all the characters returned from the database.
When this is not possible, a conversion error -10401 is returned. If characters stored in the
database have no representation in the chosen locale, a wide character data type must be
used by the application instead (e.g. the C type wchar_t rather than char).
This means that applications using older versions of Mimer may have to be updated to
work with the new version. Typically the data type used in the database is altered from
CHAR to NCHAR, or from VARCHAR to NVARCHAR. This is done with the ALTER TABLE
statement (see Mimer SQL Reference Manual, Chapter 12, ALTER TABLE). Other
possible changes is to switch from a character representation (e.g. char) to a Unicode
representation (e.g. wchar_t) for the application variables, or to switch to a locale that
can handle all relevant characters.
On Windows the setting used for the external character set is set in the Regional and
Language Options in the Control Panel under the tab Advanced. This setting is used
automatically by the Mimer client.
On VMS the system continues to use the Latin-1 character representation regardless of
locale settings.

Mimer SQL Version 11.0 49
Programmer’s Manual

On other platforms (Linux, macOS, others) the application must call the runtime library
routine setlocale to pick the locale to use. For example, the call
setlocale(LC_CTYPE, "") sets the default locale as decided by the environment
setting. The actual conversions made by the Mimer client are through the library routines
mbstowcs (multibyte character set to wide char set) and wcstombs. Please note that if
an application does not call setlocale a default 7-bit locale is used. This means that no
8-bit characters can be used without getting a conversion error. For applications where
the source is not available it is possible to set an environment variable MIMER_LOCALE
that will be used when calling the Mimer client. The value of the environment variable is
used as the second argument to setlocale.
To use the default locale set MIMER_LOCALE to current. On Windows the environment
variable is set to the desired code page, i.e. only numeric values may be specified (for
example: 1250: ANSI Central Europe, 1251: ANSI Cyrillic, 1252: Latin1, 1253: ANSI
Greek, 1254: ANSI Turkish, and so on.)
The fact that the character type is considered a multi-byte character set allows any
external character representation to be used. In particular various character sets such as
Traditional Chinese Big5 and Japanese Shift-JIS may be used. The character set may, of
course, be a single byte character set as such as the Greek Latin-7 character set (code page
1253 on Windows). On Linux platforms the prevalent representation is UTF-8 that allows
any Unicode character to be stored in a character variable.

The SQLSTATE Variable
The SQLSTATE variable provides the application, in a standardized way, with return code
information about the most recently executed SQL statement.
SQLSTATE must be declared between the BEGIN DECLARE SECTION and the END
DECLARE SECTION (i.e. in the SQL declare section), as a 5 character long string
(excluding any terminating null byte).
The return codes provided by SQLSTATE can contain digits and capital letters.
SQLSTATE consists of two fields. The first two characters of SQLSTATE indicates a
class, and the following three characters indicates a subclass. Class codes are unique, but
subclass codes are not. The meaning of a subclass code depends on the associated class
code.
To determine the category of the result of an SQL statement, the application can test the
class of SQLSTATE according to the following:

For a list of SQLSTATE values, see Return Codes on page 323.

SQLSTATE Class Result category

00 Success

01 Success with warning

02 No data

Other Error

50 Chapter 4 Embedded SQL
Accessing Data

The Diagnostics Area
The diagnostics area holds status information for the most recently executed SQL
statement.
There is always one diagnostics area for an application, no matter how many connections
the application holds.
Information from the diagnostics area is selected and retrieved by the GET DIAGNOSTICS
statement. The syntax for GET DIAGNOSTICS (including a description of the diagnostics
area) is described in Mimer SQL Reference Manual, Chapter 12, GET DIAGNOSTICS.
The GET DIAGNOSTICS statement does not change the contents of the diagnostics area,
except it does set SQLSTATE.

The SQL Descriptor Area
An SQL descriptor area is used to hold data and descriptive information required for
execution of dynamic SQL statements. SQL descriptor areas are allocated and maintained
by ESQL statements, described in the Mimer SQL Reference Manual.
The SQL descriptor area is discussed in detail in SQL Descriptor Area on page 63.

Accessing Data
This section explains how embedded SQL applications retrieve data.

Retrieving Data Using Cursors
Data is retrieved from database tables with the FETCH statement, which fetches the values
from an individual row in a result set into host variables.
The result set is defined by a SELECT construction or a result set procedure CALL, see
Manipulating Data on page 261, used in a cursor declaration. A cursor may be thought of
as a pointer which moves through the rows of the result set as successive FETCH
statements are issued.
An exception is raised to indicate when the FETCH has reached the end of the result set.
Data retrieval involves several steps in the application program code, which are as
follows:
• declaration of host variables to hold data
• declaration of a cursor with the appropriate SELECT conditions or result set

procedure CALL
• opening the cursor
• performing the FETCH
• closing the cursor.

Mimer SQL Version 11.0 51
Programmer’s Manual

General Framework
The steps in the previous section are built into the application program as shown in the
general frameworks below (only SQL statements are shown in the frameworks).
For a SELECT:

EXEC SQL BEGIN DECLARE SECTION;
... VAR1, VAR2, ... VARn ...

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cursor-name CURSOR FOR select-statement;

EXEC SQL OPEN cursor-name;

loop as required
EXEC SQL FETCH cursor-name

INTO :VAR1, :VAR2, ..., :VARn;
end loop;

EXEC SQL CLOSE cursor-name;

For a result set procedure CALL:
EXEC SQL BEGIN DECLARE SECTION;

... VAR1, VAR2, ... VARn ...
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cursor-name CURSOR FOR CALL routine-invocation;

EXEC SQL OPEN cursor-name;

loop as required
EXEC SQL FETCH cursor-name

INTO :VAR1, :VAR2, ..., :VARn;
end loop;

EXEC SQL CLOSE cursor-name;

Declaring Host Variables
All host variables used to hold data fetched from the database and used in selection
conditions or as result set procedure parameters must be declared within an SQL
DECLARE SECTION, see Communicating with the Application Program on page 46.
Indicator variables for columns that may contain null values must also be declared.
The same indicator variable may be associated with different main variables at different
times, but declaration of a dedicated indicator variable for each main variable is
recommended for clarity.

Declaring the Cursor
A cursor operates as a row pointer associated with a result set.
A cursor is defined by the DECLARE CURSOR statement and the set of rows addressed by
the cursor is defined by the SELECT statement in the cursor declaration.
Cursors are local to the program in which they are declared. A cursor is given an
identifying name when it is declared.
DECLARE CURSOR is a declarative statement that does not result in any implicit
connection to a database, see Idents and Privileges on page 217 for details on connecting
to a database.

52 Chapter 4 Embedded SQL
Accessing Data

Preprocessing the statement generates a series of parameters used by the SQL compiler
but does not generate any executable code; the select-expression or result set procedure
call in the cursor declaration is not executed until the cursor is opened.
Holdable cursors can be declared using the WITH HOLD clause. An open cursor declared
WITH HOLD remain open after COMMIT.
Cursors should normally be declared WITHOUT HOLD (default), because WITH HOLD
cursors require more internal resources then ordinary cursors. In addition, long lasting
WITH HOLD cursors can have negative performance effects just like long lasting
transactions.
If the cursor declaration contains a CALL to a result set procedure, it is FETCH that actually
executes the procedure.
The RETURN statement is used from within the result set procedure to return a row of the
result set.
Each FETCH causes statements in the result set procedure to execute until a RETURN
statement is executed, which will return the row data defined by it. Execution of the
procedure is suspended at that point until the next FETCH.
If, during execution, the end of the procedure is encountered instead of a RETURN
statement, the FETCH result is end-of-set. See Result Set Procedures on page 264 for a
detailed description of result set procedures.
Note: It is advisable to always use an explicit list of items in the SELECT statement of

the cursor declaration. The shorthand notations SELECT * and
SELECT table.* are useful in interactive SQL, but can cause conflicts in the
variable lists of FETCH statements if the table definition is changed.

Host Variables
The cursor declaration can use host variables in the WHERE or HAVING clause of the
SELECT statement.
The result set addressed by the cursor is then determined by the values of these host
variables at the time when the cursor is opened.
The same cursor declaration can thus address different result sets depending on when the
cursor is opened, for example:

EXEC SQL DECLARE C1 CURSOR..; -- cursor with host variables
set variables
EXEC SQL OPEN C1; -- open one result set
...
EXEC SQL CLOSE C1;
set variables
EXEC SQL OPEN C1; -- open different result set

Scrollable cursors can be declared using the SCROLL keyword. When a cursor is declared
as scrollable, records can be fetched using an orientation specification. This makes it
possible to scroll through the result set with the cursor.
Cursors which are to be used only for retrieving data may be declared with a
FOR READ ONLY clause in the SELECT statement. This can improve performance
slightly in comparison with cursors that permit update and delete operations.

Mimer SQL Version 11.0 53
Programmer’s Manual

Opening the Cursor
A declared cursor must be opened with the OPEN statement before data can be retrieved
from the database. The OPEN statement evaluates the cursor declaration in terms of
• the privileges the current user holds on any tables and views accessed by the cursor
• the values of any host variables used in the SELECT clause
• for a cursor calling a result set procedure, whether the current user has the required

EXECUTE privilege on the procedure and also the values of any IN parameters
When the OPEN statement has been executed, the cursor is positioned before the first row
in the result set.

Retrieving Data
Once a cursor has been opened, data may be retrieved from the result set with FETCH
statements, see the Mimer SQL Reference Manual, Chapter 12, FETCH, for the syntax
description.
Host variables in the variable list correspond in order to the column names specified in
the SELECT clause of the cursor declaration. The number of variables in the FETCH
statement may not be more than the number of columns selected. The number of variables
may be less than the number of columns selected, but a ‘success with warning’-code is
then returned in SQLSTATE.
A suitably declared record structure may be used in place of a variable list in host
languages where this is supported, see Host Language Dependent Aspects on page 307.
Each FETCH statement moves the cursor to the specified row in the result set before
retrieving data. In strict relational algebra, the ordering of tuples in a relation (the formal
equivalent of rows in a table) is undefined. The SELECT statement in the cursor
declaration may include an ORDER BY clause if the ordering of rows in the result set is
important to the application.
Note: A cursor declared with an ORDER BY clause cannot be used for updating table

contents.
If no ORDER BY clause is specified, the ordering of rows in the result set is unpredictable.
Note: The variables into which data is fetched are specified in the FETCH statement,

not in the cursor declaration. In other words, data from different rows in the
result set may be fetched into different variables.

When there are no more rows to fetch, the exception condition NOT FOUND will be raised.
The following construction thus fetches rows successively until the result set is
exhausted:

EXEC SQL DECLARE C1 CURSOR FOR select-statement;
EXEC SQL OPEN C1;

EXEC SQL WHENEVER NOT FOUND GOTO done;
LOOP

EXEC SQL FETCH C1 INTO :var1,:var2,...,:varn;
END LOOP

done:
EXEC SQL CLOSE C1;

Access Rights
The access rights for a user are checked when the cursor is opened and they remain
unchanged for that cursor until the cursor is closed.

54 Chapter 4 Embedded SQL
Accessing Data

For example, if an application program declares and opens a cursor, then SELECT access
on the table is revoked from the user running the program, data can still be fetched from
the result set as long as the cursor remains open. Any subsequent attempt to open the same
cursor will, however, fail.

Block Fetching
The Embedded SQL interface tries whenever possible to fetch rows in blocks to minimize
server communications. The first fetch would normally issue a request to the server for a
number of rows at once. In most situations, this will improve application performance.
In some situations, this is not the desired behavior. One such situation is queries searching
through a huge number of rows without the help of indexes. For example if the database
server is only able to return one row a second, and the entire query takes minutes, the user
can still be happy as long as he sees the first rows on screen. If this is important to the
application, set the fetch size manually. An appropriate fetch size is the number of rows
displayed at once. See Mimer SQL Reference Manual, Chapter 12, SET SESSION
FETCH SIZE for more information.

Closing a Cursor
An opened cursor remains open until it is closed with one of the statements CLOSE,
COMMIT, ROLLBACK or DISCONNECT. CLOSE closes the specified cursor. ROLLBACK and
DISCONNECT close all open cursors for the connection. COMMIT closes all open cursors
for the connection, except cursors declared as WITH HOLD. Once a cursor is closed, the
result set is no longer accessible. However, the cursor declaration remains valid, and a
new cursor may be opened with the same declaration.
Note: The result set addressed by the new cursor may not be the same if the contents

of the database or the values of variables used in the declaration have changed.
Normally, resources used by the cursor remain allocated when the cursor is closed and
will be used again if the cursor is re-opened. The optional form CLOSE cursor-name
RELEASE deallocates cursor resources. Use of CLOSE with the RELEASE option is
recommended in application programs which open a large number of cursors, particularly
where system resources are limited.
Note: The use of CLOSE with the RELEASE option may slow down performance if

there is a following OPEN, since it requires that new resources are allocated at
the next OPEN for that cursor. For this reason it should only be used when
necessary.

Cursors are local to a connection and remain open but dormant when the connection is
made dormant. The state of dormant cursors is fully restored (including result set
addressed and position in the result set) when the connection is reactivated. Cursors are,
however, closed and cursor resources are deallocated, when a connection is disconnected.
Note: Cursors opened in a program ident context are closed and resources

deallocated when LEAVE is executed within the same connection, unless
LEAVE RETAIN is specified.

Mimer SQL Version 11.0 55
Programmer’s Manual

Retrieving Single Rows
If the result of a SELECT statement is known to be a single row, the SELECT INTO
statement may be used as an alternative to fetching data through a cursor.
This is a much simpler programming construction, since cursors are not used and the only
requirement is that host variables used in the SELECT INTO statement are declared in the
DECLARE SECTION.
However, there are two disadvantages associated with SELECT INTO:
• An error occurs if the result set addressed by the search condition contains more

than one row. In other words, SELECT INTO can only be reliably used when there
is no possibility of a multi-row result set (essentially when the search condition
includes the columns that form a UNIQUE or PRIMARY KEY column or returns just
the result of a set function, e.g. COUNT(*)).

• Execution of the SELECT INTO statement involves a check that the result set
contains one single row, which may incur unnecessary overhead. Even if it is
known that the result row is unique, a single FETCH operation through a cursor may
be a more efficient implementation.

Use of a SELECT INTO statement is justified when the result set may contain several
rows, but it is a condition for continued execution of the application program that the
result row is unique. With a cursor, this would require a construction that checked that
one and only one FETCH operation could be performed (alternatively, use a separate
SELECT COUNT with the same search condition as the cursor). In such a case, a SELECT
INTO statement with a check on the return code, see Handling Errors and Exceptions on
page 69, is probably the preferred solution.
A CALL statement can be used to return information to the one or more host variables
associated with the output parameter(s) of the procedure.
A SET statement can be used with a function or method invocation to return information
to one host variable.

Retrieving Data from Multiple Tables
Data can be retrieved from multiple tables in ESQL by addressing several tables in the
SELECT statement of the cursor declaration, in the same way as in interactive SQL. The
preprocessor generates a SELECT statement addressing multiple tables, which is
optimized by the SQL compiler when the cursor is opened.

Example
EXEC SQL DECLARE c_1 CURSOR FOR SELECT ...

FROM a JOIN b
ON a.x = b.y;

EXEC SQL OPEN c_1;
...

56 Chapter 4 Embedded SQL
Accessing Data

An alternative way to link information between tables could be to define the search
condition for one cursor in terms of a variable fetched through another cursor:

EXEC SQL DECLARE c_1 CURSOR FOR SELECT x
FROM a;

EXEC SQL DECLARE c_2 CURSOR FOR SELECT ...
FROM b
WHERE y = :HOSTX;

EXEC SQL OPEN c_1;
EXEC SQL FETCH c_1

INTO :HOSTX;
EXEC SQL CLOSE c_1;

EXEC SQL OPEN c_2;
EXEC SQL FETCH c_2;
...

When considering the two alternatives, the first one is preferred. The reason for this is:
• The SQL optimizer gets the full information about the query that it is supposed to

return a result set for. In this way the optimizer can make more use of statistical
information and it can thereby optimize the query to execute in a more efficient
way.

• The application will require less resources in the form of open cursors.
• If the application is run in a client/server environment, the second alternative will

cause more communication over the network, since it will send data over the net
which is only used to determine which data from the second cursor that will be
selected and is of no real interest to the application.

• The application will be more compact as well as easier to understand and maintain.

The 'Parts explosion' Problem
A special case of data retrieval from multiple tables is the use of stacked cursors to fetch
data from logical copies of the same table, in a manner that provides a solution to the so
called “Parts explosion” problem.
A cursor can be defined as REOPENABLE and the same cursor may be opened several
times in succession in the same application program, each previous instance of the cursor
being saved on a stack and restored when the following instance is closed. A FETCH
statement refers to the most recently opened instance of a cursor. Each instance of the
cursor addresses an independent result set and the position of each cursor in its own result
set is saved on the stack.
Note: Result sets addressed by different instances of a cursor may differ according to

the conditions prevailing when the cursor instance was opened.
The state of the cursor stack needs to be controlled by the application. A counter can be
used to indicate if there are more instances of the cursor remaining on the stack. See the
example that follows.
Stacked cursors are typically used in application programs which traverse a tree structure
stored in the database.

Mimer SQL Version 11.0 57
Programmer’s Manual

For example (this is a simplified variant of the “parts explosion” problem), traverse a tree
structure and print out the leaf nodes:

procedure TRAVERSE;
integer CSTACK, LASTC;
EXEC SQL BEGIN DECLARE SECTION;

integer PARENT, CHILD;
string SQLSTATE(5);

EXEC SQL END DECLARE SECTION;
begin

EXEC SQL DECLARE c_tree REOPENABLE CURSOR FOR
 SELECT parent, child
 FROM tree
 WHERE parent = :PARENT;

 CSTACK := 1;
 LASTC := 1;
 PARENT := 1; -- Start at root node

 EXEC SQL OPEN CTREE;

 loop
 EXEC SQL FETCH c_tree
 INTO :PARENT, :CHILD;

 if SQLSTATE = "02000" then -- No more children
 EXEC SQL CLOSE c_tree; -- Pop the parent
 CSTACK := CSTACK - 1;
 exit when CSTACK = 0;
 if CSTACK >= LASTC then
 print(PARENT); -- Write leaf node
 end if;
 LASTC := CSTACK;
 else -- Step to next level
 PARENT := CHILD;
 EXEC SQL OPEN c_tree; -- Stack the current parent
 and open new level
 CSTACK := CSTACK + 1;
 end if;
 end loop;
end TRAVERSE;

The counters CSTACK and LASTC keep track of the number of stacked cursor levels and
the latest level in the tree hierarchy respectively.

58 Chapter 4 Embedded SQL
Accessing Data

Entering Data into Tables
The following sections explain how to perform cursor-independent operations and update
and delete using cursors.

Cursor-independent Operations
The SQL statements CALL, INSERT, DELETE and UPDATE, as well as user-defined
functions or method invocations, embedded in application programs operate on a set of
rows in a table or view in exactly the same way as in interactive SQL.
Host variables may be used in the statements to supply values or set search conditions,
and host variables may be used as routine parameters.
Examples:

EXEC SQL INSERT INTO mimer_store.items(item_id,
 product_id, format_id,
 release_date,
 price, stock, reorder_level,
 ean_code,
 producer_id)
 VALUES (CURRENT VALUE FOR mimer_store.item_id_seq,
 :product_id, :format_id,
 mimer_store.cast_to_date(:book_release_date),
 :book_price, :book_stock, :book_reorder_level,
 (:ean * 10) + mimer_store.ean_check_digit(:ean),
 producer_id);

From the standpoint of the application program, each statement is a single indivisible
operation, regardless of how many columns and rows are affected.

Updating and Deleting Through Cursors
The UPDATE CURRENT and DELETE CURRENT statements (see the Mimer SQL Reference
Manual, Chapter 12, SQL Statements for the syntax description), allow update and delete
operations to be controlled on a row-by-row basis from an application. These statements
operate through cursors, which are declared and opened as described above for FETCH.
These statements operate on the current row of the cursor referenced in the statement. If
there is no current row, e.g. the cursor has been opened but not yet positioned with a
FETCH statement, an error is raised.
UPDATE CURRENT changes the contents of the current row according to the SET clause
in the statement, but does not change the position of the cursor. Two consecutive UPDATE
CURRENT statements will therefore update the same row twice.
DELETE CURRENT deletes the current row and does not move the cursor; after a DELETE
CURRENT statement, the cursor is positioned between rows and there is no current row.
The cursor must be moved to the next row with a FETCH statement before any other
operation can be performed through the cursor.
For both UPDATE CURRENT and DELETE CURRENT statements, the table name as used
in the statement must be exactly the same as the table name addressed in the cursor
declaration. The cursor must also address an updatable result set.
UPDATE CURRENT and DELETE CURRENT changes for a particular cursor can be divided
into several transactions if the cursor is a holdable cursor. A cursor declared WITH HOLD
remains open when transactions are committed, which makes it possible to use the same
cursor for fetch and update of additional rows after COMMIT. However, each row must still
be fetched and updated (or deleted) in the same transaction.

Mimer SQL Version 11.0 59
Programmer’s Manual

All SELECT statements are by default read only. This means that they cannot be used with
UPDATE CURRENT and DELETE CURRENT unless a FOR UPDATE clause is added to the
SELECT statement. If a FOR UPDATE OF clause is used to specify which fetched columns
may be updated, only the columns specified may appear in the corresponding UPDATE
statement.
Cursors can not be updatable if the data retrieval statement in the cursor declaration
contains any of the following features at the top level (i.e. not in a subquery) of the
statement:
• reference to more than one table in the FROM clause (i.e. an explicit or implicit join)
• reference to a read-only view in the FROM clause
• the keyword DISTINCT
• set-functions in the SELECT list (AVG, COUNT, MAX, MIN, SUM)
• arithmetic or string concatenation expressions in the SELECT list
• a GROUP BY clause
• an ORDER BY clause
• the UNION keyword
• the EXCEPT keyword
• the INTERSECT keyword
• a CALL to a result set procedure
• the SELECT statement is implicitly or explicitly declared as READ ONLY. (To be

updatable, the SELECT needs to be declared with the FOR UPDATE clause.)

When to Use UPDATE CURRENT, DELETE CURRENT
UPDATE CURRENT and DELETE CURRENT statements are useful for manipulating single
rows in interactive applications where rows are displayed, and the user decides which
rows to delete or update.

60 Chapter 4 Embedded SQL
Dynamic SQL

The example below illustrates the program framework for such an operation (the
construction is similar for a DELETE CURRENT operation):

...
EXEC SQL DECLARE c_1 CURSOR FOR SELECT ... FOR UPDATE;
...
EXEC SQL OPEN c_1;
EXEC SQL WHENEVER NOT FOUND GOTO done;
loop
 EXEC SQL FETCH c_1
 INTO :VAR1, :VAR2, ..., :VARn;

 display VAR1, VAR2, ..., VARn;
 prompt "Update this row?";
 if ANSWER = "YES" then
 prompt "Give new values";
 EXEC SQL UPDATE tab
 SET col1 = :NEWVAL1,
 col2 = :NEWVAL2, ...
 WHERE CURRENT OF c_1;
 display "Row updated";
 end if;

 prompt "Display next row?";
 exit when ANSWER = "NO";
end loop;

done:
EXEC SQL CLOSE c_1;

In situations where there is no requirement to interactively choose rows and where all the
rows to be updated or deleted can be specified completely in terms of a WHERE clause, it
is more efficient to do so rather than use a cursor.
An operation completely specified as a WHERE clause is executed as a single statement,
rather than a series of statements (i.e. one for each FETCH etc.).

Dynamic SQL
This section discusses the principles of dynamic SQL, processing dynamic SQL, the
descriptor area, preparing statements, extended dynamic cursors and prepared statements.

Principles of Dynamic SQL
Dynamic SQL enables you to execute SQL statements placed in a string variable instead
of explicitly writing the statements inside a program. This allows SQL statements to be
constructed within an application program. These facilities are typically used in
interactive environments, where SQL statements are submitted to the application program
from the terminal.
An example of when dynamic SQL is needed would be a program for interactive SQL,
where any correct SQL statement may be entered at the terminal and processed by the
application. Limited dynamic facilities may however be provided by relatively simple
application programs.

Mimer SQL Version 11.0 61
Programmer’s Manual

SQL Statements and Dynamic SQL
The following classes of SQL statements may be submitted to programs using dynamic
SQL. Statements excluded from dynamic applications are declarations, diagnostic
statements and dynamic SQL statements themselves.

• Access control statements:
ENTER

LEAVE

• Data definition statements:
CREATE

ALTER

COMMENT

DROP

• Security control statements:
GRANT

REVOKE

• Transaction control statements:
SET SESSION

SET TRANSACTION

START

COMMIT

ROLLBACK

• Data manipulation statements:
CALL

SELECT

SELECT INTO

INSERT

UPDATE

UPDATE CURRENT

DELETE

DELETE CURRENT

COMPOUND STATEMENT

SET

• System administration statements:
CREATE BACKUP

ALTER DATABANK RESTORE

SET DATABASE

SET DATABANK

SET SHADOW

UPDATE STATISTICS

DELETE STATISTICS

62 Chapter 4 Embedded SQL
Dynamic SQL

Submitting Statements
Statements may be submitted to dynamic SQL applications in two forms:
• Fully defined statements, written exactly as they would be submitted to interactive

SQL. For example:
GRANT SELECT ON mimer_store_book.details TO mimer_admin_group

SELECT code, country FROM mimer_store.countries

• Statements with parameter markers, which identify positions where the value of a
host variable will be inserted when the statement is executed or the cursor is
opened. A parameter marker is represented by a question mark ? or using colon
notation. For example:
UPDATE mimer_store.currencies
SET exchange_rate = ?
WHERE code = ?

DELETE FROM countries
WHERE code = :codeparam

SELECT currency_code
FROM mimer_store.countries
WHERE code LIKE '%' || ? || '%'

Statements submitted with parameter markers are equivalent to normal embedded
statements using host variables, except that the statements are defined at run-time.

General Summary of Dynamic SQL Processing
The following statements are used when SQL statements are dynamically submitted:

Statement Description

ALLOCATE CURSOR Allocate extended cursor.

ALLOCATE DESCRIPTOR Allocate SQL descriptor area.

CLOSE Close an open cursor.

DEALLOCATE DESCRIPTOR Deallocate SQL descriptor area.

DEALLOCATE PREPARE Deallocate prepared SQL statement.

DECLARE CURSOR Declare a cursor for a statement which will be dynamically
submitted.

DESCRIBE Examine the object form of the statement and assign values
to the appropriate parameters in the SQL descriptor area.

EXECUTE Execute a prepared statement (except result set generating
statements).

EXECUTE IMMEDIATE Shorthand form for PREPARE followed by EXECUTE.
This form can only be used for fully-defined non-result set
statements with no parameter markers.

FETCH Fetch rows for a dynamic cursor.

GET DESCRIPTOR Get values from the SQL descriptor area.

Mimer SQL Version 11.0 63
Programmer’s Manual

All statements submitted to dynamic SQL programs must be prepared.
All prepared statements and singleton SELECT statements, where the result set contains
only one row, are executed with the EXECUTE statement.
All other SELECT statements and calls to result set procedures are executed using OPEN
and FETCH for a cursor declared with the prepared statement.
The declaration of a cursor for a statement, DECLARE CURSOR, must always precede the
PREPARE operation for the same statement in an application using dynamic SQL.

SQL Descriptor Area
The SQL descriptor area is used for managing input and output data in dynamically
submitted SQL statements containing parameter markers, and for managing result sets
(e.g. returned by a SELECT statement.)
An SQL descriptor area is allocated with the ESQL statement ALLOCATE DESCRIPTOR
and deallocated with DEALLOCATE DESCRIPTOR. See the Mimer SQL Reference
Manual, Chapter 12, SQL Statements, for more information.
A program may allocate several separate descriptor areas, identified by different
descriptor names. Normally one descriptor is used for input data and one for output data.
The describe statement is used to populate an SQL descriptor.
The following statement types can use information from SQL descriptor areas:
• all SELECT statements and calls to result set procedures
• INSERT, DELETE, UPDATE, SET and CALL statements using parameter markers
• ENTER statements.
The following statement types do not use SQL descriptor areas:
• all data definition statements, security control statements, access control statements

(except ENTER) and transaction control statements
• INSERT, DELETE, UPDATE and CALL statements using only constant expressions.
In practice, programs using dynamically submitted SQL statements are usually written as
though all submitted statements use SQL descriptor areas (since the nature of the
submitted statement is not known until run-time).
SQL descriptor areas can be left out of a program only if it is known in advance that they
will not be needed (for instance in an application program which will handle only
submitted data definition statements).

The Structure of the SQL Descriptor Area
The SQL descriptor area is a storage area holding information about the described
statement. It is allocated and maintained with ESQL statements.

OPEN Open a prepared cursor.

PREPARE Compile an SQL source statement into an internal object
form.

SET DESCRIPTOR Set values in the SQL descriptor area.

Statement Description

64 Chapter 4 Embedded SQL
Dynamic SQL

It consists of a descriptor header and one or more item descriptor areas. The descriptor
header contains two fields, TOP_LEVEL_COUNT and COUNT.
TOP_LEVEL_COUNT is the number of parameters in the descriptor and COUNT is the
number of item areas.
The individual fields of the item descriptor area can be accessed with the GET
DESCRIPTOR and SET DESCRIPTOR statements. Each descriptor item contains fields for
data type, size and scale. The complete list of fields can be seen at Mimer SQL Reference
Manual, Chapter 12, GET DESCRIPTOR, and Mimer SQL Reference Manual,
Chapter 12, SET DESCRIPTOR.

Preparing Statements
All statements submitted to dynamic SQL programs must be prepared. The simplest form
of the operation uses a PREPARE statement, see the Mimer SQL Reference Manual,
Chapter 12, PREPARE, for the syntax description. The operation may also be combined
with EXECUTE as a simple statement in the shorthand form EXECUTE IMMEDIATE.
The source form of the statement must be contained in a host variable, containing the
statement string. (The statement string itself is not preceded by EXEC SQL nor terminated
by the language-specific embedded delimiter.)
The prepared form of the statement is named by an SQL-identifier or a host variable, for
extended statements, see Extended Dynamic Cursors on page 64.
In the following example the source form of the statement is given as a string constant for
illustrative purposes, however, the statement would usually be read from some input
source, e.g. the terminal, at run-time:

...
EXEC SQL BEGIN DECLARE SECTION;
 string SQL_TXT(255);
 ...
EXEC SQL END DECLARE SECTION;
...

SQL_TXT := "CREATE INDEX pdt_product_search
 ON products(product_search)";
EXEC SQL PREPARE OBJECT FROM :SQL_TXT;
...

Extended Dynamic Cursors
A typical cursor is identified by an SQL identifier. An extended cursor makes it possible
to represent a dynamic cursor by a host variable or a literal. An extended cursor is
allocated by the application with the ALLOCATE CURSOR statement, see the Mimer SQL
Reference Manual, Chapter 12, ALLOCATE CURSOR, for the syntax description.
When the application is finished with the processing of the SQL statement, the prepared
statement may be destroyed by executing the DEALLOCATE PREPARE statement, see the
Mimer SQL Reference Manual, Chapter 12, DEALLOCATE PREPARE, for the syntax
description. DEALLOCATE PREPARE also destroys any extended cursor that was
associated with the statement.

Mimer SQL Version 11.0 65
Programmer’s Manual

Example of how extended cursors are used:
...
EXEC SQL BEGIN DECLARE SECTION;
 string SQL_TXT(255);
 string C1(128);
 string STM1(128);
 integer HOSTVAR1;
 string HOSTVAR2(10);
 ...
EXEC SQL END DECLARE SECTION;
...

SQL_TXT := "SELECT col1, col2
 FROM tab1";
STM1 := "STMT_1";
EXEC SQL PREPARE :STM1 FROM :SQL_TXT;

C1 := "CUR_1";
EXEC SQL ALLOCATE :C1 CURSOR FOR :STM1;
...

EXEC SQL ALLOCATE DESCRIPTOR 'RESDESC' WITH MAX 50;
EXEC SQL DESCRIBE OUTPUT :STM1 USING SQL DESCRIPTOR 'RESDESC';
...
EXEC SQL OPEN :C1;
EXEC SQL WHENEVER NOT FOUND GOTO done;

loop
 EXEC SQL FETCH :C1
 INTO SQL DESCRIPTOR 'RESDESC';
 EXEC SQL GET DESCRIPTOR 'RESDESC' VALUE 1 :HOSTVAR1 = DATA;
 EXEC SQL GET DESCRIPTOR 'RESDESC' VALUE 2 :HOSTVAR2 = DATA;
 ...
 display HOSTVAR1, HOSTVAR2, ...;
end loop;

done:
EXEC SQL CLOSE :C1;
EXEC SQL DEALLOCATE DESCRIPTOR 'RESDESC';
EXEC SQL DEALLOCATE PREPARE :STM1;
...

Describing Prepared Statements
Statements returning a result set and statements containing parameter markers can be
described to obtain information about the number and data types of the parameters.
There are two forms of DESCRIBE:
• DESCRIBE OUTPUT for result set values
• DESCRIBE INPUT for input and output parameters.
Both forms of DESCRIBE use the object (prepared) form of the statement as an argument.
The same statement may be described in both senses if necessary.

66 Chapter 4 Embedded SQL
Dynamic SQL

For example:
EXEC SQL BEGIN DECLARE SECTION;
 string SQLA1(128);
 integer MAXOCC;
 string SOURCE(255);
EXEC SQL END DECLARE SECTION;
...

MAXOCC := 15;
SQLA1 := "SQL_AREA_1";
EXEC SQL ALLOCATE DESCRIPTOR :SQLA1 WITH MAX 20;
EXEC SQL ALLOCATE DESCRIPTOR 'SQLA2' WITH MAX :MAXOCC;
...

EXEC SQL PREPARE 'OBJECT' FROM :SOURCE;
EXEC SQL DESCRIBE OUTPUT 'OBJECT' USING SQL DESCRIPTOR :SQLA1;
EXEC SQL DESCRIBE INPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA2';
...

DESCRIBE places information about the prepared statement in the SQL descriptor areas.
See SQL Descriptor Area on page 63 for a description of the SQL descriptor area.
The contents of the SQL descriptor area is read with the GET DESCRIPTOR statement and
updated with the SET DESCRIPTOR statement.

Describing Output Variables
The items in the result set for a statement are described with the DESCRIBE OUTPUT
statement. The keyword OUTPUT may be omitted.
The DESCRIBE OUTPUT statement shows:
• whether the statement returns a result set or not. This is indicated by the value of

the COUNT field of the SQL descriptor area which is set to zero for statements that
do not return a result set. Statements that return a result set are calls to result set
procedures, see Result Set Procedures on page 264, and select-expressions (refer to
the Mimer SQL Reference Manual, Chapter 12, SELECT).

• dynamic SQL programs must test for this after each DESCRIBE operation because
the treatment of statements that return result sets differs from the treatment of those
that do not, see Handling Prepared Statements on page 67. If the statement returns
a result set, the DESCRIBE statement will place information about the items in the
result set in the fields of the descriptor area.

• whether the current descriptor area allocation is sufficient or not. Insufficient area
is indicated by the SQLSTATE variable set to a warning state and a value of COUNT
(required number of items) greater than that specified in the WITH MAX … clause of
the ALLOCATE DESCRIPTOR statement, or greater than 100 if no WITH MAX …
clause was specified. If the area is insufficient, no items are described.

Describing Input Variables
The DESCRIBE INPUT statement is used to describe parameter markers.
The value of the COUNT field of the SQL descriptor area indicates the number of
parameter markers in the statement (a value of zero indicates no input parameters). A
value greater than that specified in WITH MAX … indicates that the allocated SQL
descriptor area is too small and the describe operation will not be performed. This
situation is handled as described above for DESCRIBE OUTPUT.

Mimer SQL Version 11.0 67
Programmer’s Manual

Note: If the prepared statement is a call to a stored procedure that uses parameter
markers, these will be described by the DESCRIBE INPUT statement. This is
regardless of how the formal parameter is specified in the procedure definition.
Whether the parameter is IN, INOUT or OUT can be seen from the
PARAMETER_MODE field in the descriptor area.

Handling Prepared Statements
After PREPARE and DESCRIBE, the way in which submitted statements are handled
differs according to whether the statement is executable or whether it returns a result set.
• Executable statements are executed using the EXECUTE statement, with the object

(prepared) form of the submitted statement as the argument.
• Result set statements, a cursor is used for these statements, associated with the

object form of the prepared statement and are executed with OPEN and FETCH.

Executable Statements
Executable statements are identified by a value of zero in the COUNT field of the SQL
descriptor area after a DESCRIBE OUTPUT statement. If the statement does not contain
any parameter markers, it may be executed directly.
If, on the other hand, the statement contains parameter markers, the statement must be
executed with an SQL descriptor area for input and output values.
Note: All parameter markers used in a call statement are described with the

DESCRIBE INPUT statement, regardless of the mode of the formal parameter.
Parameter markers must be used for all INOUT or OUT parameters when a call statement
is prepared dynamically.
The descriptor areas referenced in the EXECUTE statement may be replaced by explicit
lists of host variables, provided that the number and data types of the user variables in the
source statement are known when the program is written (so that variables can be declared
and the appropriate variable list written into the EXECUTE statement).
This facility is of limited use, since the occasions when the user constructs freely chosen
SQL statements with a predetermined number of user variables are rare.

EXECUTE IMMEDIATE
The shorthand form EXECUTE IMMEDIATE combines the functions of PREPARE and
EXECUTE. This form may only be used for executable statements known to have no
parameter markers and is therefore of value only in contexts where the user is restricted
to this type of statement. (Data definition and security control statements fall into this
category, since user variables are not permitted in the syntax of these statements.
EXECUTE IMMEDIATE can therefore be useful for application programs designed
specifically to handle database definition statements).

Example
sprintf(ddlstr, "drop ident %s cascade", str);
exec sql EXECUTE IMMEDIATE :ddlstr;

Result Set Statements
Statements returning a result set are identified by a non-zero value in the COUNT field of
the SQL descriptor area after DESCRIBE OUTPUT.

68 Chapter 4 Embedded SQL
Dynamic SQL

Dynamically submitted SELECT statements and calls to result set procedures are handled
through cursors. Cursors are declared or allocated for the object (prepared) form of
submitted result set returning statements.
Note: A DECLARE CURSOR statement must precede the PREPARE statement in the

program code. If ALLOCATE CURSOR is used instead of DECLARE CURSOR,
the statement must have been prepared before the cursor can be allocated. The
SQL statement must also be prepared before the cursor is opened.

If the source form of the result set returning statement contains parameter markers, these
must be described before the cursor is opened and the OPEN statement must reference the
relevant descriptor area. In the rare case where the number and data type of the user
variables are known when the program is first written, the OPEN statement may reference
an explicit variable list instead of a descriptor area.
The descriptor area used for the submitted result set returning statement is referenced
when data is retrieved with the FETCH statement.

Example
...
EXEC SQL ALLOCATE DESCRIPTOR 'SQLA1' WITH MAX 30;
EXEC SQL ALLOCATE DESCRIPTOR 'SQLA2' WITH MAX 30;
...

EXEC SQL PREPARE 'OBJECT' FROM :SOURCE;
...

EXEC SQL DESCRIBE OUTPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA1';
EXEC SQL GET DESCRIPTOR 'SQLA1' :NO_OUT = COUNT;
if NO_OUT = 0 then
 RESULT_SET := FALSE;
else
 EXEC SQL ALLOCATE 'C1' CURSOR FOR 'OBJECT';
 RESULT_SET := TRUE;
end if;
...

EXEC SQL DESCRIBE INPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA2';
EXEC SQL GET DESCRIPTOR 'SQLA2' :NO_IN = COUNT;
...

if RESULT_SET then
 EXEC SQL OPEN 'C1' USING SQL DESCRIPTOR 'SQLA2';
 ...
 EXEC SQL FETCH 'C1' INTO SQL DESCRIPTOR 'SQLA1';
 ...
else
 ...
end if;

Example Framework for Dynamic SQL Programs
This section gives a general framework (in pseudo code) for dynamic SQL programs
designed to handle any valid SQL statement as input. The framework is largely a
synthesis of the example fragments given earlier in this chapter.
The framework is written as a single sequential module to emphasize the order of
operations.
Host variable declarations are omitted. Handling of values returned by FETCH is also
omitted.

Mimer SQL Version 11.0 69
Programmer’s Manual

Example Framework
-- Allocate two SQL descriptor areas
EXEC SQL ALLOCATE DESCRIPTOR 'SQLA1' WITH MAX 50;
EXEC SQL ALLOCATE DESCRIPTOR 'SQLA2' WITH MAX 50;

-- read statement from terminal
read INPUT into SOURCE;

-- prepare statement
EXEC SQL PREPARE 'OBJECT' FROM :SOURCE;

-- describe statement and set type/parameter usage flags
EXEC SQL DESCRIBE OUTPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA1';
EXEC SQL GET DESCRIPTOR 'SQLA1' :NO_OUT = COUNT;
if NO_OUT = 0 then
 RESULT_SET := FALSE;
else
 -- allocate cursor for result set
 EXEC SQL ALLOCATE 'C1' CURSOR FOR 'OBJECT';
 RESULT_SET:= TRUE;
end if;

EXEC SQL DESCRIBE INPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA2';
EXEC SQL GET DESCRIPTOR 'SQLA2' :NO_IN = COUNT;
-- execute statement or open cursor and fetch after assigning
-- values to input variables
if RESULT_SET then
 EXEC SQL OPEN 'C1' USING SQL DESCRIPTOR 'SQLA2';
 loop
 EXEC SQL FETCH 'C1' INTO SQL DESCRIPTOR 'SQLA1';
 exit when NO_MORE_REQUIRED or SQLSTATE = "02000";
 ... -- process results of FETCH
 end loop;

 EXEC SQL CLOSE 'C1';
else
 EXEC SQL EXECUTE 'OBJECT' USING SQL DESCRIPTOR 'SQLA2';
end if;

EXEC SQL DEALLOCATE PREPARE 'OBJECT';

Note: Features that are specific to real host languages are described in Host
Language Dependent Aspects on page 307.

Handling Errors and Exceptions
Errors may arise at three general levels in an embedded SQL (ESQL) program (not
counting errors in the SQL-independent host language code). These are syntax, semantic
and run-time errors.
See Managing Exception Conditions on page 267 for information about managing
exception conditions in routines and triggers.

Syntax Errors
Syntax errors are constructions that break the rules for formulating SQL statements. For
example:

• Spelling errors in keywords:
SLEECT instead of SELECT

70 Chapter 4 Embedded SQL
Handling Errors and Exceptions

• Incorrect or missing delimiters:
DELETEFROM instead of DELETE FROM
SELECT column1;column2 instead of SELECT column1,column2

• Incorrect clause ordering
UPDATE … WHERE … SET instead of UPDATE … SET … WHERE

The preprocessor does not accept syntactically incorrect statements. The error must be
corrected before the program can be successfully preprocessed.

Semantic Errors
Semantic errors arise when SQL statements are formulated in full accordance with the
syntax rules, but do not reflect the programmer’s intentions correctly.
Some semantic errors, e.g. incorrect references to database objects, are detected and
reported by the ESQL preprocessor but other semantic errors will not become apparent
until run-time.

Run-time Errors
Run-time errors and exception conditions (for example warnings) arising during
execution of ESQL statements are signaled by the contents of the SQLSTATE status
variable described in The SQLSTATE Variable on page 49. A list of possible SQLSTATE
values is provided in SQLSTATE Return Codes on page 323.
The GET DIAGNOSTICS statement can be used to retrieve detailed information about an
exception, see the Mimer SQL Reference Manual, Chapter 12, GET DIAGNOSTICS, for
the syntax description.
The NATIVE_ERROR and MESSAGE_TEXT fields of the diagnostics area retrieved by using
GET DIAGNOSTICS are used to get the internal Mimer SQL return code (aka SQLCODE)
and the descriptive text, respectively, relating to the exception, these are listed in Native
Mimer SQL Return Codes on page 329.

Testing for Run-time Errors and Exception Conditions
The application program may test the outcome of a statement in one of two ways:
• by explicitly testing the contents of the SQLSTATE variable
• by using the SQL statement WHENEVER, see the Mimer SQL Reference Manual,

Chapter 12, WHENEVER for the syntax description, which tests the class of the
SQLSTATE variable.

An application program may contain any number of WHENEVER statements, and the
statements may be placed anywhere in the program. A separate WHENEVER statement
must be issued for each situation (NOT FOUND, SQLEXCEPTION or SQLWARNING) which
is to be tested.
When an exception condition arises, action will be taken as specified in the WHENEVER
statement most recently encountered in the code, for the respective condition.
WHENEVER statements are expanded by the preprocessor into explicit tests. These tests are
placed after every subsequent SQL statement in that program until a new WHENEVER
statement is issued for the same condition.

Mimer SQL Version 11.0 71
Programmer’s Manual

Two important consequences follow:
• WHENEVER statements are preprocessed strictly in the order in which they appear in

the source code, regardless of execution order or conditional execution that the
source code might imply.
For instance, the WHENEVER statement in the following Fortran construction is
expanded by the preprocessor, even though its execution is never actually requested:
 ...
 GOTO 1025
 EXEC SQL WHENEVER SQLEXCEPTION GOTO 1600
1025 CONTINUE
 EXEC SQL DELETE FROM MYTABLE
 ...

• Mixing explicit tests and WHENEVER statements requires care. As a general rule, it
is advisable to use either hand-written tests or WHENEVER statements in a program
module, and to avoid mixing them.
The condition handling defined by a WHENEVER statement applies to the SQL
statements that follow it in the source code. If a GOTO action is defined, the pre-
processor inserts an exception test and action directly after each SQL statement
affected by it and thus before any hand-written tests in the source code. The hand-
written test in this situation would never be executed.
If CONTINUE is specified in a WHENEVER statement, the pre-processor does not
insert an exception test and action, thus no exception handling is defined by the
WHENEVER statement. Any hand-written tests present in the source code will then
take effect.
The interchange between hand-written exception handling and the implicit
exception handling inserted by the pre-processor (or not) can be confusing. It is
therefore advisable to make a clear coding decision to use one method or the other.

72 Chapter 4 Embedded SQL
Handling Errors and Exceptions

Example using WHENEVER SQLEXCEPTION
#include <stdlib.h>
#include <wchar.h>

int main()
{
 exec sql BEGIN DECLARE SECTION;
 char sqlstate[6];
 nchar varying dbname[129];
 nchar varying dbtype[129];
 exec sql END DECLARE SECTION;

 exec sql WHENEVER SQLEXCEPTION GOTO get_diagn;

 exec sql CONNECT TO 'db' USER 'username' USING 'password';

 exec sql DECLARE c CURSOR FOR
 select databank_name, databank_type
 from information_schema.ext_databanks;

 exec sql WHENEVER NOT FOUND GOTO end_of_table;

 exec sql OPEN c;

 while (1)
 {
 exec sql FETCH c INTO :dbname, :dbtype;
 wprintf(L"Databank: %ls\nType: %ls\n\n", dbname, dbtype);
 }

end_of_table:
 exec sql CLOSE c;

 exec sql COMMIT;
 exec sql DISCONNECT ALL;
exit(0); /* Exit with success */

get_diagn:
/* print diagnostics message(s) for the most recent statement */
 {
 exec sql BEGIN DECLARE SECTION;
 int i;
 int exceptions;
 int errcode;
 nchar varying message[255];
 exec sql END DECLARE SECTION;

 exec sql WHENEVER SQLEXCEPTION CONTINUE;

 exec sql GET DIAGNOSTICS :exceptions = NUMBER; /* How many exceptions? */
 for (i=1; i<=exceptions; i++) {
 exec sql GET DIAGNOSTICS EXCEPTION :i
 :message = MESSAGE_TEXT, :errcode = NATIVE_ERROR;
 wprintf(L"(%d) %ls\n", errcode, message);
 }
 exec sql ROLLBACK;
 exec sql DISCONNECT;
 exit(-1); /* Error exit */
 }
}

Mimer SQL Version 11.0 73
Programmer’s Manual

Example using explicit return code checking
#include <stdlib.h>
#include <wchar.h>
void get_diagn();

int main()
{
 exec sql BEGIN DECLARE SECTION;
 int sqlcode;
 nchar varying dbname[129];
 nchar varying dbtype[129];
 exec sql END DECLARE SECTION;

exec sql CONNECT TO 'db' USER 'username' USING 'password';
if (sqlcode != 0) get_diagn();

 exec sql DECLARE c CURSOR FOR
 select databank_name, databank_type
 from information_schema.ext_databanks;

 exec sql OPEN c;
 if (sqlcode != 0) get_diagn();

 while (sqlcode == 0)
 {
 exec sql FETCH c INTO :dbname, :dbtype;
 if (sqlcode < 0) get_diagn();
 if (sqlcode != 100)
 wprintf(L"Databank: %ls\nType: %ls\n\n", dbname, dbtype);
 }

 exec sql CLOSE c;
 if (sqlcode != 0) get_diagn();

 exec sql COMMIT;
 if (sqlcode != 0) get_diagn();

 exec sql DISCONNECT ALL;
 if (sqlcode != 0) get_diagn();

 exit(0); /* Exit with success */
}

void get_diagn()
/* print diagnostics message(s) for the most recent statement */
{
 exec sql BEGIN DECLARE SECTION;
 int i;
 int exceptions;
 int errcode;
 nchar varying message[255];
 int sqlcode;
 exec sql END DECLARE SECTION;

 exec sql GET DIAGNOSTICS :exceptions = NUMBER; /* How many exceptions? */
 for (i=1; i<=exceptions; i++) {
 exec sql GET DIAGNOSTICS EXCEPTION :i
 :message = MESSAGE_TEXT, :errcode = NATIVE_ERROR;
 wprintf(L"(%d) %ls\n", errcode, message);
 }
exec sql ROLLBACK;

 exec sql DISCONNECT;
 exit(-1); /* Error exit */
}

74 Chapter 4 Embedded SQL
Handling Errors and Exceptions

Mimer SQL Version 11.0 75
Programmer’s Manual

Chapter 5

Module SQL
This chapter discusses the scope, principles, processing and structure of Module SQL
(MSQL).
MSQL enables you to call SQL statements in a host program written in C/C++, COBOL,
Fortran or Pascal, without embedding the actual SQL statements in the host program. The
SQL statements are explicitly put into a separate SQL module, that is written in the
Module language and maintained separately from the host program.

76 Chapter 5 Module SQL
The Scope of Mimer Module SQL

The Scope of Mimer Module SQL
The Mimer MSQL files are pre-processed through the Mimer Module SQL pre-processor
into Embedded C code. The resulting Embedded C code can then be processed through
the Mimer Embedded SQL pre-processor into C code which can be compiled, and then
linked together with the host application.

The SQL statements supported are therefore limited to the SQL statements supported by
Embedded SQL, which are described in Chapter 4, Embedded SQL.

General Principles for SQL Modules
The following sections discuss host languages, pre-processors, identifying SQL
statements, code, comments and recommendations.

Host languages
You can call the C code that comes out of the MSQL pre-processor from any host
language that supports the used data types. Mimer MSQL supports C/C++, COBOL,
Fortran and Pascal.

Mimer SQL Version 11.0 77
Programmer’s Manual

Information given in this manual applies to all languages unless otherwise explicitly
stated. Language-specific information is detailed in Host Language Dependent Aspects
on page 91.

Writing an SQL module
An SQL module is a list of SQL statements, where each SQL statement is included in a
procedure. Each procedure contains only one SQL statement. The MSQL syntax is case
insensitive. Routine, cursor and parameter names (except SQLCODE and SQLSTATE)
are case sensitive, as they will follow to the generated C code which is case sensitive.

Module declaration
The syntax for declaring an SQL module is as follows:

MODULE module-name
LANGUAGE (C|COBOL|FORTRAN|PASCAL)

The LANGUAGE clause tells the module which host language it will be called from and
adapts some data types to the given host language. For a full list of how a host application
should handle all Mimer SQL data types, see Host Language Dependent Aspects on
page 91.

LANGAUGE C
• The CHARACTER, VARCHAR, BOOLEAN, DATETIME and INTERVAL SQL data types

are handled like a null-terminated C char array in the generated MSQL C code.
When calling module procedures, all host languages need to make room for and
apply null-termination. The Fortran CHARACTER data type cannot be used. This
includes SQLSTATE.

• The CLOB SQL data type is handled like a C struct specified according to the SQL
standard in the generated MSQL C code. When calling module procedures, all host
languages need to use corresponding data structures.

• The DECIMAL SQL data type is handled like a C double in the generated MSQL C
code. When calling module procedures, all host languages need to use
corresponding data types. The COBOL PACKED DECIMAL (COMP-3) data type
cannot be used.

LANGUAGE FORTRAN
• The CHARACTER, VARCHAR, BOOLEAN, DATETIME and INTERVAL SQL data types

are handled like a fixed length Fortran CHARACTER array in the generated MSQL C
code, without null termination. This includes SQLSTATE.

• The CLOB SQL data type is handled like a fixed length Fortran CHARACTER array
in the generated MSQL C code, without null termination.

• The DECIMAL SQL data type is handled like a C double in the generated MSQL C
code. When calling module procedures, the Fortran application needs to use the
corresponding data type.

LANGUAGE COBOL
• The CHARACTER, VARCHAR, BOOLEAN, DATETIME and INTERVAL SQL data

types are handled like a fixed length COBOL PICTURE X array in the generated
MSQL C code, without null termination. This includes SQLSTATE.

78 Chapter 5 Module SQL
General Principles for SQL Modules

• The CLOB SQL data type is handled like a fixed length COBOL PICTURE X array
in the generated MSQL C code, without null termination.

• The DECIMAL SQL data type is handled like a COBOL
PACKED DECIMAL (COMP-3) data type of the expected precision and scale in the
generated MSQL C code.

LANGUAGE PASCAL
• The CHARACTER, VARCHAR, BOOLEAN, DATETIME and INTERVAL SQL data types

are handled like a fixed length Pascal PACKED ARRAY OF CHAR in the generated
MSQL C code, without null termination. This includes SQLSTATE.

• The CLOB SQL data type is handled like a fixed length COBOL Pascal PACKED
ARRAY OF CHAR in the generated MSQL C code, without null termination.

• The DECIMAL SQL data type is handled like a C double in the generated MSQL C
code. When calling module procedures, the Pascal application needs to use the
corresponding data type.

The SQLCODE parameter is always translated to a pointer to an integer, no matter the
chosen module language.

Cursor declarations
All cursors that are to be used in the module's procedures need to be declared before any
procedure is declared. A cursor is declared using the corresponding SQL syntax as
follows:

DECLARE cursor-name CURSOR FOR cursor-statement

A module can contain multiple cursor declarations. They all need to be declared before
the module procedures, and they are delimited by new rows. The cursor declaration can
be split on more than one row wherever a white-space is permitted.

DECLARE cursor-name1 CURSOR FOR
cursor-statement1
DECLARE cursor-name2
CURSOR FOR
cursor-statement2

Module procedures
Following the module and cursor declarations, the procedures that execute SQL
statements are declared. An SQL module language procedure has a name, parameter
declarations, and an executable SQL statement.
The syntax for declaring an SQL module procedure is as follows:

PROCEDURE procedure-name
 [parameter-declaration
 [, parameter-declaration];
SQL statement;

The syntax for the parameter declaration is as follows:
:parameter-name datatype

or
SQLSTATE

or
SQLCODE

Mimer SQL Version 11.0 79
Programmer’s Manual

Example:
PROCEDURE fetch_data
 :param_1 INTEGER
 :param_2 SMALLINT
 SQLSTATE;
FETCH data_cursor INTO
 :param_1,
 :param_2;

The parameters may be input parameters, output parameters or both.
Parameters are separated by commas or whites paces and ended with semicolon.
SQLSTATE and SQLCODE parameters are status parameters through which errors are
passed. Use either, not both, in the same SQL module. Using both in the same SQL
module causes undefined behavior.

Comments
You can comment your SQL module file with double dashes, as follows:

-- A very useful cursor.
DECLARE cursor-name CURSOR FOR cursor-statement

Comments are not forwarded to the embedded C and C code.

Recommendations
We recommend the following when writing MSQL:
• Avoid variable names beginning with the letters SQL (except for SQLSTATE and

SQLCODE, which should be used when appropriate).
• Avoid procedure names ending with a number.
• Avoid separating identifiers (e.g. procedure or parameter names) with casing only.

Even though the generated C code might be valid, the calling host language might
be case insensitive.

Calling an SQL module
In the host program, you call an SQL procedure at whatever point in the host program you
want to execute the SQL statement in that procedure. You call the SQL procedure as if it
was a subprogram in C.
The following SQL module procedure:

PROCEDURE fetch_data
 :param_1 INTEGER
 :param_2 SMALLINT
 SQLSTATE;
FETCH data_cursor INTO
 :param_1,
 :param_2;

will be processed into the following C function:
void fetch_data(int* param_1, short* param_2, char sqlstate[6])

When calling this function from your host program, the parameters you send need to be
compatible with the C data types in the C function. Input char arrays might need to be
null-terminated, as per C standard, see Writing an SQL module - Module declaration and
Host Language Dependent Aspects on page 91 for more details.

80 Chapter 5 Module SQL
Processing MSQL

Processing MSQL
The following sections discuss pre-processing and processing MSQL.

Pre-processing - the MSQL command
An SQL module file must first be pre-processed using the MSQL command, then pre-
processed using the ESQL command (see Processing ESQL on page 35), before it is
compiled with the C compiler.
The input to the pre-processor is thus an SQL module written in Module language.
The output from the preprocessor is always an Embedded C source code file, containing
both C and ESQL statements. If the host language is C, an Embedded C header file is also
generated.
The default file extensions for preprocessor input and output files are shown in the table
below:

Invoking the MSQL Preprocessor
The MSQL preprocessor has the following command line syntax:

msql [-n] [-i enc] [-o enc] [-b yes|no] [-u yes|no] infile
[outfile [headerfile]]

msql [--nologo] [--inencoding=enc] [--outencoding=enc] [--inbom=yes|no]
[--outbom=yes|no] infile [outfile [headerfile]]

msql [-v|--version] | [-?|--help]

Options

Input file extension Output file extension Header file extension

.msq .ec .eh

Unix-style VMS-style Function

-n
--nologo

/NOLOGO Suppresses the display of the
copyright message on the screen
(warnings and errors are always
displayed on the screen.)

Mimer SQL Version 11.0 81
Programmer’s Manual

-i encoding
--inencoding=encoding

/INENCODING=encoding The encoding to read the input
file in.
Valid options are:
default
latin1
UTF8
UTF16
UTF16BE
UTF16LE
UTF32
UTF32BE
UTF32LE

The default encoding is
platform and locale dependent.
Sets to default if omitted.

-o encoding
--outencoding=encoding

/OUTENCODING=encoding The encoding to write the output
file in.
Valid options are:
default
latin1
UTF8
UTF16
UTF16BE
UTF16LE
UTF32
UTF32BE
UTF32LE

The default encoding is
platform and locale dependent.
Equals the input file encoding if
omitted.

-b yes/no
--inbom=yes/no

/INBOM=yes/no If BOM should explicitly be
used/not used when reading
from the input file.
Valid options are:
yes
no

Uses the inencoding's default
if omitted.

Unix-style VMS-style Function

82 Chapter 5 Module SQL
Processing MSQL

Note: As an application programmer, you should never attempt to directly modify the
output from the preprocessor.
Any changes that may be required in an SQL module should be introduced into
the original SQL module code. Mimer Information Technology AB cannot
accept any responsibility for the consequences of modifications to the pre-
processed code.

-u yes/no
--outbom=yes/no

/OUTBOM=yes/no If BOM should explicitly be
used/not used when writing to
the output file.
Valid options are:
yes
no

Uses the outencoding's
default if omitted.

infile infile The input-file containing the
SQL module source code to be
pre-processed.
If no file extension is specified,
the .msq file extension is
assumed (previously described
in this section.)

[outfile] [outfile] The output-file which will
contain the Embedded C code
generated by the preprocessor.
If not specified, the output file
will have the same name as the
input file, but with the .ec file
extension (previously described
in this section.)

[headerfile] [headerfile] The header-file which will
contain the Embedded C header
generated by the preprocessor.
If not specified, the header file
will have the same name as the
output file, but with the .eh file
extension (previously described
in this section.)
If the input file has a target host
language other than C, this
argument will not be used.

Unix-style VMS-style Function

Mimer SQL Version 11.0 83
Programmer’s Manual

What Does the Preprocessor Do?
The preprocessor checks the syntax (See Handling errors and exceptions on page 88 for
a more detailed discussion of how errors are handled.) Syntactically invalid statements
cannot be pre-processed and the source code must be corrected.

Processing MSQL

Compiling
The output from the MSQL and ESQL preprocessors is compiled in the usual way using
the appropriate C compiler and linked with the appropriate routine libraries.

Note: Other compilers, from other software distributors, may or may not be able to
compile the MSQL and ESQL preprocessor output. Mimer Information
Technology cannot guarantee the result of using a compiler that is not
supported.

Linking
Linking the processed SQL module with a host application is done in the same way as
user-written embedded C code, see Linking Applications on page 41.

The SQL Compiler
At run-time, database management requests are passed to the SQL compiler responsible
for implementing the SQL functions in the application program.
The SQL compiler performs two functions:
• It checks SQL statements semantically against the data dictionary.
• It optimizes operations performed against the database (i.e. internal routines

determine the most efficient way to execute the SQL request, with regard to the
existence of secondary indexes and the number of rows in the tables addressed by
the statement). You, as a programmer, do not need to worry, for instance, about the
order in which tables are addressed in a complex selection condition. This
optimization process is completely transparent.

Note: Since all SQL statements are compiled at run-time, there can be no conflict
between the state of the database at the times of compilation and execution.
Moreover, the execution of SQL statements is always optimized with reference
to the current state of the database.

Linux: On Linux platforms, the gcc compiler is supported.

VMS: The VSI C compiler and the HP C compiler are supported on the OpenVMS
platform.

Win: On Windows platforms, the C compiler identified by the cc symbol in the file
.\dev\samples\makefile_msql.mak below the installation directory is
supported.

84 Chapter 5 Module SQL
Processing MSQL

Connecting to a Database
Connecting to a database is done much in the same way as in embedded programs, see
Connecting to a Database on page 42. Every connect attempt is a separate SQL statement
that needs its own module procedure.

Examples

Example SQL module:
PROCEDURE connect_ident
 :ident VARCHAR(100)
 :pswd VARCHAR(100)
 SQLSTATE;
CONNECT TO 'the_database' USER :ident USING :pswd;

Example host application in C:
#include "module_name.h"

int main()
{
 char sqlstate[6];
 char ident[101] = "SYSADM";
 char pswd[101] = "SYSADM";

 connect_ident(ident, pswd, &sqlcode);

Example host application in Fortran:
 CHARACTER*5 SQLSTATE
 CHARACTER*100 IDENT
 CHARACTER*100 PSWD

 IDENT = 'SYSADM'
 PSWD = 'SYSADM'
 CALL CONNECT_IDENT(IDENT, PSWD, SQLSTATE)

Example host application in Cobol:
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 SQLSTATE PIC X(5).
 01 IDENT PIC X(100).
 01 PSWD PIC X(100).

 PROCEDURE DIVISION.
 HEAD SECTION.

 MAIN.

 MOVE "SYSADM" TO IDENT.
 MOVE "SYSADM" TO PSWD.

 CALL "CONNECT_IDENT" USING IDENT, PSWD, SQLSTATE.

Mimer SQL Version 11.0 85
Programmer’s Manual

Example host application in Pascal:
type chararray = packed array [1..100] of char;
type sqlstatearray = packed array [1..5] of char;

var
sqlstate : sqlstatearray;
ident : chararray;
pswd : chararray;

procedure connect_ident(var ident : chararray, var pswd : chararray,
 var sqlstate: sqlstatearray); external;

begin
 ident := 'SYSADM';
 pswd := 'SYSADM';
 connect_ident(ident, pswd, sqlstate);

Communicating with the Application Program
Information is transferred between the host application program and the Mimer SQL
database manager through an SQL module much in the same way as in embedded SQL
programs, see Communicating with the Application Program on page 46.

Indicator variables
In MSQL, as in ESQL, indicator variables associated with main variables are used to
handle null values in database tables. Indicator variables are declared in the parameter list
to a module procedure like the main parameters, with the SQL data type SMALLINT. It
is translated to the C type short. The host language then provides the variable in the
parameter list in the same way as the main variables.

PROCEDURE fetch_name
 :name VARCHAR(20)
 :name_indicator SMALLINT
 SQLSTATE;
FETCH name_cursor INTO :name:name_indicator;

Accessing data
This section explains how SQL modules retrieve data.

Retrieving data using cursors
Data is retrieved much in the same way as in ESQL, see Accessing Data on page 50. The
host application will have to check the value of SQLCODE or SQLSTATE in order to
find out when the cursor has reached the end of the result set.

86 Chapter 5 Module SQL
Communicating with the Application Program

Examples

Example SQL module:
DECLARE currencies_cursor CURSOR FOR
SELECT code FROM mimer_store.currencies

PROCEDURE open_currencies_cursor
 SQLSTATE;
OPEN currencies_cursor;

PROCEDURE fetch_currency_code
 :code CHARACTER(3)
 SQLSTATE;
FETCH currencies_cursor INTO :code;

PROCEDURE close_currencies_cursor
 SQLSTATE;
CLOSE currencies_cursor;

Example host application in C:
#include "module_name.h"

int main()
{
 int sqlcode;
 char code[4];
 open_currencies_cursor(&sqlcode);

 while (sqlcode == 0)
 {
 fetch_currency_code(code, &sqlcode);
 }

 close_currencies_cursor(&sqlcode);

Example host application in Fortran:
 INTEGER*4 SQLCODE
 CHARACTER*3 CODE

 CALL OPEN_CURRENCIES_CURSOR(SQLCODE)

 DO WHILE (SQLCODE .EQ. 0) THEN
 CALL FETCH_CURRENCY_CODE(CODE, SQLCODE)
 END DO

 CALL CLOSE_CURRENCIES_CURSOR(SQLCODE)

Mimer SQL Version 11.0 87
Programmer’s Manual

Example host application in Cobol:
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 SQLCODE PIC S9(9) USAGE IS BINARY.
 01 CODE PIC X(3).

 PROCEDURE DIVISION.
 HEAD SECTION.

 MAIN.

 CALL "OPEN_CURRENCIES_CURSOR" USING SQLCODE.

 PERFORM UNTIL SQLCODE IS NOT ZERO
 CALL "FETCH_CURRENCY_CODE" USING NAME, SQLCODE.
 END-PERFORM.

 CALL "CLOSE_CURRENCIES_CURSOR" USING SQLCODE.

Example host application in Pascal:
type currency_code_type = packed array [1..3] of char;

var
sqlcode : integer;
code : currency_code_type;

procedure open_currencies_cursor(var sqlcode : integer); external;
procedure fetch_currency_code(var code : currency_code_type,
 var sqlcode : integer); external;
procedure close_currencies_cursor(var sqlcode : integer); external;

begin
 open_currencies_cursor(sqlcode);

 while sqlcode = 0 do
 begin
 fetch_currency_code(code, sqlcode);
 end

 close_currencies_cursor(sqlcode);

Retrieving single rows
See Accessing Data on page 50 for detailed information on how retrieving single rows
work. It is done in an SQL module by declaring a procedure for the specific statement.

Dynamic SQL
Dynamic SQL can be used in the same way as in ESQL, see Dynamic SQL on page 60.
The PREPARE and EXECUTE operations are performed through module procedures.

PROCEDURE prepare_stmnt
 :stmnt VARCHAR(300)
 SQLCODE;
PREPARE statement1 FROM :stmnt;

PROCEDURE execute_prepared
 SQLCODE;
EXECUTE statement1;

88 Chapter 5 Module SQL
Handling errors and exceptions

Handling errors and exceptions
Errors may arise at three general levels in an SQL module. These are syntax, semantic and
run-time errors.

Syntax Errors
Syntax errors are constructions that break the rules for formulating SQL statements. For
example:

• Spelling errors in keywords:
SLEECT instead of SELECT

• Incorrect or missing delimiters:
DELETEFROM instead of DELETE FROM
SELECT column1;column2 instead of SELECT column1,column2

• Incorrect clause ordering
UPDATE … WHERE … SET instead of UPDATE … SET … WHERE

The preprocessor does not accept syntactically incorrect statements. The error must be
corrected before the program can be successfully preprocessed.

Semantic Errors
Semantic errors arise when SQL statements are formulated in full accordance with the
syntax rules, but do not reflect the programmer's intentions correctly. Semantic errors are
not detected by the MSQL preprocessor.

Run-time Errors
Run-time errors and exception conditions (for example warnings) arising during
execution of SQL module procedures are signaled in the same was as in ESQL, see
Handling Errors and Exceptions on page 69.
The errors cannot be caught with WHENEVER statements that are used in ESQL, the host
application has to rely on the values of SQLCODE and SQLSTATE.

Examples

Example SQL module:
PROCEDURE connect_sysadm
 SQLCODE;
CONNECT TO '' USER 'SYSADM' USING 'SYSADM';

PROCEDURE get_diagn
 :errcode INT
 :errmsg VARCHAR(300)
 SQLCODE;
GET DIAGNOSTICS EXCEPTION 1
 :errcode = native_error,
 :errmsg = message_text;

Mimer SQL Version 11.0 89
Programmer’s Manual

Example host application in C:
void connect_sysadm(int* sqlcode);
void get_diagn(int* errcode, char errmsg[301], int* sqlcode);

int main()
{
 int sqlcode;
 int errcode;
 char errmsg[301];

 connect_sysadm(&sqlcode);
 if (sqlcode != 0)
 {
 printf("Failed to connect SYSADM.\n");

 get_diagn(&errcode, errmsg, &sqlcode);
 if (sqlcode != 0)
 {
 printf("Failed to get diagnostics message.\n");
 }
 else
 {
 printf("errcode: %d\n", errcode);
 printf("errmsg: %s\n", errmsg);
 }
 }

Example host application in Fortran:
 INTEGER*4 SQLCODE
 INTEGER*4 ERRCODE
 CHARACTER*300 ERRMSG

 CALL CONNECT_SYSADM(SQLCODE)
 IF (SQLCODE .NE. 0) THEN
 PRINT *, 'Failed to connect SYSADM.'

 IF (SQLCODE .NE. 0) THEN
 PRINT *, 'Failed to get diagnostics message.'
 ELSE
 PRINT *, 'errcode: ', ERRCODE
 WRITE(*, '(X,72A)') 'errmsg: ', ERRMSG
 END IF
 END IF

90 Chapter 5 Module SQL
Handling errors and exceptions

Example host application in Cobol:
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 SQLCODE PIC S9(9) USAGE IS BINARY.
 01 ERRCODE PIC S9(9) USAGE IS BINARY.
 01 ERRMSG PICTURE X(300).

 PROCEDURE DIVISION.
 HEAD SECTION.

 MAIN.

 CALL "CONNECT_SYSADM" USING SQLCODE.
 IF SQLCODE IS NOT ZERO
 DISPLAY "Failed to connect SYSADM."

 CALL "GET_DIAGN" USING ERRCODE, ERRMSG, SQLCODE.
 IF SQLCODE IS NOT ZERO
 DISPLAY "Failed to get diagnostics message."
 ELSE
 DISPLAY "errcode: " ERRCODE
 DISPLAY "errmsg: " ERRMSG
 END-IF.
 END-IF.

Example host application in Pascal:
type message = packed array [1..300] of char;

var
sqlcode : integer;
errcode : integer;
errmsg : message;

procedure connect_sysadm(var sqlcode : integer); external;
procedure get_diagn(var errcode : integer, var errmsg : message,
 var sqlcode : integer); external;

begin
 connect_sysadm(sqlcode);
 if sqlcode <> 0 then
 begin
 writeln('Failed to connect SYSADM.');

 get_diagn(errcode, errmsg, sqlcode);
 if sqlcode <> 0 then
 begin
 writeln('Failed to get diagnostics message.');
 end;
 else
 begin
 writeln('errcode: ', errcode)
 writeln('errmsg: ', errmsg);
 end;

Mimer SQL Version 11.0 91
Programmer’s Manual

Host Language Dependent Aspects
You can call SQL modules (MSQL) in any host language that supports the C data types
generated by the MSQL preprocessor. The following host languages are supported:
• C/C++
• COBOL
• Fortran
• Pascal
Note: This is not a complete description of the rules for writing SQL modules. The

programmer should use the main body of this manual as a guide to writing
programs and refer to this appendix for language-specific details.

This section describes the recommended data types to use in each of the above mentioned
host languages when calling an SQL module procedure.
The SQL data types INT(n>18), FLOAT, BINARY and VARBINARY are handled by Module
SQL as null-terminated C char arrays, no matter the calling host language. The host
application needs to apply null termination to any input, and take precautions to null
termination appearing in any output.
The SQL data types DATE, TIME, TIMESTAMP, INTERVAL, CHAR, VARCHAR, CLOB and
BOOLEAN are handled by Module SQL as character arrays of the given host language, see
Module declaration on page 77 for more details.

C header files
When the LANGUAGE clause in an SQL module is set to C, a C header file containing
embedded SQL statements will be generated by the MSQL preprocessor, by default with
the .eh file extension. The embedded SQL header file needs to be pre-processed using the
ESQL command into a pure C header file (the header file name and extension has to be
specified to ESQL.) It can then be included in the C host application to provide the routine
headers for the routines generated in the source code file.

Example
The SQL module currencies.msq has the LANGUAGE clause set to C. It is pre-processed
using the MSQL command.

msql currencies.msq

The embedded SQL files currencies.ec and currencies.eh are generated. They are pre-
processed using the ESQL commands.

esql --c currencies.ec
esql --header currencies.eh

or
esql /C currencies.ec
esql /HEADER currencies.eh

92 Chapter 5 Module SQL
Host Language Dependent Aspects

The C source file currencies.c is generated, containing the source code that calls the
Mimer database. The C header file currencies.h is generated for inclusion in the C host
application program.

#include "currencies.h"

int main
{
 int sqlcode;
 open_currencies_cursor(&sqlcode);

C data types
SQL data type C data type

BIGINT long long*

int64_t*

BINARY(n) unsigned char[n+1]

BLOB(size) struct {

long hvn_reserved;

unsigned long hvn_length;

char hvn_data[size];

} hvn;

BOOLEAN char[6]

CHAR(n) char[n+1]

CLOB(size) struct {

long hvn_reserved;

unsigned long hvn_length;

char hvn_data[size];

} hvn;

DATE char[100]

DECIMAL(p)

DECIMAL(p,s)

double*

DOUBLE PRECISION double*

FLOAT double*

FLOAT(n) char[n+8]

INTEGER int*

int32_t*

INTEGER(n) n <= 4: short*, int16_t*

5 <= n<= 9: int*, int32_t*

10 <= n <= 18: long long*, int64_t*

19 <= n <= 45: char[n+2]

INTERVAL data types char[100]

NCHAR(n) wchar_t[n+1]

Mimer SQL Version 11.0 93
Programmer’s Manual

Note: The stdint types int16_t, int32_t and int64_t can be used in the host application
if desired. The SQL module does not use them.

COBOL data types

NCLOB(size) struct {

long hvn_reserved;

unsigned long hvn_length;

wchar_t hvn_data[size];

} hvn;

NVARCHAR(n) wchar_t[n+1]

REAL float*

SMALLINT short*

int16_t*

SQLCODE int*

int32_t*

SQLSTATE char[6]

TIME data types char[100]

TIMESTAMP data types char[100]

VARBINARY(n) unsigned char[n+1]

VARCHAR(n) char[n+1]

SQL data type C data type

SQL data type COBOL data type

BIGINT PIC S9(18) USAGE IS BINARY

BINARY(n) PICTURE X(n+1)

BLOB(size) 01 hvn.

49 hvn-RESERVED PIC S9(18) USAGE IS
BINARY.

49 hvn-LENGTH PIC S9(18) USAGE IS
BINARY.

49 hvn-DATA PIC X(size).

BOOLEAN PICTURE X(5)

CHAR(n) PICTURE X(n)

CLOB(size) PICTURE X(size)

DATE PICTURE X(100)

DECIMAL(p)

DECIMAL(p,0)

PIC S9(p) COMP-3

DECIMAL(p,s) PIC S9(p)V9(s) COMP-3

94 Chapter 5 Module SQL
Host Language Dependent Aspects

Fortran data types

DOUBLE PRECISION COMP-2

FLOAT COMP-2

FLOAT(n) PICTURE X(n+8)

INTEGER PIC S9(9) USAGE IS BINARY

INTEGER(n) 1 <= n <= 4: PIC S9(4) USAGE IS BINARY

5 <= n <= 9: PIC S9(9) USAGE IS BINARY

10 <= n <= 18: PIC S9(18) USAGE IS BINARY

19 <= n <= 45: PICTURE X(n+2)

INTERVAL data types PICTURE X(100)

REAL COMP-1

SMALLINT PIC S9(4) USAGE IS BINARY

SQLCODE PIC S9(9) USAGE IS BINARY

SQLSTATE PIC X(5)

TIME data types PICTURE X(100)

TIMESTAMP data types PICTURE X(100)

VARBINARY(n) PICTURE X(n+1)

VARCHAR(n) PICTURE X(n)

SQL data type COBOL data type

SQL data type Fortran data type

BIGINT INTEGER*8

BINARY(n) INTEGER*1(n+1)

BLOB(size) INTEGER*1 hvn(size + 8)

INTEGER*8 hvn_RESERVED

INTEGER*8 hvn_LENGTH

INTEGER*1 hvn_DATA(size)

EQUIVALENCE(hvn(1), hvn_RESERVED)

EQUIVALENCE(hvn(9), hvn_LENGTH)

EQUIVALENCE(hvn(17), hvn_DATA)

BOOLEAN CHARACTER*5

CHARACTER(n) CHARACTER*n

CLOB(size) CHARACTER*size

DATE CHARACTER*100

DECIMAL(p)

DECIMAL(p,s)

DOUBLE PRECISION

Mimer SQL Version 11.0 95
Programmer’s Manual

Pascal data types

DOUBLE PRECISION DOUBLE PRECISION

FLOAT DOUBLE PRECISION

FLOAT(n) INTEGER*1(n+8)

INTEGER INTEGER*4

INTEGER(n) 1 <= n <= 4: INTEGER*2

5 <= n <= 9: INTEGER*4

10 <= n <= 18: INTEGER*8

19 <= n <= 45: INTEGER*1(n+2)

INTERVAL data types CHARACTER*100

REAL REAL

SMALLINT INTEGER*2

SQLCODE INTEGER*4

SQLSTATE CHARACTER*5

TIME data types CHARACTER*100

TIMESTAMP data types CHARACTER*100

VARBINARY(n) INTEGER*1(n+1)

VARCHAR(n) CHARACTER*n

SQL data type Fortran data type

SQL data type Pascal data type

BIGINT integer64

BINARY(n) packed array [1..n+1] of char

BLOB(size) TYPE X = RECORD

hvn_RESERVED : INTEGER64;

hvn_LENGTH : INTEGER64;

hvn_DATA : PACKED ARRAY [1..size] OF
CHAR;

END;

BOOLEAN packed array [1..5] of char

CHARACTER(n) packed array [1..n] of char

CLOB(size) packed array [1..size] of char

DATE packed array [1..100] of char

DECIMAL(p)

DECIMAL(p,s)

double

DOUBLE PRECISION double

96 Chapter 5 Module SQL
Host Language Dependent Aspects

FLOAT double

FLOAT(n) packed array [1..n+8] of char

INTEGER integer32

INTEGER(n) 1 <= n <= 4: integer16

5 <= n <= 9: integer32

10 <= n <= 18: integer64

19 <= n <= 45: packed array [1..n+2] of
char

INTERVAL data types packed array [1..100] of char

NCHAR(n) packed array [1..n] of char

NCLOB(size) TYPE X = RECORD

hvn_RESERVED : INTEGER64;

hvn_LENGTH : INTEGER64;

hvn_DATA : PACKED ARRAY [1..size] OF
CHAR;

END;

NVARCHAR(n) packed array [1..n] of char

REAL single

SMALLINT integer16

SQLCODE integer32

SQLSTATE packed array [1..5] of char

TIME data types packed array [1..100] of char

TIMESTAMP data types packed array [1..100] of char

VARBINARY(n) packed array [1..n+1] of char

VARCHAR(n) packed array [1..n] of char

SQL data type Pascal data type

Mimer SQL Version 11.0 97
Programmer’s Manual

Chapter 6

Mimer SQL C API
Mimer SQL C API is a native C library suitable for tool integration and application
development in environments where API standardization is not a requirement. The
following characteristics describe the API:
• Simplicity
• Platform independence
• Small footprint
• Tight fit with the Mimer SQL application/database communication model.
Hereinafter, the Mimer SQL C API is referred to as the Mimer API.
The Mimer SQL C API also comes in a micro environment edition under the name Mimer
SQL Micro C API, which is mainly targeted for memory and CPU constrained
environments. This variant is referred to as the Micro API. In most cases, the Mimer API
and the Micro API routines are identical, but where there are differences, these are noted
at the end of the routine description.

98 Chapter 6 Mimer SQL C API

Architecture
The Mimer API routines may be divided into four major categories, depending on how
they are used. These routine categories are:
• Session management - These routines manages a database session including

connect, disconnect and transaction handling. See Session Management on page
98.

• Statement management - Once a session has been established, an application
uses statements to interact with the database. Statements are defined using the SQL
language and may be specified directly or created on the server in advance using
the CREATE STATEMENT command. See Statement Management on page 99.

• Input data management - Used to supply input parameter data to statements. See
Data Input Routines on page 100.

• Output data management - Obtains result sets and statement output parameter
data. See Data Output Routines on page 100.

Character String Formats
API routines having string parameters come in different flavors depending on which
character string format is used. The rationale is that the base routine considers all strings
to be null terminated wchar_t * strings.
If a routine has string parameters, there is a companion routine suffixed with C, which
accepts the string parameters as null terminated char * strings, where the character set is
defined by the current locale.
Companion routines suffixed with 8 have the string format UTF-8, regardless of locale
settings.

Session Management
In the Mimer API, the following routines are used for managing sessions; beginning and
ending sessions, and beginning and ending transactions:
• MimerBeginSession[C|8]

• MimerEndSession

• MimerBeginTransaction

• MimerEndTransaction

The flow of calls should be according to the below. First, a session is started using a call
to MimerBeginSession (or MimerBeginSession8 or MimerBeginSessionC,
depending on the data types supplied).
Then database operations take place, either separately (in auto-committed transactions),
or grouped in explicit transactions. The boundaries of an explicit transaction are marked
using the calls to MimerBeginTransaction and MimerEndTransaction. (See
Transactions on page 102 for more information about transactions in the Mimer API.)

Mimer SQL Version 11.0 99
Programmer’s Manual

This process continues until the application terminates its database session through a call
to MimerEndSession.

MimerBeginSession[C|8]
loop
{

MimerBeginTransaction
<statement and data management routines>
MimerEndTransaction

}
MimerEndSession

Statement Management
The routines used to manage statements are:
• MimerAddBatch

• MimerBeginStatement[C|8]

• MimerEndStatement

• MimerExecute

• MimerOpenCursor

• MimerFetch

• MimerFetchScroll

• MimerFetchSkip

• MimerCloseCursor

• MimerCurrentRow

• MimerExecuteStatement[C|8]

Which routines to use basically depends on if the statement has input or output
parameters, and if a result set is returned or not.

No input or output parameters, no result set
The MimerExecuteStatement[C|8] routine is mainly intended for DDL statements
(i.e. data definition language statements, e.g. create and drop table.) However, it can also
be used for UPDATE, INSERT, DELETE and CALL statements without parameters.

MimerExecuteStatement[C|8]

Input or output parameters, but no result set
The MimerExecute routine is used for INSERT, UPDATE and DELETE statements,
assignments (SET), and procedure calls which do not return a result set.

MimerBeginStatement[C|8]
<data input routines>
MimerExecute
<data output routines>
MimerEndStatement

100 Chapter 6 Mimer SQL C API

Result set producing statements
Result sets are returned by SELECT statements, as well as by calls to result set procedures.
A result set is accessed using a cursor.

MimerBeginStatement[C|8]
<data input routines>
MimerOpenCursor
loop
{

MimerFetch/MimerFetchSkip/MimerFetchScroll
<data output routines>

}
MimerCloseCursor
MimerEndStatement

Data Input Routines
Input data management routines are used to supply input parameter data to statements.
The data management routines to set input parameter data are:
• MimerSetBinary

• MimerSetBlobData

• MimerSetBoolean

• MimerSetDouble

• MimerSetFloat

• MimerSetInt32

• MimerSetInt64

• MimerSetLob

• MimerSetNclobData[C|8]

• MimerSetNull

• MimerSetString[C|8]

• MimerSetStringLen[C|8]

• MimerSetUUID

Data Output Routines
The output data management routines used to obtain statement results are:
• MimerGetBinary

• MimerGetBlobData

• MimerGetBoolean

• MimerGetDouble

• MimerGetFloat

• MimerGetInt32

• MimerGetInt64

• MimerGetLob

• MimerGetNclobData[C|8]

• MimerGetString[C|8]

• MimerGetUUID

• MimerIsNull

Mimer SQL Version 11.0 101
Programmer’s Manual

Array Operations
The Mimer API supports the use of array fetch operations. Array fetching means that
multiple rows are fetched from the server in one request. This will improve performance
at the expense of memory consumption. MimerSetArraySize may be used to control
the minimum number of rows to be fetched in each request. MimerRowSize may be used
to determine the maximum number of bytes each row consumes. By multiplying the array
size with the maximum row size a maximum array fetch memory consumption value can
be obtained.
MimerFetch will internally fetch as many rows as possible and refill the internal buffer
when needed. MimerNext on the other hand will return rows until all the rows in the
internal buffer have been returned, it will not call the server to fetch more rows. The
purpose of MimerNext is to have a fetch routine that is guaranteed context switch free.
The Mimer API also supports supplying parameters in arrays. Parameter arrays are
specified by call MimerAddBatch during the parameter buildup sequence.
MimerAddBatch adds the current set of parameters to be executed on the next
MimerExecute call making room for another set of parameters to be specified by
subsequent calls to for example MimerSetString.

102 Chapter 6 Mimer SQL C API

Transactions
All operations on the database participate in a transaction. By default, operations are
committed as soon as possible, which in practice means immediately after each INSERT,
UPDATE or DELETE. A common term for this is that statements are automatically
committed (autocommit).
If several operations are to be grouped together into one single transaction, the transaction
boundaries must be defined by calls to MimerBeginTransaction and
MimerEndTransaction.
Transactions may abort. A transaction abort is a rollback forced by the system. A
transaction abort occurs when a conflict with another session has been detected, for
example when two transactions have been reading and updating the same data. The
database system must decide to abort one of them and to save the other one to storage.
The session seeing the aborted transaction must take some action depending on this,
perhaps trying to update the database once again.
Issuing large transactions puts a special burden on the database server since read- and
write-sets may grow large, thus consuming memory. The read- and write-sets are logs
maintaining a record of what active transactions have done. Large read- and write-sets
also has the implication that they put a larger overall burden on the database server since
it may take time to manage them, particularly if they grow so large that they are written
to flash or magnetic memories.

Mimer SQL Version 11.0 103
Programmer’s Manual

Data Types
The C acronym for each SQL data type (Mimer SQL Reference Manual, Chapter 6, Data
Types in SQL Statements), is listed in the below table.

Data type SQL data type

MIMER_BINARY BINARY

MIMER_BINARY_VARYING BINARY VARYING

MIMER_BLOB BINARY LARGE OBJECT

MIMER_BOOLEAN BOOLEAN

MIMER_CHARACTER CHARACTER

MIMER_CHARACTER_VARYING CHARACTER VARYING

MIMER_CLOB CHARACTER LARGE OBJECT

MIMER_DATE * DATE

MIMER_DECIMAL * DECIMAL

MIMER_FLOAT * FLOAT(p)

MIMER_INTEGER INTEGER(p)

MIMER_INTERVAL_DAY * INTERVAL DAY

MIMER_INTERVAL_DAY_TO_HOUR * INTERVAL DAY TO HOUR

MIMER_INTERVAL_DAY_TO_MINUTE * INTERVAL DAY TO MINUTE

MIMER_INTERVAL_DAY_TO_SECOND * INTERVAL DAY TO SECOND

MIMER_INTERVAL_HOUR * INTERVAL HOUR

MIMER_INTERVAL_HOUR_TO_MINUTE * INTERVAL HOUR TO MINUTE

MIMER_INTERVAL_HOUR_TO_SECOND * INTERVAL HOUR TO SECOND

MIMER_INTERVAL_MINUTE * INTERVAL MINUTE

MIMER_INTERVAL_MINUTE_TO_SECOND * INTERVAL MINUTE TO SECOND

MIMER_INTERVAL_MONTH * INTERVAL MONTH

MIMER_INTERVAL_SECOND * INTERVAL SECOND

MIMER_INTERVAL_YEAR * INTERVAL YEAR

MIMER_INTERVAL_YEAR_TO_MONTH * INTERVAL YEAR TO MONTH

MIMER_NCHAR NATIONAL CHARACTER

MIMER_NCHAR_VARYING NATIONAL CHARACTER
VARYING

MIMER_NCLOB NATIONAL CHARACTER LARGE
OBJECT

104 Chapter 6 Mimer SQL C API

The data types marked with an asterisk (*) are not supported by the Mimer API’s data
input and data output routines. To use these data types, convert the data using the SQL
function CAST.
The following table describes which API calls may be used to set or get parameters and
column values of the corresponding SQL data type.

MIMER_T_BIGINT BIGINT

MIMER_T_DOUBLE DOUBLE PRECISION

MIMER_T_FLOAT FLOAT

MIMER_T_INTEGER INTEGER

MIMER_T_REAL REAL

MIMER_T_SMALLINT SMALLINT

MIMER_TIME * TIME

MIMER_TIMESTAMP * TIMESTAMP

SQL data type Routines

BIGINT MimerGetInt64

MimerSetInt64

BINARY MimerGetBinary

MimerSetBinary

BINARY LARGE OBJECT MimerGetLob

MimerGetBlobData

MimerSetLob

MimerSetBlobData

BINARY VARYING MimerGetBinary

MimerSetBinary

BOOLEAN MimerGetBoolean

MimerSetBoolean

CHARACTER MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

Data type SQL data type

Mimer SQL Version 11.0 105
Programmer’s Manual

CHARACTER LARGE OBJECT MimerGetLob

MimerGetNclobData

MimerGetNclobData8

MimerGetNclobDataC

MimerSetLob

MimerSetNclobData

MimerSetNclobData8

MimerSetNclobDataC

CHARACTER VARYING MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

DATE MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

DECIMAL MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

DOUBLE PRECISION MimerGetDouble

MimerSetDouble

INTEGER MimerGetInt32

MimerGetInt64

MimerSetInt32

MimerSetInt64

NATIONAL CHARACTER MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

SQL data type Routines

106 Chapter 6 Mimer SQL C API

NATIONAL CHARACTER LARGE OBJECT MimerGetLob

MimerGetNclobData

MimerGetNclobData8

MimerGetNclobDataC

MimerSetLob

MimerSetNclobData

MimerSetNclobData8

MimerSetNclobDataC

NATIONAL CHARACTER VARYING MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

NUMERIC MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

REAL MimerGetDouble

MimerGetFloat

MimerSetDouble

MimerSetFloat

SMALLINT MimerGetInt32

MimerGetInt64

MimerSetInt32

MimerSetInt64

TIME MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

TIMESTAMP MimerGetString

MimerGetString8

MimerGetStringC

MimerSetString

MimerSetString8

MimerSetStringC

SQL data type Routines

Mimer SQL Version 11.0 107
Programmer’s Manual

Data types which do not have a corresponding manipulation method according to the
above table must be explicitly casted to a data type which does.

Detecting Data Types at Run-time
If the data type of a column or parameter is not known until runtime it is possible to detect
them and dynamically choose which getter or setter function to use. For this purpose the
functions MimerColumnType and MimerParameterType are used to obtain the type of
a column or parameter.
A range of macros may be used to determine which getter/setter which matches the data
type obtained from MimerColumnType or MimerParameterType. These are:

Macro Description

MimerIsBinary(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetBinary or MimerSetBinary.

MimerIsBlob(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetBlobData or MimerSetBlobData.

MimerIsBoolean(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetBoolean or MimerSetBoolean.

MimerIsClob(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetNclobData[C|8] or
MimerSetNclobData[C|8].

MimerIsDouble(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetDouble or MimerSetDouble.

MimerIsFloat(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetFloat or MimerSetFloat.

MimerIsInt32(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetInt32 or MimerSetInt32.

MimerIsInt64(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetInt64 or MimerSetInt64.

MimerIsString(t) Will yield true if the type (t) can be accessed or manipulated
using MimerGetString[C|8] or
MimerSetString[C|8].

108 Chapter 6 Mimer SQL C API

Error Handling
Upon return, all routines return an integer value. In most cases the value zero
(MIMER_SUCCESS) is used to indicates success. In some cases a positive value is used to
indicate success with additional information. Negative values always indicate an error
condition. The negative values are standard Mimer SQL error codes, which are listed in
Appendix B Return Codes.
Errors between -24000 and -24299 are specific to Mimer API, where errors in the -24100
to -24199 range occur because of programming mistakes. Errors in the -24200 to -24299
range are of internal nature caused by system problems.
The Mimer API specific return codes are listed in Mimer SQL C API Return Codes on
page 392. The acronyms for the Mimer API specific return codes can be found in the
mimerrors.h header file.
The macro MIMER_SUCCEEDED may be used to detect a call which has either succeeded,
or succeeded with additional information (a positive value). Negating this macro may be
used to detect an error.
The error condition MIMER_SEQUENCE_ERROR has a special meaning. It will be returned
when an illegal call has been made. The Mimer API will enforce a strict sequence of
allowed calls. For example, MimerGetString may not be called before MimerFetch
has been called. MIMER_SEQUENCE_ERROR is returned when illegal sequences of calls
are detected.

Error Handling Example
The below example function shows how a function uses the return value from a Mimer
API function call to determine success or failure.

/**
 * Function which executes the statement OUR_STATEMENT
 *
 * On failure, the error code is written to stdout.
 */
#include "mimerapi.h"
int example1(MimerSession session)
{
 int32_t err, end_err=MIMER_SUCCESS;
 MimerStatement statement;

 err = MimerBeginStatement(session, L"OUR_STATEMENT", 0, &statement);
 if (MIMER_SUCCEEDED(err)) {
 err = MimerExecute(statement);
 end_err = MimerEndStatement(&statement);
 }
 if (!MIMER_SUCCEEDED(err) || !MIMER_SUCCEEDED(end_err)) {
 printf("Error %d, end error %d.\n", err, end_err);
 }
}

Mimer SQL Version 11.0 109
Programmer’s Manual

Memory Management
Throughout the Mimer API, routines are designed and implemented to allow callers not
to worry about memory management. The rule is that the required buffers are allocated to
their minimum size, and released as soon as they are not needed anymore.
For example, when starting a statement, information about its parameters, if it returns a
result set, result set columns and their type are attached to the statement handle. This
block of memory is released when the statement is released.
Memory for keeping parameters and result set columns are allocated either when the
applications starts setting input parameters (see Data Input Routines on page 100), or
when the statement is executed (MimerExecute), or the cursor is opened
(MimerOpenCursor).
When the statement is executed, the database server reads the parameters that have been
set, and if there are no result set or output parameters returned, the Mimer API will release
the memory promptly. If there are output parameters, or result set data, memory to keep
this information is retained until the statement or cursor is closed.

110 Chapter 6 Mimer SQL C API

Header Files Provided
When using the Mimer API, the mimerapi.h header file should always be included. For
example, this file declares the API routines and also the handle types to be used, i.e.
MimerSession, MimerStatement, MimerLob and MimerHandle. In addition, it
defines a number of symbols that can be used for a convenient and instructive C coding.
Other files that are provided are the mimerrors.h and, on VMS only, mimstdint.h.
Those are automatically included by the mimerapi.h file. The mimstdint.h file
arranges the necessary measure for using the int16_t, int32_t and int64_t data
types that are recommended for, and used by, the Mimer API. The mimerrors.h file
defines C symbols for a couple of error codes that may be used when programming with
the Mimer SQL C API, see Mimer SQL C API Return Codes on page 392.
C symbols used in example code are defined in these header files.

Mimer SQL Version 11.0 111
Programmer’s Manual

Mimer API Examples
The Mimer SQL distribution contains a set of complete Mimer API based example
programs; mimerapiex1.c, mimerapiex2.c and mimerapiex3.c.

Querying the database
The following table is used in this example:

create table THE_IDENT.FIRST_TABLE (
COL1 integer primary key,
COL2 varchar(20));

The example is about retrieving all rows in the table FIRST_TABLE where COL1 is
larger than a supplied integer value. The rows are returned in COL1 order.

int err=0;
MimerSession sessionhandle;
MimerStatement statementhandle;
wchar_t res1[100];
int res2;
unsigned char res3[100];
err = MimerBeginSession(L"THE_DATABASE", L"THE_IDENT", L"THE_PASSWORD",

&sessionhandle); // 1
if (!err) {
err = MimerBeginStatement(sessionhandle,
L"select COL1, COL2 from FIRST_TABLE where COL1 > ? ORDER BY COL1",

MIMER_FORWARD_ONLY, &statementhandle); // 2
if (!err) {
err = MimerSetInt32(statementhandle, 1, 42); // 3
if (!err) {
err = MimerOpenCursor(statementhandle); // 4
if (!err) {
do {
err = MimerFetch(statementhandle); // 5
if (!err) {
MimerGetInt32(statementhandle, 1, &res2); // 6
MimerGetString(statementhandle, 2, res1,

sizeof(res1)/sizeof(res1[0]));
// You probably want to do something useful with the result here.

}
} while (!err);
MimerCloseCursor(statementhandle); // 7

}
}
MimerEndStatement(&statementhandle); // 8

}
MimerEndSession(&sessionhandle); // 9

}

This is an example of retrieving data from a result set. The following major events occur:
1 The MimerBeginSession call will start a session with the database. When a

session is started we always specify which database ident (a database namespace)
is the default. Above we use the THE_IDENT ident, which in practice means that
we can refer to all database objects in that schema without the qualifying
THE_IDENT.

2 The next thing is that we prepare the SELECT statement for execution. This call
will load the statement into memory, along with its metadata.

3 This SELECT statement has one input parameter, an integer. This parameter is
supplied, in this case 42.

4 A cursor is opened using MimerOpenCursor. We are now ready to receive data
from the database.

112 Chapter 6 Mimer SQL C API

5 Immediately when the cursor is opened, it is located before the first row (aka on
row 0 of the result set). To advance the cursor position to the next row, we call
MimerFetch.

6 Once the fetch succeeded, we may retrieve data from the row. MimerFetch returns
a non-zero value if an error occurred or the end of the result set was reached.

7 When we have finished reading, the result set is closed.
8 If we wish to do so, we may execute the query again by calling the appropriate data

input functions, MimerOpenCursor, MimerFetch etc. again. But in this example
we are done and will close things down. MimerEndStatement is called to release
the resources held by the statement.

9 Finally the database session is ended.

Retrieving a binary large object
The following table is used in this example.

create table PICTURES (
ID int primary key default next value for id_sequence,
CREATED timestamp,
PICTURE blob);

In this example we have a table PICTURES with three columns; one primary key column,
one column for creation timestamp and one column for a picture. We wish to return all
pictures created within the last week, and with recent pictures first.

int err=0;
MimerSession sessionhandle;
MimerStatement statementhandle;
MimerLob blobhandle;
void *blobdata;
size_t bloblen;
int res2;
err = MimerBeginSession(L"THE_DATABASE", L"THE_IDENT", L"THE_PASSWORD",

&sessionhandle);
if (!err) {
err = MimerBeginStatement(sessionhandle,

L"select CREATED, PICTURE from PICTURES where CREATED >= localtimestamp -
interval'7' days order by CREATED desc",

MIMER_FORWARD_ONLY, &statementhandle);
if (!err) {
err = MimerOpenCursor(statementhandle);
if (!err) {
while (!err) {
err = MimerFetch(statementhandle);
if (!err) {
MimerGetInt32(statementhandle, 1, &res2);
MimerGetLob(statementhandle, 2, &bloblen, &blobhandle);
blobdata = malloc(bloblen);
if (blobdata) {
err = MimerGetBlobData(&blobhandle, blobdata, bloblen);
if (!err) {
// You probably want to do something useful with the blob here
}
free(blobdata);

}
}

}
MimerCloseCursor(statementhandle);

}
MimerEndStatement(&statementhandle);

}
MimerEndSession(&sessionhandle);

}

Mimer SQL Version 11.0 113
Programmer’s Manual

Inserting a binary large object into the database
The following table is used in this example.

create table THIRD_TABLE (
COL1 integer primary key,
COL2 blob);

This example features binary large objects which are numbered. We have created a new
object whose identity number is 42411 that we want to insert into the database.

int err=0;
MimerSession sessionhandle;
MimerStatement statementhandle;
MimerLob blobhandle;
char *blobdata;
int bloblen;
int param1 = 42411;
unsigned char res3[100];
// Below, the location of the binary large object data is obtained.
blobdata = _some_interesting_location_; // 1
bloblen = 47110;
err = MimerBeginSession(L"THE_DATABASE", L"THE_IDENT", L"THE_PASSWORD",

&sessionhandle);
if (!err) {
err = MimerBeginStatement(sessionhandle,

L"insert into THIRD_TABLE (COL1, COL2) values (?, ?)",
MIMER_FORWARD_ONLY, &statementhandle);

if (!err) {
 MimerSetInt32(statementhandle, 1, param1);
err = MimerSetLob(statementhandle, 2, bloblen, &blobhandle); // 2
if (!err) {
err = MimerSetBlobData(&blobhandle, &blobdata[0], 10000); // 3
err = MimerSetBlobData(&blobhandle, &blobdata[10000], 10000);
err = MimerSetBlobData(&blobhandle, &blobdata[20000], 10000);
err = MimerSetBlobData(&blobhandle, &blobdata[30000], 10000);
err = MimerSetBlobData(&blobhandle, &blobdata[40000], 7110); // 4
err = MimerExecute(statementhandle); // 5

}
MimerEndStatement(&statementhandle);

}
MimerEndSession(&sessionhandle);

}

The following interesting things takes place in this example:
1 In some way we obtain the location and length of the data to store in the database.
2 The process of storing the blob is started. The total size of the blob is supplied.
3 In this case the object data is supplied in chunks of 10 000 bytes.

MimerSetBlobData is therefore called five times. Error handling is omitted here
for clarity.
Choosing the chunk size is a compromise between memory consumption and
performance. If it is important to reduce memory usage, it may be appropriate to
process the object sequentially in smaller pieces, rather than to read everything into
memory.

4 The final call to MimerSetBlobData supplies the remaining 7110 bytes.
5 The actual INSERT operation is performed.

114 Chapter 6 Mimer SQL C API

Scrolling through a result set
The following table is used in this example:

create table THE_IDENT.FIRST_TABLE (
COL1 integer primary key,
COL2 varchar(20));

This example is basically the same as in Querying the database on page 111, except that
we are performing some scrolling operations on the result set. The number of rows in the
result set in this example is 10.
Retrieve all rows in the table FIRST_TABLE whose primary key (an integer) is larger
than a supplied value, and scroll through the result set.

int err=0;
MimerSession sessionhandle;
MimerStatement statementhandle;
int current_row;
err = MimerBeginSession(L"THE_DATABASE", L"THE_IDENT", L"THE_PASSWORD",

&sessionhandle);
if (!err) {
err = MimerBeginStatement(sessionhandle,
L"select COL1, COL2 from FIRST_TABLE where COL1 > ? ORDER BY COL1",

MIMER_SCROLLABLE, &statementhandle); // 2
if (!err) {
err = MimerSetInt32(statementhandle, 1, 42);
if (!err) {
err = MimerOpenCursor(statementhandle);
if (!err) {
current_row = MimerCurrentRow(statementhandle); // current_row=0
do {
err = MimerFetchScroll(statementhandle, MIMER_NEXT, 0); // 1
current_row = MimerCurrentRow(statementhandle); // current_row=1
[...]
err = MimerFetchScroll(statementhandle, MIMER_RELATIVE, -3); // 2
current_row = MimerCurrentRow(statementhandle); // current_row=0
[...]
err = MimerFetchScroll(statementhandle, MIMER_ABSOLUTE, 10); // 3
current_row = MimerCurrentRow(statementhandle); // current_row=10
[...]
err = MimerFetchScroll(statementhandle, MIMER_PREVIOUS, 0); // 4
current_row = MimerCurrentRow(statementhandle); // current_row=9
[...]
err = MimerFetchScroll(statementhandle, MIMER_ABSOLUTE, 20); // 5
current_row = MimerCurrentRow(statementhandle); // current_row=11
[...]
err = MimerFetchScroll(statementhandle, MIMER_LAST, 0); // 6
current_row = MimerCurrentRow(statementhandle); // current_row=10
[...]
err = MimerFetchScroll(statementhandle, MIMER_FIRST, 0); // 7
current_row = MimerCurrentRow(statementhandle); // current_row=1
[...]

} while (!err);
MimerCloseCursor(statementhandle);

}
}
MimerEndStatement(&statementhandle);

}
MimerEndSession(&sessionhandle);

}

1 We scroll one row forward, into the first row of the result set. The current row is
now 1.

Mimer SQL Version 11.0 115
Programmer’s Manual

2 We now scroll three rows backwards. The current row is now before the result set.
Even though we scroll three rows backwards, we cannot get further back than the
row before the result set. The fetch call will return MIMER_NO_DATA and the
current row is 0.

3 Now, we scroll to the tenth row. The current row is now 10.
4 One row backwards. The current row is now 9.
5 We try to scroll to the twentieth row. Since there are only 10 rows in the result set,

the scroll operation will return MIMER_NO_DATA, and the current row is now 11.
6 We wish to see the last row. The current row is now 10.
7 Now, we scroll back to the first row. The current row is now 1.

116 Chapter 6 Mimer SQL C API

Mimer SQL Version 11.0 117
Programmer’s Manual

Chapter 7

Mimer SQL C API
Reference

The following routines are included in the Mimer API:

Routine Description Micro API
compatible

MimerAddBatch Add currently set parameters to
statement.

Yes

MimerBeginSession Starts a session with the database.
(wchar_t version.)

Yes

MimerBeginSession8 Starts a session with the database.
(UTF-8 version.)

MimerBeginSessionC Starts a session with the database.
(char version.)

Yes

MimerBeginStatement Prepares a statement for execution.
(wchar_t version.)

Yes

MimerBeginStatement8 Prepares a statement for execution.
(UTF-8 version.)

MimerBeginStatementC Prepares a statement for execution.
(char version.)

Yes

MimerBeginTransaction Starts a transaction.

MimerCloseCursor Closes an open cursor. Yes

MimerColumnCount Obtains the number of columns in a
result set.

MimerColumnName Obtains the name of a column.
(wchar_t version.)

MimerColumnName8 Obtains the name of a column. (UTF-
8 version.)

MimerColumnNameC Obtains the name of a column. (char
version.)

118 Chapter 7 Mimer SQL C API Reference

MimerColumnType Returns the type of a column.

MimerCurrentRow Returns the current row of a result set.

MimerEndSession Ends a database session. Yes

MimerEndStatement Closes a prepared statement. Yes

MimerEndTransaction Commits or rollbacks a transaction.

MimerExecute Executes a statement that does not
return a result set.

Yes

MimerExecuteStatement Executes a statement directly without
parameters. (wchar_t version.)

Yes

MimerExecuteStatement8 Executes a statement directly without
parameters. (UTF-8 version.)

MimerExecuteStatementC Executes a statement directly without
parameters. (char version.)

Yes

MimerFetch Advances to the next row of the result
set.

Yes

MimerFetchScroll Moves the current cursor position on a
scrollable cursor.

MimerFetchSkip Advances to the next row of the result
set but optionally skips a number of
rows in the result set.

Yes

MimerGetBinary Gets binary data from a result set or an
output parameter.

Yes

MimerGetBlobData Retrieves the content of a binary large
object.

MimerGetBoolean Gets boolean data from a result set or
an output parameter.

Yes

MimerGetDouble Gets double precision float data from
a result set or an output parameter.

Yes

MimerGetFloat Gets single precision float data from a
result set or an output parameter.

Yes

MimerGetInt32 Gets int32_t integer data from a result
set or an output parameter.

Yes

MimerGetInt64 Gets int64_t integer (long long) data
from a result set or an output
parameter.

Yes

MimerGetLob Obtains a large object handle.

Routine Description Micro API
compatible

Mimer SQL Version 11.0 119
Programmer’s Manual

MimerGetNclobData Retrieves the contents of a character
large object. (wchar_t version.)

MimerGetNclobData8 Retrieves the contents of a character
large object. (UTF-8 version.)

MimerGetNclobDataC Retrieves the contents of a character
large object. (char version.)

MimerGetStatistics Obtains server statistics information. Yes

MimerGetString Gets character data from a result set or
an output parameter. (wchar_t
version.)

Yes

MimerGetString8 Gets character data from a result set or
an output parameter. (UTF-8 version.)

MimerGetStringC Gets character data from a result set or
an output parameter into a multi byte
character string. (char version.)

Yes

MimerGetUUID Gets a Universally unique identifier
from a result set or output parameter.

Yes

MimerIsNull Checks if a result set column or output
parameter has the SQL null value.

Yes

MimerNext Advances the current row to the next
row, within the current array.

MimerOpenCursor Opens a result set. Yes

MimerParameterCount Returns the number of parameters for
a statement.

MimerParameterMode Detects the input/output mode of a
parameter.

MimerParameterName Obtains the name of a parameter.
(wchar_t version.)

MimerParameterName8 Obtains the name of a parameter.
(UTF-8 version.)

MimerParameterNameC Obtains the name of a parameter.
(char version.)

MimerParameterType Obtains the data type of a parameter.

MimerSetArraySize Sets the number of bytes to fetch in
each server request.

MimerSetBinary Sets a binary data parameter. Yes

MimerSetBlobData Sets the data of a binary large object.

Routine Description Micro API
compatible

120 Chapter 7 Mimer SQL C API Reference

MimerSetBoolean Sets a boolean data parameter. Yes

MimerSetDouble Sets a double precision floating point
parameter.

Yes

MimerSetFloat Sets a single precision floating point
parameter.

Yes

MimerSetInt32 Sets an int32_t integer parameter. Yes

MimerSetInt64 Sets an int64_t integer parameter. Yes

MimerSetLob Sets a large object in the database.

MimerSetNclobData Sets the data of a character large
object. (wchar_t version.)

MimerSetNclobData8 Sets the data of a character large
object. (UTF-8 version.)

MimerSetNclobDataC Sets the data of a character large
object. (char version.)

MimerSetNull Sets an input parameter to the SQL
null value.

Yes

MimerSetString Sets a string parameter. (wchar_t
version.)

Yes

MimerSetString8 Sets a string parameter. (UTF-8
version.)

MimerSetStringC Sets a string parameter. (char version.) Yes

MimerSetStringLen Sets a string parameter. (wchar_t
version.)

MimerSetStringLen8 Sets a string parameter. (UTF-8
version.)

MimerSetStringLenC Sets a string parameter. (char version.)

MimerSetUUID Sets a Universally unique identifier
parameter.

Yes

Routine Description Micro API
compatible

Mimer SQL Version 11.0 121
Programmer’s Manual

MimerAddBatch
Add the currently set parameters to the statement be executed on the next call to
MimerExecute. If this call succeeds, the statement is ready to accept another set of
parameters to be executed during the same server call. The benefit of executing several
parameter sets at the same time is beneficial to performance.
Statements which may accept multiple parameter sets include DML statement and
procedure calls, such as INSERT, UPDATE, DELETE and CALL. MimerAddBatch
cannot be used with statements which return result sets.

Parameters
int32_t MimerAddBatch (

MimerStatement statementhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine may interact with the database server.
Micro API compatible.

statementhandle in The statement whose parameters to batch.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

MIMER_SEQUENCE_ERROR The statement was not ready to accept
parameters.

MIMER_UNSET_PARAMETERS All input parameters have not yet been set.

MIMER_OUT_OF_MEMORY Enough memory to hold an additional set of
parameters could not be allocated.

122 Chapter 7 Mimer SQL C API Reference
MimerBeginSession

MimerBeginSession
Starts a session with the database. (wchar_t version.)

Parameters
int32_t MimerBeginSession (

const wchar_t *database,
const wchar_t *ident,
const wchar_t *password,
MimerSession *sessionhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
A session handle may or may not have been returned. MimerEndSession should
therefore always be called to avoid handle leaks.
Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

database in The name of the database to connect to. If this is null, a
connection to the default database is created.

ident in The ident associated with the session to create. This
parameter may not be null.

password in The password of the ident. A null value is identical to a
zero length password. Database servers which do not
enforce authentication control may ignore the password.

sessionhandle out A session handle identifying the session when calling
MimerEndSession, MimerBeginStatement,
MimerBeginStatement8,
MimerBeginStatementC,
MimerBeginTransaction,
MimerExecuteStatement,
MimerExecuteStatement8,
MimerExecuteStatementC and
MimerEndTransaction.

Return value Description

MIMER_SUCCESS Success.

MIMER_OUTOFMEMORY Out of memory.

MIMER_ILLEGAL_CHARACTER One of the string parameters database, ident or
password contained an illegal character.

< 0 Any of the server error codes listed in Appendix
B Return Codes.

Mimer SQL Version 11.0 123
Programmer’s Manual

MimerBeginSession8
Starts a session with the database. (UTF-8 version.)

Parameters
int32_t MimerBeginSession8 (

const char *database,
const char *ident,
const char *password,
MimerSession *sessionhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
A session handle may or may not have been returned. MimerEndSession should
therefore always be called to avoid handle leaks.
Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

database in The name of the database to connect to. If this is null, a
connection to the default database is created.

ident in The ident associated with the session to create. This
parameter may not be null.

password in The password of the ident. A null value is identical to a
zero length password. Database servers which do not
enforce authentication control may ignore the password.

sessionhandle out A session handle identifying the session when calling
MimerEndSession, MimerBeginStatement,
MimerBeginStatement8,
MimerBeginStatementC,
MimerBeginTransaction,
MimerExecuteStatement,
MimerExecuteStatement8,
MimerExecuteStatementC and
MimerEndTransaction.

Return value Description

MIMER_SUCCESS Success.

MIMER_OUTOFMEMORY Out of memory.

MIMER_ILLEGAL_CHARACTER One of the string parameters database, ident or
password contained an illegal character.

< 0 Any of the server error codes listed in Appendix
B Return Codes.

124 Chapter 7 Mimer SQL C API Reference
MimerBeginSessionC

MimerBeginSessionC
Starts a session with the database. (char version.)

Parameters
int32_t MimerBeginSessionC (

const char *database,
const char *ident,
const char *password,
MimerSession *sessionhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
A session handle may or may not have been returned. MimerEndSession should
therefore always be called to avoid handle leaks.
Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

database in The name of the database to connect to. If this is null, a
connection to the default database is created.

ident in The ident associated with the session to create. This
parameter may not be null.

password in The password of the ident. A null value is identical to a
zero length password. Database servers which do not
enforce authentication control may ignore the password.

sessionhandle out A session handle identifying the session when calling
MimerEndSession, MimerBeginStatement,
MimerBeginStatement8,
MimerBeginTransaction,
MimerExecuteStatement,
MimerExecuteStatement8,
MimerExecuteStatementC and
MimerEndTransaction.

Return value Description

MIMER_SUCCESS Success.

MIMER_OUTOFMEMORY Out of memory.

MIMER_ILLEGAL_CHARACTER One of the string parameters database, ident or
password contained an illegal character.

< 0 Any of the server error codes listed in Appendix
B Return Codes.

Mimer SQL Version 11.0 125
Programmer’s Manual

MimerBeginStatement
Prepares an SQL statement for execution. (wchar_t version.)
Between the preparation and the time of execution, the application may supply any
number of input parameters to be used when executing the statement.
The same statement does not need to be prepared again, even if it is executed multiple
times. However, all input parameters have to be set again before each execution.
There is no need to prepare all statements at the start of the application.

Parameters
int32_t MimerBeginStatement (

MimerSession sessionhandle,
const wchar_t *sqlstatement,
int32_t options,
MimerStatement *statementhandle)

Returns
A negative value indicating an error, or zero if successful.

sessionhandle in A handle returned by MimerBeginSession[C],
identifying the session.

sqlstatement in SQL statement string.

options in A bit mask of options identifying the characteristics of
the statement. The following values specifies a cursor
being scrollable, or forward only:
MIMER_FORWARD_ONLY (0x0)
MIMER_SCROLLABLE (0x1)
A value of 0 will indicate MIMER_FORWARD_ONLY.

statementhandle out A handle to the statement is returned here.

Return value Description

MIMER_SUCCESS Success.

MIMER_ILLEGAL_CHARACTER The statement string contained an
illegal character.

MIMER_HANDLE_INVALID The sessionhandle parameter
was not recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_STATEMENT_CANNOT_BE_PREPARED The statement was a DDL statement
which cannot be prepared. Such
statements should be executed using
MimerExecuteStatement.

MIMER_TRUNCATION_ERROR The statement string was too long.

126 Chapter 7 Mimer SQL C API Reference
MimerBeginStatement

Notes
This routine interacts with the database server.
Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Return value Description

Mimer SQL Version 11.0 127
Programmer’s Manual

MimerBeginStatement8
Prepares an SQL statement for execution. (UTF-8 version.)
Between the preparation and the time of execution, the application may supply any
number of parameters to be used when executing the statement.
The same statement does not need to be prepared again, even if it is executed multiple
times.
There is no need to prepare all statements at the start of the application.

Parameters
int32_t MimerBeginStatement8 (

MimerSession sessionhandle,
const char *sqlstatement,
int32_t options,
MimerStatement *statementhandle)

Returns
A negative value indicating an error, or zero if successful.

sessionhandle in A handle returned by MimerBeginSession[C],
identifying the session.

sqlstatement in SQL statement string.

options in A bit mask of options identifying the characteristics of
the statement. The following values specifies a cursor
being scrollable, or forward only:
MIMER_FORWARD_ONLY (0x0)
MIMER_SCROLLABLE (0x1)
A value of 0 will indicate MIMER_FORWARD_ONLY.

statementhandle out A handle to the statement is returned here.

Return value Description

MIMER_SUCCESS Success.

MIMER_ILLEGAL_CHARACTER The statement string contained an
illegal character.

MIMER_HANDLE_INVALID The sessionhandle parameter
was not recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_STATEMENT_CANNOT_BE_PREPARED The statement was a DDL statement
which cannot be prepared. Such
statements should be executed using
MimerExecuteStatement.

MIMER_TRUNCATION_ERROR The statement string was too long.

128 Chapter 7 Mimer SQL C API Reference
MimerBeginStatement8

Notes
This routine interacts with the database server.
Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Return value Description

Mimer SQL Version 11.0 129
Programmer’s Manual

MimerBeginStatementC
Prepares an SQL statement for execution. (char version.)
Between the preparation and the time of execution, the application may supply any
number of parameters to be used when executing the statement.
The same statement does not need to be prepared again, even if it is executed multiple
times.
There is no need to prepare all statements at the start of the application.

Parameters
int32_t MimerBeginStatementC (

MimerSession sessionhandle,
const char *sqlstatement,
int32_t options,
MimerStatement *statementhandle)

Returns
A negative value indicating an error, or zero if successful.

sessionhandle in A handle returned by MimerBeginSession[C],
identifying the session.

sqlstatement in SQL statement string.

options in A bit mask of options identifying the characteristics of
the statement. The following values specifies a cursor
being scrollable, or forward only:
MIMER_FORWARD_ONLY (0x0)
MIMER_SCROLLABLE (0x1)
A value of 0 will indicate MIMER_FORWARD_ONLY.

statementhandle out A handle to the statement is returned here.

Return value Description

MIMER_SUCCESS Success.

MIMER_ILLEGAL_CHARACTER The statement string contained an
illegal character.

MIMER_HANDLE_INVALID The sessionhandle parameter
was not recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_STATEMENT_CANNOT_BE_PREPARED The statement was a DDL statement
which cannot be prepared. Such
statements should be executed using
MimerExecuteStatement.

MIMER_TRUNCATION_ERROR The statement string was too long.

130 Chapter 7 Mimer SQL C API Reference
MimerBeginStatementC

Notes
This routine interacts with the database server.
Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Return value Description

Mimer SQL Version 11.0 131
Programmer’s Manual

MimerBeginTransaction
Starts a transaction.
This routine only needs to be called if two or more database operations should participate
in the transaction. (If the transaction consists of one single operation, simply use the auto-
commit functionality, which is the default. See Transactions on page 102.)

Parameters
int32_t MimerBeginTransaction (

MimerSession sessionhandle,
int32_t transoption)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Not Micro API compatible.

sessionhandle in A handle returned by MimerBeginSession[C|8],
identifying the session.

transoption in A bit mask of options identifying the characteristics of
the transaction. The following values specifies a
transaction being read/write, or read only:
MIMER_TRANS_READWRITE (0x0)
MIMER_TRANS_READONLY (0x4)
A value of 0 will indicate MIMER_TRANS_READWRITE.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The sessionhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

132 Chapter 7 Mimer SQL C API Reference
MimerCloseCursor

MimerCloseCursor
Closes an open cursor.
When the cursor is closed, all resources held by the result set are released.
After the cursor is closed, the cursor may either be reopened using a call to
MimerOpenCursor or the statement should be released using a call to
MimerEndStatement. Before the cursor is reopened, a new set of parameters may be
supplied using any of the data input functions.

Parameters
int32_t MimerCloseCursor (MimerStatement statementhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

Return value Description

MIMER_SUCCESS Success.

MIMER_SEQUENCE_ERROR If the statement cursor is not open.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

Mimer SQL Version 11.0 133
Programmer’s Manual

MimerColumnCount
Obtains the number of columns in a result set.

Parameters
int32_t MimerColumnCount (MimerStatement statementhandle)

Returns
If zero or positive, the number of result set columns. If negative a standard Mimer error
code.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

Return value Description

>= 0 The number of result set columns.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

MIMER_SEQUENCE_ERROR The statement is not compiled.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

134 Chapter 7 Mimer SQL C API Reference
MimerColumnName

MimerColumnName
Obtains the name of a column. (wchar_t version.)

Parameters
int32_t MimerColumnName (

MimerStatement statementhandle,
int16_t column,
wchar_t *columnname,
size_t maxlen)

Returns
Returns the number of characters in the column name. If this value is larger than
maxlen-1, a truncation occurred. If a negative value was returned, there was an error.

Notes
Not Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

column in The column number, where the leftmost column is 1.

columnname out The area where to return the column name. The
maximum column name length returned is maxlen-1.

maxlen in The size of the columnname area.

Return value Description

>= 0 Length of column name (in
characters)

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR Statement is not compiled

MIMER_NONEXISTENT_COLUMN_PARAMETER The column number does not exist

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Mimer SQL Version 11.0 135
Programmer’s Manual

MimerColumnName8
Obtains the name of a column. (UTF-8 version.)

Parameters
int32_t MimerColumnName8 (

MimerStatement statementhandle,
int16_t column,
char *columnname,
size_t maxsiz)

Returns
Returns the size of the column name in bytes. If this value is larger than maxsiz-1, a
truncation occurred. If a negative value was returned, there was an error.

Notes
Not Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

column in The column number, where the leftmost column is 1.

columnname out The are where to return the column name. The
maximum column name length returned is maxsiz-1.

maxsiz in The size of the columnname area.

Return value Description

>= 0 Length of column name (in
characters)

MIMER_HANDLE_INVALID The statementhandle
parameter was not recognized as
a handle.

MIMER_SEQUENCE_ERROR Statement is not compiled.

MIMER_NONEXISTENT_COLUMN_PARAMETER The column number does not
exist.

Other value < 0 Any of the server error codes
listed in Appendix B Return
Codes.

136 Chapter 7 Mimer SQL C API Reference
MimerColumnNameC

MimerColumnNameC
Obtains the name of a column. (char version.)

Parameters
int32_t MimerColumnNameC (

MimerStatement statementhandle,
int16_t column,
char *columnname,
size_t maxsiz)

Returns
Returns the size of the column name in bytes. If this value is larger than maxsiz-1, a
truncation occurred. If a negative value was returned, there was an error.

Notes
Not Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

column in The column number, where the leftmost column is 1.

columnname out The are where to return the column name. The
maximum column name length returned is maxsiz-1.

maxsiz in The size of the columnname area.

Return value Description

>= 0 Length of column name (in
characters)

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR Statement is not compiled.

MIMER_NONEXISTENT_COLUMN_PARAMETER The column number does not exist.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Mimer SQL Version 11.0 137
Programmer’s Manual

MimerColumnType
Returns the type of a column.

Parameters
int32_t MimerColumnType (

MimerStatement statementhandle,
int16_t column)

Returns
Returns the column type or a negative value if an error occurred.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

column in The column number, where the leftmost column is 1.

Return value Description

> 0 Data type. See list in Data Types on
page 103.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR Statement is not compiled

MIMER_NONEXISTENT_COLUMN_PARAMETER The column number does not exist

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

138 Chapter 7 Mimer SQL C API Reference
MimerCurrentRow

MimerCurrentRow
Returns the current row of a result set.

Parameters
int32_t MimerCurrentRow (MimerStatement statementhandle)

Returns
A negative value indicate an error code. Zero or a positive value indicates the current
cursor position.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

Return value Description

>= 0 Current cursor position.
If the current position is before the result set, 0 is
returned. A value of 1 indicates the first row of the
result set.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

MIMER_SEQUENCE_ERROR If the statement cursor is not open.

Mimer SQL Version 11.0 139
Programmer’s Manual

MimerEndSession
Ends a database session.
If there are any active transactions, these are rollbacked.

Parameters
int32_t MimerEndSession (MimerSession *sessionhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Micro API compatible.

sessionhandle in A reference to a handle returned by
MimerBeginSession[C|8], identifying the session.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The sessionhandle parameter was not
recognized as a handle.

MIMER_SEQUENCE_ERROR If there are open statements on the session. Use
MimerEndStatement to release them.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

140 Chapter 7 Mimer SQL C API Reference
MimerEndStatement

MimerEndStatement
Closes a prepared statement.
If there is an open cursor on this statement, it is automatically closed.

Parameters
int32_t MimerEndStatement (MimerStatement *statementhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

Mimer SQL Version 11.0 141
Programmer’s Manual

MimerEndTransaction
Commits or rollbacks a transaction.
Open cursors are automatically closed.

Parameters
int32_t MimerEndTransaction (

MimerSession sessionhandle,
int32_t commit_rollback)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Not Micro API compatible.

sessionhandle in A handle returned by MimerBeginSession[C|8]
identifying the session.

commit_rollback in An integer specifying the transaction operation to
perform. MIMER_COMMIT and MIMER_ROLLBACK are
recognized.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The sessionhandle parameter was not
recognized as a handle.

MIMER_SEQUENCE_ERROR No transaction has been started.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

142 Chapter 7 Mimer SQL C API Reference
MimerExecute

MimerExecute
Execute a statement that does not return a result set.
Statements that do not return a result set include data manipulation statements (INSERT,
UPDATE, DELETE), assignments (SET) and procedure calls (CALL). (Statements that
return a result set are handled using cursors. See Result set producing statements on
page 100.)
Before calling MimerExecute, set all input parameters of the statement using data input
routines. (See Data Input Routines on page 100.)
If this call returns successfully, any output parameters may be retrieved using data output
routines. (See Data Output Routines on page 100.)

Parameters
int32_t MimerExecute (MimerStatement statementhandle)

Returns
A negative value indicating an error, or zero if successful. A positive value indicates an
update row count returned by the database.

Notes
This routine interacts with the database server.
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

Return value Description

> 0 Success. Value indicates an update row count.

MIMER_SUCCESS Success.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

MIMER_SEQUENCE_ERROR If this routine is called on a statement which
returns a result set.

MIMER_UNSET_PARAMETERS All input parameters have not yet been set.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

Mimer SQL Version 11.0 143
Programmer’s Manual

MimerExecuteStatement
Executes a statement directly without parameters. (wchar_t version.)
This routine is mainly intended for data definition statements (e.g. CREATE TABLE),
but can also be used for regular INSERT, UPDATE and DELETE statements with no
input or output parameters.

Parameters
int32_t MimerExecuteStatement (

MimerSession sessionhandle,
const wchar_t *sqlstatement)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

sessionhandle in A handle returned by MimerBeginSession[C|8],
identifying the session.

sqlstatement in An SQL statement.

Return value Description

MIMER_SUCCESS Success.

MIMER_ILLEGAL_CHARACTER The statement string contained an illegal character.

MIMER_HANDLE_INVALID The sessionhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

MIMER_STRING_TRUNCATION The statement string was too long.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

144 Chapter 7 Mimer SQL C API Reference
MimerExecuteStatement8

MimerExecuteStatement8
Executes a statement directly without parameters. (UTF-8 version.)
This routine is mainly intended for data definition statements (e.g. CREATE TABLE),
but can also be used for regular INSERT, UPDATE and DELETE statements with no
input or output parameters.

Parameters
int32_t MimerExecuteStatement8 (

MimerSession sessionhandle,
const char *sqlstatement)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

sessionhandle in A handle returned by MimerBeginSession[C|8],
identifying the session.

sqlstatement in An SQL statement.

Return value Description

MIMER_SUCCESS Success.

MIMER_ILLEGAL_CHARACTER The statement string contained an illegal character.

MIMER_HANDLE_INVALID The sessionhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

MIMER_STRING_TRUNCATION The statement string was too long.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

Mimer SQL Version 11.0 145
Programmer’s Manual

MimerExecuteStatementC
Executes a statement directly without parameters. (char version.)
This routine is mainly intended for data definition statements (e.g. CREATE TABLE),
but can also be used for regular INSERT, UPDATE and DELETE statements with no
input or output parameters.

Parameters
int32_t MimerExecuteStatementC (

MimerSession sessionhandle,
const char *sqlstatement)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

sessionhandle in A handle returned by MimerBeginSession[C|8],
identifying the session.

sqlstatement in An SQL statement.

Return value Description

MIMER_SUCCESS Success.

MIMER_ILLEGAL_CHARACTER The statement string contained an illegal character.

MIMER_HANDLE_INVALID The sessionhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

MIMER_STRING_TRUNCATION The statement string was too long.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

146 Chapter 7 Mimer SQL C API Reference
MimerFetch

MimerFetch
Advances to the next row of the result set.
If the routine returns successfully, the current row has been advanced one row down the
result set. Column data may be retrieved using data output routines.

Parameters
int32_t MimerFetch (MimerStatement statementhandle)

Returns
A negative value indicating an error, or zero if successful. A value of MIMER_NO_DATA
indicates that the end of the result has been reached.

Notes
This routine interacts with the database server.
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement with an open cursor.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

MIMER_SEQUENCE_ERROR If there is no open result set on this statement.

MIMER_NO_DATA If there are no more rows in the result set.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

Mimer SQL Version 11.0 147
Programmer’s Manual

MimerFetchScroll
Moves the current cursor position on a scrollable cursor.
A non-scrollable cursor (MIMER_FORWARD_ONLY) may only be read using scroll
operation MIMER_NEXT.

Parameters
int32_t MimerFetchScroll (

MimerStatement statementhandle,
int32_t operation,
int32_t offset)

Returns
A negative value indicating an error, or zero if successful. A value of MIMER_NO_DATA
indicates that the end of the result has been reached.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

operation in A value describing the scroll operation to perform. This
value may be either of the following:
MIMER_RELATIVE (0x00000000) - Move to a row
number relative to the current position.
MIMER_NEXT (0x00000001) - Move on to the next
row.
MIMER_PREVIOUS (0xffffffff) - Move to the
previous row.
MIMER_ABSOLUTE (0x40000000) - Move to an
absolute row number.
MIMER_FIRST (0x40000001) - Move to the first row
of the result set.
MIMER_LAST (0xbfffffff) - Move to the last row of
the result set.

offset in A parameter to MIMER_RELATIVE and
MIMER_ABSOLUTE operation codes.
A relative value of n will move the cursor n rows
relative to the current row. An absolute value of n will
move to the n:th row of the result set. See Scrolling
through a result set on page 114 for an example of scroll
operations.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

148 Chapter 7 Mimer SQL C API Reference
MimerFetchScroll

Notes
This routine interacts with the database server.
Not Micro API compatible.

MIMER_SEQUENCE_ERROR There is no open scrollable cursor this statement.
Scrollability is determined at compile time with
the options parameter to MimerBeginStatement
or MimerBeginStatement8.

MIMER_NO_DATA If the scroll operation ended up on a row without
data, that is either before or after the result set.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

Return value Description

Mimer SQL Version 11.0 149
Programmer’s Manual

MimerFetchSkip
Advances to the next row of the result set but optionally skips a number of rows in the
result set.
If the routine returns successfully, the current row has been advanced the specified
number of rows down the result set. Column data may be retrieved using any of the data
output functions.

Parameters
int32_t MimerFetchSkip (

MimerStatement statementhandle,
int32_t count)

Returns
A negative value indicating an error, or zero if successful. A value of MIMER_NO_DATA
indicates that the end of the result has been reached.

Notes
This routine interacts with the database server.
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement with an open cursor.

count in Number of rows to advance the current row down the
result set.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

MIMER_NO_DATA If there are no more rows in the result set.

MIMER_SEQUENCE_ERROR If there is no open result set on this statement.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

150 Chapter 7 Mimer SQL C API Reference
MimerGetBinary

MimerGetBinary
Gets binary data from a result set or an output parameter.
Only SQL data types BINARY and BINARY VARYING may be retrieved using this
routine.

Parameters
int32_t MimerGetBinary (

MimerStatement statementhandle,
int16_t paramno_colno,
void *dest,
size_t dest_maxsiz)

Returns
A negative value indicating error, or a non-negative value indicating the number of bytes
in the binary column.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

dest out A memory location where to place output binary data. If
this is null, no data will be returned, but the size of the
binary data is still returned by this routine.

dest_maxsiz in The maximum size of the dest memory location in
bytes.

Return value Description

>= 0 The number of bytes in the binary
column. If this value is larger than
the dest_maxsiz parameter, the
output data was truncated.

MIMER_CAST_VIOLATION If the output parameter or column
was not of the BINARY or BINARY
VARYING data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a data
output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open, or
the current row is before the first row
of the result set, or after the last row
of the result set.

Mimer SQL Version 11.0 151
Programmer’s Manual

Notes
Micro API compatible.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

Return value Description

152 Chapter 7 Mimer SQL C API Reference
MimerGetBlobData

MimerGetBlobData
Retrieves the content of a binary large object.
If the binary large object is to be retrieved in multiple chunks, chunks are retrieved in
sequence, where the length of each chunk is specified by the length parameter of each call
to this routine. Chunks may only be retrieved sequentially through the binary large object.

Parameters
int32_t MimerGetBlobData (

MimerLob *blobhandle,
void *data,
size_t size)

Returns
A negative value indicating error, or a non-negative value indicating the number of bytes
available to return.

Notes
This routine interacts with the database server.
Not Micro API compatible.

blobhandle in A reference to a binary large object handle created by
MimerGetLob.

data out Where to place the entire or a part of the binary large
object.

size in The size in bytes to retrieve in this chunk.

Return value Description

>= 0 The number of bytes available to return. This
includes the number of bytes returned in this call
and all data that are left in the BLOB.
When the returned value is equal or less than the
size input parameter, all data of the BLOB has
been returned.

MIMER_HANDLE_INVALID The blobhandle parameter was not recognized
as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix B
Return Codes.

Mimer SQL Version 11.0 153
Programmer’s Manual

MimerGetBoolean
Gets boolean data from a result set or an output parameter.
Only the database data type BOOLEAN may be retrieved using this call.

Parameters
int32_t MimerGetBoolean (

MimerStatement statementhandle,
int16_t paramno_colno)

Returns
The value 0 for FALSE, the value 1 for TRUE, or a negative value indicating an error.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

Return value Description

1 Boolean value TRUE.

0 Boolean value FALSE.

MIMER_CAST_VIOLATION If the output parameter or column
was not of the BOOLEAN data
type.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

154 Chapter 7 Mimer SQL C API Reference
MimerGetDouble

MimerGetDouble
Gets double precision floating point data from a result set or an output parameter.
Only the SQL data types DOUBLE PRECISION and REAL may be retrieved using this
call.

Parameters
int32_t MimerGetDouble (

MimerStatement statementhandle,
int16_t paramno_colno,
double *value)

Returns
A negative value indicating an error, or zero if successful.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

value out A memory location where to place the double precision
floating point value.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the output value was not of the
DOUBLE PRECISION or REAL
data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

Mimer SQL Version 11.0 155
Programmer’s Manual

MimerGetFloat
Gets single precision floating point data from a result set or an output parameter.
Only the SQL data types DOUBLE PRECISION and REAL may be retrieved using this
call.

Parameters
int32_t MimerGetFloat (

MimerStatement statementhandle,
int16_t paramno_colno,
float *value)

Returns
A negative value indicating an error, or zero if successful.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

value out A memory location where to place the floating point
value.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the output value was not of the
DOUBLE PRECISION or REAL
data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

156 Chapter 7 Mimer SQL C API Reference
MimerGetInt32

MimerGetInt32
Gets integer data from a result set or an output parameter.
Only the SQL data types INTEGER, BIGINT and SMALLINT may be get using this call.

Parameters
int32_t MimerGetInt32 (

MimerStatement statementhandle,
int16_t paramno_colno,
int32_t *value)

Returns
A negative value indicating an error, or zero if successful.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

value out A memory location where to place the integer.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the output parameter or column
was not of the INTEGER, BIGINT
or SMALLINT data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

Mimer SQL Version 11.0 157
Programmer’s Manual

MimerGetInt64
Gets int64_t integer data from a result set or an output parameter.
Only the SQL data types INTEGER, BIGINT and SMALLINT may be retrieved using
this call.

Parameters
int32_t MimerGetInt64 (

MimerStatement statementhandle,
int16_t paramno_colno,
int64_t *value)

Returns
A negative value indicating an error, or zero if successful.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

value out A memory location where to place the integer value.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the value was not of the
INTEGER, BIGINT or
SMALLINT data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

158 Chapter 7 Mimer SQL C API Reference
MimerGetLob

MimerGetLob
Obtains a large object handle.
Only the SQL data types BINARY LARGE OBJECT, CHARACTER LARGE OBJECT
and NATIONAL CHARACTER LARGE OBJECT may be retrieved using this call.
Whenever a large object is about to retrieved from the database, this routine obtains the
object from the result set row, and the length is returned. Subsequent calls to
MimerGetBlobData or MimerGetNclobData retrieves the actual object from the
database.
If there are any other open large object handles on this statement, these are closed before
returning the new one.
Note that if this routine returns a size or length of 0, it is strictly not required to call the
MimerGetBlobData or MimerGetNclobData routines for the large object contents,
thus a database server round-trip may be saved.

Parameters
int32_t MimerGetLob (

MimerStatement statementhandle,
int16_t colno,
size_t *size_length,
MimerLob *lobhandle)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

colno in The column number to get data from. First column is 1.

size_length out The size of a BINARY LARGE OBJECT in bytes or the
length of a CHARACTER LARGE OBJECT or a
NATIONAL CHARACTER LARGE OBJECT.

lobhandle out A handle to the binary large object.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the output parameter or column
was not of the BINARY LARGE
OBJECT, CHARACTER LARGE
OBJECT or NATIONAL
CHARACTER LARGE OBJECT
data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

Mimer SQL Version 11.0 159
Programmer’s Manual

Notes
Not Micro API compatible.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

Return value Description

160 Chapter 7 Mimer SQL C API Reference
MimerGetNclobData

MimerGetNclobData
Retrieves the contents of a character large object. (wchar_t version.)
A character large object may be retrieved in one or more chunks.
If the character large object is to be retrieved in multiple chunks, chunks are retrieved in
sequence, where the length of each chunk is specified by the length parameter of each call
to this routine. Chunks may only be retrieved sequentially through the character large
object.

Parameters
int32_t MimerGetNclobData (

MimerLob *clobhandle,
wchar_t *data,
size_t size)

Returns
A negative value indicating error, or a non-negative value indicating the number of
characters available to return. This includes the number of characters returned in this call
(excluding terminating null) and all data that are left in the character object. When the
returned value is less than the length input parameter, all data of the character object has
been returned.
This value may be used to calculate how many characters (excluding terminating zero)
that were returned using this formula:

returned_characters = min(length_input_parameter-1,return_value)

The following formula may be used to calculate the number of characters left to return:
left_to_return = return_value-length_input_parameter+1

clobhandle in A handle to a character large object returned by a call to
MimerGetLob.

data out Where to place the entire or a part of the character large
object.

size in The maximum number of bytes to retrieve, including
terminating null. That is, if this parameter is n, the next
n-1 characters are retrieved from the large object.

Return value Description

> 0 The number of characters left to return.

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The clobhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

Mimer SQL Version 11.0 161
Programmer’s Manual

Notes
This routine interacts with the database server.
Not Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

162 Chapter 7 Mimer SQL C API Reference
MimerGetNclobData8

MimerGetNclobData8
Retrieves the contents of a character large object. (UTF-8 version.)
A character large object may be retrieved in one or more chunks.
If the character large object is to be retrieved in multiple chunks, chunks are retrieved in
sequence, where the length of each chunk is specified by the length parameter of each call
to this routine. Chunks may only be retrieved sequentially through the character large
object.

Parameters
int32_t MimerGetNclobData8 (

size_t *returned,
MimerLob clobhandle,
char *data,
size_t size)

Returns
A negative value indicating error, or a non-negative value indicating the number of
characters available to return. This includes the number of characters returned in this call
(excluding terminating null) and all data that are left in the character object. When the
returned value is less than the length input parameter, all data of the character object has
been returned.
This value may be used to calculate how many characters (excluding terminating null)
that were returned using this formula:

returned_characters = min(length_input_parameter-1,return_value)

The following formula may be used to calculate the number of characters left to return:
left_to_return = return_value-length_input_parameter+1

returned out The number of bytes, excluding terminating zero,
returned as a result of the operation.

clobhandle in A handle to a character large object returned by a call to
MimerGetLob.

data out Where to place the entire or a part of the character large
object.

size in The number of bytes to retrieve, including terminating
null.

Return value Description

>= 0 Success.
The number of characters to return. (See
description above.)

MIMER_HANDLE_INVALID The clobhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Mimer SQL Version 11.0 163
Programmer’s Manual

Notes
This routine interacts with the database server.
Not Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

Return value Description

164 Chapter 7 Mimer SQL C API Reference
MimerGetNclobDataC

MimerGetNclobDataC
Retrieves the contents of a character large object. (char version.)
A character large object may be retrieved in one or more chunks.
If the character large object is to be retrieved in multiple chunks, chunks are retrieved in
sequence, where the length of each chunk is specified by the length parameter of each call
to this routine. Chunks may only be retrieved sequentially through the character large
object.

Parameters
int32_t MimerGetNclobDataC (

size_t *returned,
MimerLob clobhandle,
char *data,
size_t size)

Returns
A negative value indicating error, or a non-negative value indicating the number of
characters available to return. This includes the number of characters returned in this call
(excluding terminating null) and all data that are left in the character object. When the
returned value is less than the length input parameter, all data of the character object has
been returned.
This value may be used to calculate how many characters (excluding terminating null)
that were returned using this formula:

returned_characters = min(length_input_parameter-1,return_value)

The following formula may be used to calculate the number of characters left to return:
left_to_return = return_value-length_input_parameter+1

returned out The number of bytes, excluding terminating zero,
returned as a result of the operation.

clobhandle in A handle to a character large object returned by a call to
MimerGetLob.

data out Where to place the entire or a part of the character large
object.

size in The number of bytes to retrieve, including terminating
null.

Return value Description

>= 0 Success.
The number of characters to return. (See
description above.)

MIMER_HANDLE_INVALID The clobhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Mimer SQL Version 11.0 165
Programmer’s Manual

Notes
This routine interacts with the database server.
Not Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

Return value Description

166 Chapter 7 Mimer SQL C API Reference
MimerGetStatistics

MimerGetStatistics
Obtains server statistics information.
Statistics is returned in the form of counters. Counters may either be an absolute value
representing the current status or a monotonically increasing value representing the
number of occurred events since the server started. An example of the former is current
number of users and an example of the latter is number of server page requests.
The available counter values are:

Parameters
int32_t MimerGetStatistics (

MimerSession sessionhandle,
int32_t *counters,
int16_t nr_of_counters)

Returns
A negative value indicating an error, or zero if successful.

BSI_4K_PAGES The number of 4 K pages available in the system.

BSI_32K_PAGES The number of 32 K pages available in the system.

BSI_128K_PAGES The number of 128 K pages available in the system.

BSI_PAGES_USED The total number of pages in use.

BSI_4K_PAGES_USED The number of 4 K pages in use.

BSI_32K_PAGES_USED The number of 32 K pages in use.

BSI_128K_PAGES_USED The number of 128 K pages in use.

sessionhandle in A session handle opened through a call to
MimerBeginSession[C|8].

counters inout An array containing the counter values to retrieve.
On output, the array contains the corresponding
counter values.
On return, a value of -2 indicates that the counter type
was unknown, -1 indicate that the counter type was
known but its value was not available.

nr_of_counters in Specifies the number of counters supplied in
counters.

Return value Description

MIMER_SUCCESS Success.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

Mimer SQL Version 11.0 167
Programmer’s Manual

Notes
This routine interacts with the database server.
Micro API compatible.

168 Chapter 7 Mimer SQL C API Reference
MimerGetString

MimerGetString
Gets character data from a result set or an output parameter. (wchar_t version.)
Only the SQL data types CHARACTER, CHARACTER VARYING, NATIONAL
CHARACTER and NATIONAL CHARACTER VARYING may be retrieved using this
function.

Parameters
int32_t MimerGetString (

MimerStatement statementhandle,
int16_t paramno_colno,
wchar_t *dest,
size_t dest_maxlen)

Returns
A negative value indicating an error, or a zero or positive value indicating the number of
characters in the column (not counting the terminating zero).

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

dest out A memory location where to place output wide
character data. The character data is null terminated.
If this is a null pointer, no data will be returned, but the
length is still returned by the routine.

dest_maxlen in The length of the dest memory location in characters.

Return value Description

>=0 Success.
The number of characters to be
returned. (If > dest_maxlen,
output data was truncated.)

MIMER_CAST_VIOLATION If the output parameter or column
was not of the CHARACTER,
CHARACTER VARYING,
NATIONAL CHARACTER or
NATIONAL CHARACTER
VARYING data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

Mimer SQL Version 11.0 169
Programmer’s Manual

Notes
Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

Return value Description

170 Chapter 7 Mimer SQL C API Reference
MimerGetString8

MimerGetString8
Gets character data from a result set or an output parameter into a multi byte character
string, where the character set is UTF-8.
Only the SQL data types CHARACTER, CHARACTER VARYING, NATIONAL
CHARACTER and NATIONAL CHARACTER VARYING may be retrieved using this
function.

Parameters
int32_t MimerGetString8 (

MimerStatement statementhandle,
int16_t paramno_colno,
char *dest,
size_t dest_maxsiz)

Returns
A negative value indicating an error, or a zero or positive value indicating the number of
bytes in the column (not counting the terminating zero).

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

dest out A memory location where to place UTF-8 character
data. The character data is null terminated.
If this is a null pointer, no data will be returned, but the
length is still returned by the routine.

dest_maxsiz in The length of the dest memory location in bytes.

Return value Description

>= 0 Success.
The number of characters to be
returned. (If > dest_maxlen,
output data was truncated.)

MIMER_CAST_VIOLATION If the output parameter or column
was not of the CHARACTER,
CHARACTER VARYING,
NATIONAL CHARACTER or
NATIONAL CHARACTER
VARYING data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

Mimer SQL Version 11.0 171
Programmer’s Manual

Notes
Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

Return value Description

172 Chapter 7 Mimer SQL C API Reference
MimerGetStringC

MimerGetStringC
Gets character data from a result set or an output parameter into a multi byte character
string, where the character set is defined by the current locale. (char version.)
Only the SQL data types CHARACTER, CHARACTER VARYING, NATIONAL
CHARACTER and NATIONAL CHARACTER VARYING may be retrieved using this
function.

Parameters
int32_t MimerGetStringC (

MimerStatement statementhandle,
int16_t paramno_colno,
char *dest,
size_t dest_maxsiz)

Returns
A negative value indicating an error, or a zero or positive value indicating the number of
bytes in the column (not counting the terminating zero).

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to get data
from. First parameter/column is 1.

dest out A memory location where to place locale dependent
character data. The character data is null terminated.
If this is a null pointer, no data will be returned, but the
length is still returned by the routine.

dest_maxsiz in The length of the dest memory location in bytes.

Return value Description

>= 0 Success.
The number of characters to be
returned. (If > dest_maxlen,
output data was truncated.)

MIMER_CAST_VIOLATION If the output parameter or column
was not of the CHARACTER,
CHARACTER VARYING,
NATIONAL CHARACTER or
NATIONAL CHARACTER
VARYING data types.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

Mimer SQL Version 11.0 173
Programmer’s Manual

Notes
Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value.
(This can also be detected using the
MimerIsNull routine.)

Return value Description

174 Chapter 7 Mimer SQL C API Reference
MimerGetUUID

MimerGetUUID
Gets a Universally unique identifier from a result set or output parameter. Only the SQL
data type BUILTIN.UUID can be retrieved using this function.

Parameters
int32_t MimerGetUUID (

MimerStatement statementhandle,
int16_t paramno_colno,
unsigned char uuid[16])

Returns
A negative value indicating an error or zero indicating success.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to check for
null in. First column/parameter is 1.

uuid out A memory location where 16 bytes will be written
corresponding to the identifier.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the output parameter or column
was not of the BUILTIN.UUID data
type.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

MIMER_SQL_NULL_VALUE The column or output parameter
contained the SQL null value. (This
can also be detected using the
MimerIsNull routine.)

Mimer SQL Version 11.0 175
Programmer’s Manual

MimerIsNull
Checks if a result set column or output parameter has the SQL null value.

Parameters
int32_t MimerIsNull (

MimerStatement statementhandle,
int16_t paramno_colno)

Returns
If the column or parameter is the SQL null value, a positive value is returned. If it is not
the SQL null value zero is returned. If an error occurred, a negative error code is returned.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

paramno_colno in The parameter number or column number to check for
null in. First column/parameter is 1.

Return value Description

> 0 Null is returned.

0 Not null.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The supplied column or parameter
number did not exist.

MIMER_PARAMETER_NOT_OUTPUT The referenced parameter is not an
output or input/output parameter,
which is required when calling a
data output routine.

MIMER_SEQUENCE_ERROR If the statement cursor is not open,
or the current row is before the first
row of the result set, or after the last
row of the result set.

176 Chapter 7 Mimer SQL C API Reference
MimerNext

MimerNext
Advances the current row to the next row, but only within the current array.
If the end of the array is reached, end of data is returned, and a new request must be made
to the server for additional rows.
The difference between calling this function and MimerFetch or MimerFetchSkip is
that this routine is guaranteed to never make server requests and therefore guaranteed not
to require any context switches.

Parameters
int32_t MimerNext (MimerStatement statementhandle)

Returns
Returns MIMER_SUCCESS if the row was advanced one row. MIMER_NO_DATA was
returned if the end of the array was reached.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement with an open cursor.

Return value Description

MIMER_NO_DATA End of table reached.

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

Mimer SQL Version 11.0 177
Programmer’s Manual

MimerOpenCursor
Opens a cursor to be used when reading a result set.
Result sets are produced either by SELECT queries, or by calls to result set procedures.
All input parameters must be set prior to calling MimerOpenCursor, or else an error will
occur.
If this routine returns successfully, the cursor is opened and positioned before the first
row.
The first row can then be fetched by calling MimerFetch. After that column data may be
retrieved using data output routines.
If the statement does not return a result set, this routine will return with a failure.

Parameters
int32_t MimerOpenCursor (MimerStatement statementhandle)

Returns
A negative value indicating an error, or zero if successful.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter was not
recognized as a handle.

MIMER_OUTOFMEMORY If not enough memory could be allocated.

MIMER_SEQUENCE_ERROR If the statement cursor is already open.

MIMER_UNSET_PARAMETER All parameters has not yet been set.

178 Chapter 7 Mimer SQL C API Reference
MimerParameterCount

MimerParameterCount
Obtains the number of parameters of a statement.

Parameters
int32_t MimerParameterCount (MimerStatement statementhandle)

Returns
If zero or positive, the number of parameters. If negative a standard Mimer error code.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying the compiled statement which parameters to
count.

Return value Description

> = 0 Number of parameters.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR The statement is not compiled.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Mimer SQL Version 11.0 179
Programmer’s Manual

MimerParameterMode
Detects the input/output mode of a parameter.

Parameters
int32_t MimerParameterMode (

MimerStatement statementhandle,
int16_t paramno)

Returns
If zero or positive, the number of parameters. If negative a standard Mimer error code.

Notes
Not Micro API compatible.

statementhandle in The statement whose parameter to look up.

paramno in The parameter to look up, where the first one is number
1.

Return value Description

1 The parameter was input.

2 The parameter was output.

3 The parameter was input/output.

MIMER_SEQUENCE_ERROR The statement was not in a prepared
state.

MIMER_NONEXISTENT_COLUMN_PARAMETER The parameter does not exist.

180 Chapter 7 Mimer SQL C API Reference
MimerParameterName

MimerParameterName
Obtains the name of a parameter. (wchar_t version.)

Parameters
int32_t MimerParameterName (

MimerStatement statementhandle,
int16_t parameter,
wchar_t *parametername,
size_t maxlen)

Returns
Returns the number of characters in the parameter name. If this value is larger than
maxlen-1, a truncation occurred. If a negative value was returned, there was an error.

Notes
Not Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying the compiled statement which parameters to
count.

parameter in The parameter number, where the leftmost parameter is
1.

parametername out The area where to return the parameter name. The
maximum parameter name length returned is maxlen-1.

maxlen in The length of the parametername area in characters,
including room for terminating null.

Return value Description

> = 0 Number of characters in parameter
name.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR The statement is not compiled.

MIMER_NONEXISTENT_COLUMN_PARAMETER The parameter number does not
exist.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Mimer SQL Version 11.0 181
Programmer’s Manual

MimerParameterName8
Obtains the name of a parameter. (UTF-8 version.)

Parameters
int32_t MimerParameterName8 (

MimerStatement statementhandle,
int16_t parameter,
char *parametername,
size_t maxsize)

Returns
Returns the number of bytes in the parameter name. If this value is larger than maxsize-
1, a truncation occurred. If a negative value was returned, there was an error.

Notes
Not Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying the compiled statement which parameters to
count.

parameter in The parameter number, where the leftmost parameter is
1.

parametername out The area where to return the parameter name. The
maximum parameter name length returned is maxsize-
1.

maxsize in The length of the parametername area in bytes,
including room for terminating null.

Return value Description

> = 0 Number of bytes in parameter name.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR The statement is not compiled.

MIMER_NONEXISTENT_COLUMN_PARAMETER The parameter number does not
exist.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

182 Chapter 7 Mimer SQL C API Reference
MimerParameterNameC

MimerParameterNameC
Obtains the name of a parameter. (char version.)

Parameters
int32_t MimerParameterNameC (

MimerStatement statementhandle,
int16_t parameter,
char *parametername,
size_t maxsize)

Returns
Returns the number of bytes in the parameter name. If this value is larger than maxsize-
1, a truncation occurred. If a negative value was returned, there was an error.

Notes
Not Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying the compiled statement which parameters to
count.

parameter in The parameter number, where the leftmost parameter is
1.

parametername out The area where to return the parameter name. The
maximum parameter name length returned is maxsize-
1.

maxsize in The length of the parametername area in bytes,
including room for terminating null.

Return value Description

> = 0 Number of bytes in parameter name.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR The statement is not compiled.

MIMER_NONEXISTENT_COLUMN_PARAMETER The parameter number does not
exist.

Other value < 0 Any of the server error codes listed
in Appendix B Return Codes.

Mimer SQL Version 11.0 183
Programmer’s Manual

MimerParameterType
Obtains the data type of a parameter.

Parameters
int32_t MimerParameterType(

MimerStatement statementhandle,
int16_t parameter)

Returns
Returns the parameter type or a negative value if an error occurred.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying the compiled statement which parameters to
count.

parameter in The parameter number, where the leftmost parameter is
1.

Return value Description

> 0 Data type. See list in Data Types on
page 103

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR Statement is not compiled.

MIMER_NONEXISTENT_COLUMN_PARAMETER The parameter number does not
exist.

184 Chapter 7 Mimer SQL C API Reference
MimerRowSize

MimerRowSize
Returns the maximum number of bytes required to hold one row of data. This routine
might be used to calculate the maximum number of rows allowed in an array fetching
scenario under certain memory restrictions.
For example, if it was determined that the fetching buffer must use no more than 20 000
bytes, although it would be desirable to use array fetching for performance reasons,
calling this function would obtain a value to divide 20 000 with obtaining a reasonable
maximum array set size.

Parameters
int32_t MimerRowSize (MimerStatement statementhandle)

Returns
If positive, the minimum number of bytes required to be guaranteed to hold one row of
data. If negative, an error condition.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying the compiled statement which maximum
row size to obtain.

Return value Description

>= 0 Number of bytes required to hold
one row of data.
0 means that no input data

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR Statement is not compiled.

Mimer SQL Version 11.0 185
Programmer’s Manual

MimerSetArraySize
Set the array size.
By default the Mimer API routines MimerFetch and MimerFetchSkip uses an internal
fetch buffer equal to the maximum size of one row. Depending on the actual size of the
data, this buffer may hold more than one row. By increasing the array size, more data is
retrieved in each server request.

Parameters
int32_t MimerSetArraySize (

MimerStatement statementhandle,
int32_t arraysize)

Returns
MIMER_SUCCESS if successful. A negative value indicate an error.

Notes
Not Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying the compiled statement which array size to
change.

arraysize in The number of rows to retrieve in each request.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_SEQUENCE_ERROR Statement is not compiled.

186 Chapter 7 Mimer SQL C API Reference
MimerSetBinary

MimerSetBinary
Sets a binary data parameter.
Only the SQL types BINARY and BINARY VARYING may be set using this call.
This routine may allocate additional memory to hold the parameter value, along with
future output parameters and result set columns. This memory is freed when it is no longer
needed, no later than when MimerEndStatement is called. This memory is also freed
after a call to MimerExecute and MimerCloseCursor if there were no output
parameters or result set columns.

Parameters
int32_t MimerSetBinary (

MimerStatement statementhandle,
int16_t param_no,
const void *value,
size_t size)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A pointer to a memory location holding the binary data.
(If this pointer is a null pointer, the parameter is set to
the SQL null value.)

size in The maximum size of the binary data in bytes.
To set the parameter to the SQL null value, use the
MimerSetNull function.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
BINARY or BINARY VARYING.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

Mimer SQL Version 11.0 187
Programmer’s Manual

Notes
Not Micro API compatible.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

MIMER_TRUNCATION_ERROR The input data was truncated.

Return value Description

188 Chapter 7 Mimer SQL C API Reference
MimerSetBlobData

MimerSetBlobData
Sets the data of a binary large object.
Whenever a binary large object has been created using a call to MimerSetLob, it has to
be filled with data. This is done using a call to this routine. A call to this routine must
always be preceded by a call to MimerSetLob.
The total length of all the chunks supplied by one or more calls to this routine must
coincide with the length supplied in the preceding call to MimerSetLob, or else an error
will occur.
When the entire binary large object has been set, the handle is automatically released.

Parameters
int32_t MimerSetBlobData (

MimerLob *blobhandle,
const void *data,
size_t size)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Not Micro API compatible.

blobhandle in A reference to a binary large object handle created by
MimerSetLob.

data in A pointer to the binary large object data.

size in Size of the chunk supplied in this call, in bytes.
The size of each chunk is limited to slightly less than
10 MB. If larger objects than this is to be set, multiple
calls to this routine must be used, each supplying the
large object in chunks.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The blobhandle parameter was not
recognized as a handle.

MIMER_NULL_VIOLATION Cannot assign the null value to a non-nullable
parameter

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

Mimer SQL Version 11.0 189
Programmer’s Manual

MimerSetBoolean
Sets a boolean data parameter.
Only the database type BOOLEAN may be set using this call.

Parameters
int32_t MimerSetBoolean (

MimerStatement statementhandle,
int16_t param_no,
int32_t value)

Returns
A negative value indicating an error, or zero if successful.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A BOOLEAN value.
0 = false
1 = true

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
BOOLEAN.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

190 Chapter 7 Mimer SQL C API Reference
MimerSetDouble

MimerSetDouble
Sets a double precision floating point parameter.
Only the SQL data types REAL and DOUBLE PRECISION may be set using this call.
This routine may allocate additional memory to hold the parameter value, along with
future output parameters and result set columns. This memory is freed when it is no longer
needed, no later than when MimerEndStatement is called. This memory is also freed
after a call to MimerExecute and MimerCloseCursor if there were no output
parameters or result set columns.

Parameters
int32_t MimerSetDouble (

MimerStatement statementhandle,
int16_t param_no,
double value)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A double precision floating point value.
To set the parameter to the SQL null value, use the
MimerSetNull function.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
FLOAT, REAL or DOUBLE
PRECISION.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

Mimer SQL Version 11.0 191
Programmer’s Manual

Notes
Micro API compatible.

MIMER_UNDEFINED_FLOAT_VALUE The supplied double was either a
not-a-number or infinity.

Return value Description

192 Chapter 7 Mimer SQL C API Reference
MimerSetFloat

MimerSetFloat
Sets a single precision floating point parameter.
Only the SQL data types REAL and DOUBLE PRECISION may be set using this call.
This routine may allocate additional memory to hold the parameter value, along with
future output parameters and result set columns. This memory is freed when it is no longer
needed, no later than when MimerEndStatement is called. This memory is also freed
after a call to MimerExecute and MimerCloseCursor if there were no output
parameters or result set columns.

Parameters
int32_t MimerSetFloat (

MimerStatement statementhandle,
int16_t param_no,
float value)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A single precision floating point value.
To set the parameter to the SQL null value, use the
MimerSetNull function.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
REAL or DOUBLE PRECISION.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

MIMER_UNDEFINED_FLOAT_VALUE The supplied double was either a
not-a-number or infinity.

Mimer SQL Version 11.0 193
Programmer’s Manual

Notes
Micro API compatible.

194 Chapter 7 Mimer SQL C API Reference
MimerSetInt32

MimerSetInt32
Sets an integer parameter.
Only the SQL data types INTEGER, BIGINT and SMALLINT may be set using this call.
This routine may allocate additional memory to hold the parameter value, along with
future output parameters and result set columns. This memory is freed when it is no longer
needed, no later than when MimerEndStatement is called. This memory is also freed
after a call to MimerExecute and MimerCloseCursor if there were no output
parameters or result set columns.

Parameters
int32_t MimerSetInt32 (

MimerStatement statementhandle,
int16_t param_no,
int32_t value)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in An integer value.
To set the parameter to the SQL null value, use the
MimerSetNull function.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
an INTEGER, BIGINT or
SMALLINT parameter.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

Mimer SQL Version 11.0 195
Programmer’s Manual

Notes
Micro API compatible.

196 Chapter 7 Mimer SQL C API Reference
MimerSetInt64

MimerSetInt64
Sets an int64_t (long long) parameter.
Only the SQL data types INTEGER, BIGINT and SMALLINT may be set using this call.
This routine may allocate additional memory to hold the parameter value, along with
future output parameters and result set columns. This memory is freed when it is no longer
needed, no later than when MimerEndStatement is called. This memory is also freed
after a call to MimerExecute and MimerCloseCursor if there were no output
parameters or result set columns.

Parameters
int32_t MimerSetInt64 (

MimerStatement statementhandle,
int16_t param_no,
int64_t value)

Returns
A negative value indicating an error, or zero if successful.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in An integer value.
To set the parameter to the SQL null value, use the
MimerSetNull function.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
an integer parameter.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

Mimer SQL Version 11.0 197
Programmer’s Manual

MimerSetLob
Sets a large object in the database.
This routine is used to create a large object (BINARY LARGE OBJECT, a
CHARACTER LARGE OBJECT, or a NATIONAL CHARACTER LARGE OBJECT)
in the database.
Whenever a large object is about to the inserted in the database as a parameter to a
statement, this routine is called for that specific parameter.
Upon successful return, a handle to a large object is stored in the database. The contents
of the object may be set at a later time using one or more calls to MimerSetBlobData
or MimerSetNclobData.
If the size/length of the object is 0, MimerSetBlobData or MimerSetNclobData need
not be called. If the size is larger than 0, MimerSetBlobData or MimerSetNclobData
must be called to complete the creation of the large object.
To set the parameter to the SQL null value, use the MimerSetNull function.

Parameters
int32_t MimerSetLob (

MimerStatement statementhandle,
int16_t param_no,
size_t size_length,
MimerLob *lobhandle)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

size_length in The size of the BINARY LARGE OBJECT in bytes, or
the length of CHARACTER LARGE OBJECT or
NATIONAL CHARACTER LARGE OBJECT in
characters.

lobhandle out The handle to the created large object. If the object was
of size 0, a handle is not created. This condition may be
detected by comparing with the symbol
MIMERNULLHANDLE.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
a BINARY LARGE OBJECT, a
CHARACTER LARGE OBJECT
or a NATIONAL CHARACTER
LARGE OBJECT.

198 Chapter 7 Mimer SQL C API Reference
MimerSetLob

Notes
Micro API compatible.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

Return value Description

Mimer SQL Version 11.0 199
Programmer’s Manual

MimerSetNclobData
Sets the data of a character large object. (wchar_t version.)
Whenever a character large object has been created using a call to MimerSetLob, it has
to be filled with data. This is done using a call to this routine. A call to this routine must
always be preceded by a call to MimerSetLob.
When the entire character large object has been set, the handle is automatically released.

Parameters
int32_t MimerSetNclobData (

MimerLob *clobhandle,
const wchar_t *data,
size_t length)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Not Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

clobhandle in A reference to a character large object handle created by
MimerSetLob.

data in A pointer to the character data.

length in Length of the chunk supplied in this call, in characters.
The size of each chunk is limited to slightly less than
10 MB. This translates to, in the worst case, about
2.5 million characters. If larger character objects than
this is to be set, multiple calls to this routine must be
used, each supplying the character large object in
chunks.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The clobhandle parameter was not
recognized as a handle.

MIMER_ILLEGAL_CHARACTER The input string contained illegal characters.

MIMER_NULL_VIOLATION Cannot assign the null value to a non-nullable
parameter

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

200 Chapter 7 Mimer SQL C API Reference
MimerSetNclobData8

MimerSetNclobData8
Sets the data of a character large object. (UTF-8 version.)
Whenever a character large object has been created using a call to MimerSetLob, it has
to be filled with data. This is done using a call to this routine. A call to this routine must
always be preceded by a call to MimerSetLob.
When the entire character large object has been set, the handle is automatically released.

Parameters
int32_t MimerSetNclobData8 (

MimerLob *clobhandle,
const char *data,
size_t size)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Not Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

clobhandle in A reference to a character large object handle created by
MimerSetLob.

data in A pointer to the character data.

size in Length of the chunk supplied in this call, in bytes.
The size of each chunk is limited to slightly less than
10 MB. This translates to, in the worst case, about
2.5 million characters. If larger character objects than
this is to be set, multiple calls to this routine must be
used, each supplying the character large object in
chunks.

Return value Description

MIMER_SUCCESS Success.

MIMER_NULL_VIOLATION Cannot assign the null value to a non-nullable
parameter

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

Mimer SQL Version 11.0 201
Programmer’s Manual

MimerSetNclobDataC
Sets the data of a character large object using a multibyte character pointer. (char version.)
Whenever a character large object has been created using a call to MimerSetLob, it has
to be filled with data. This is done using a call to this routine. A call to this routine must
always be preceded by a call to MimerSetLob.
When the entire character large object has been set, the handle is automatically released.

Parameters
int32_t MimerSetNclobDataC (

MimerLob *clobhandle,
const char *data,
size_t size)

Returns
A negative value indicating an error, or zero if successful.

Notes
This routine interacts with the database server.
Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

clobhandle in A reference to a character large object handle created by
MimerSetLob.

data in A pointer to the character data.

size in Length of the chunk supplied in this call, in bytes.
The size of each chunk is limited to slightly less than
10 MB. This translates to, in the worst case, about
2.5 million characters. If larger character objects than
this is to be set, multiple calls to this routine must be
used, each supplying the character large object in
chunks.

Return value Description

MIMER_SUCCESS Success.

MIMER_NULL_VIOLATION Cannot assign the null value to a non-nullable
parameter

MIMER_OUTOFMEMORY If not enough memory could be allocated.

Other value < 0 Any of the server error codes listed in Appendix
B Return Codes.

202 Chapter 7 Mimer SQL C API Reference
MimerSetNull

MimerSetNull
Sets an input parameter to the SQL null value.

Parameters
int32_t MimerSetNull (

MimerStatement statementhandle,
int16_t paramno)

Returns
A negative value indicating an error, or zero if successful.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

paramno in The number of the parameter to set to null. First
column/parameter is 1.

Return value Description

MIMER_SUCCESS Success.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a data
input routine.

Mimer SQL Version 11.0 203
Programmer’s Manual

MimerSetString
Sets a string parameter. (wchar_t version.)
This call sets a string parameter of a statement call. The SQL data types CHARACTER,
CHARACTER VARYING, NATIONAL CHARACTER, NATIONAL CHARACTER
VARYING, DATE, TIME, TIMESTAMP, DECIMAL and NUMERIC may be set using
this call.

Parameters
int32_t MimerSetString (

MimerStatement statementhandle,
int16_t param_no,
const wchar_t *value)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A pointer to a buffer holding a null terminated character
string. If this pointer is a null pointer, the parameter is
set to the SQL null value.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred SQL data type was not
a CHARACTER, CHARACTER
VARYING, NATIONAL
CHARACTER, NATIONAL
CHARACTER VARYING, DATE,
TIME, TIMESTAMP, DECIMAL
or a NUMERIC.

MIMER_ILLEGAL_CHARACTER If the input string contained illegal
Unicode characters.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a data
input routine.

204 Chapter 7 Mimer SQL C API Reference
MimerSetString

Notes
Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_TRUNCATION_ERROR The input string was longer than
could be held in the parameter.

Return value Description

Mimer SQL Version 11.0 205
Programmer’s Manual

MimerSetString8
Sets a string parameter using a UTF-8 character string.
The SQL data types CHARACTER, CHARACTER VARYING, NATIONAL
CHARACTER, NATIONAL CHARACTER VARYING, DATE, TIME, TIMESTAMP,
DECIMAL and NUMERIC may be set using this call.

Parameters
int32_t MimerSetString8 (

MimerStatement statementhandle,
int16_t param_no,
const char *value)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A pointer to a buffer holding a null terminated character
string. If this pointer is a null pointer, the parameter is
set to the SQL null value.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred SQL data type was not
a CHARACTER, CHARACTER
VARYING, NATIONAL
CHARACTER, NATIONAL
CHARACTER VARYING, DATE,
TIME, TIMESTAMP, DECIMAL
or a NUMERIC.

MIMER_ILLEGAL_CHARACTER If the input string contained illegal
characters.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

206 Chapter 7 Mimer SQL C API Reference
MimerSetString8

Notes
Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a data
input routine.

MIMER_TRUNCATION_ERROR The input string was longer than
could be held in the parameter.

Return value Description

Mimer SQL Version 11.0 207
Programmer’s Manual

MimerSetStringC
Sets a string parameter using a multibyte character string.
The SQL data types CHARACTER, CHARACTER VARYING, NATIONAL
CHARACTER, NATIONAL CHARACTER VARYING, DATE, TIME, TIMESTAMP,
DECIMAL and NUMERIC may be set using this call.

Parameters
int32_t MimerSetStringC (

MimerStatement statementhandle,
int16_t param_no,
const char *value)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A pointer to a buffer holding a null terminated character
string. If this pointer is a null pointer, the parameter is
set to the SQL null value.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred SQL data type was not
a CHARACTER, CHARACTER
VARYING, NATIONAL
CHARACTER, NATIONAL
CHARACTER VARYING, DATE,
TIME, TIMESTAMP, DECIMAL
or a NUMERIC.

MIMER_ILLEGAL_CHARACTER If the input string contained illegal
characters.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

208 Chapter 7 Mimer SQL C API Reference
MimerSetStringC

Notes
Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a data
input routine.

MIMER_TRUNCATION_ERROR The input string was longer than
could be held in the parameter.

Return value Description

Mimer SQL Version 11.0 209
Programmer’s Manual

MimerSetStringLen
Sets a string parameter. (wchar_t version.)
This call sets a string parameter of a statement call. The SQL data types CHARACTER,
CHARACTER VARYING, NATIONAL CHARACTER, NATIONAL CHARACTER
VARYING, DATE, TIME, TIMESTAMP, DECIMAL and NUMERIC may be set using
this call.

Parameters
int32_t MimerSetStringLen (

MimerStatement statementhandle,
int16_t param_no,
const wchar_t *value,
size_t length)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A pointer to a buffer holding a null terminated wide
character string. If this pointer is a null pointer, the
parameter is set to the SQL null value.

length in Length of value in characters.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred SQL data type was not
a CHARACTER, CHARACTER
VARYING, NATIONAL
CHARACTER, NATIONAL
CHARACTER VARYING, DATE,
TIME, TIMESTAMP, DECIMAL
or a NUMERIC.

MIMER_ILLEGAL_CHARACTER If the input string contained illegal
characters.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

210 Chapter 7 Mimer SQL C API Reference
MimerSetStringLen

Notes
Not Micro API compatible.
wchar_t version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a data
input routine.

MIMER_TRUNCATION_ERROR The input string was longer than
could be held in the parameter.

Return value Description

Mimer SQL Version 11.0 211
Programmer’s Manual

MimerSetStringLen8
Sets a string parameter using a UTF-8 character string. (UTF-8 version.)
The SQL data types CHARACTER, CHARACTER VARYING, NATIONAL
CHARACTER, NATIONAL CHARACTER VARYING, DATE, TIME, TIMESTAMP,
DECIMAL and NUMERIC may be set using this call.

Parameters
int32_t MimerSetStringLen8 (

MimerStatement statementhandle,
int16_t param_no,
const char *value,
size_t length)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A pointer to a buffer holding a null terminated character
string. If this pointer is a null pointer, the parameter is
set to the SQL null value.

length in Size of value in bytes.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred SQL data type was not
a CHARACTER, CHARACTER
VARYING, NATIONAL
CHARACTER, NATIONAL
CHARACTER VARYING, DATE,
TIME, TIMESTAMP, DECIMAL
or a NUMERIC.

MIMER_ILLEGAL_CHARACTER If the input string contained illegal
Unicode characters.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a data
input routine.

212 Chapter 7 Mimer SQL C API Reference
MimerSetStringLen8

Notes
Not Micro API compatible.
UTF-8 version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_TRUNCATION_ERROR The input string was longer than
could be held in the parameter.

Return value Description

Mimer SQL Version 11.0 213
Programmer’s Manual

MimerSetStringLenC
Sets a string parameter using a multibyte character pointer. (char version.)
The SQL data types CHARACTER, CHARACTER VARYING, NATIONAL
CHARACTER, NATIONAL CHARACTER VARYING, DATE, TIME, TIMESTAMP,
DECIMAL and NUMERIC may be set using this call.

Parameters
int32_t MimerSetStringLenC (

MimerStatement statementhandle,
int16_t param_no,
const char *value,
size_t length)

Returns
A negative value indicating an error, or zero if successful.

statementhandle in A handle returned by MimerBeginStatement[C|8]
identifying a prepared statement.

param_no in A number identifying the parameter. First parameter is
1.

value in A pointer to a buffer holding a null terminated character
string. If this pointer is a null pointer, the parameter is
set to the SQL null value.

length in Size of value in bytes.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred SQL data type was not
a CHARACTER, CHARACTER
VARYING, NATIONAL
CHARACTER, NATIONAL
CHARACTER VARYING, DATE,
TIME, TIMESTAMP, DECIMAL
or a NUMERIC.

MIMER_ILLEGAL_CHARACTER If the input string contained illegal
Unicode characters.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a data
input routine.

214 Chapter 7 Mimer SQL C API Reference
MimerSetStringLenC

Notes
Not Micro API compatible.
char version of the routine. See Character String Formats on page 98 for more
information about character formats and the different routine versions.

MIMER_TRUNCATION_ERROR The input string was longer than
could be held in the parameter.

Return value Description

Mimer SQL Version 11.0 215
Programmer’s Manual

MimerSetUUID
Sets a Universally unique identifier parameter. Only the SQL data type BUILTIN.UUID
can be set using this function.

Parameters
int32_t MimerSetUUID (

MimerStatement statementhandle,
int16_t param_no,
const unsigned char uuid[16])

Returns
A negative value indicating an error or zero indicating success.

Notes
Micro API compatible.

statementhandle in A handle returned by MimerBeginStatement[C|8],
identifying a statement that have been executed.

param_no in A number identifying the parameter. First parameter is
1.

uuid in A pointer to a 16 byte buffer where the identifier to set
is located. If this pointer is NULL, the SQL NULL
value may be set.

Return value Description

MIMER_SUCCESS Success.

MIMER_CAST_VIOLATION If the referred database type was not
of the BUILTIN.UUID type.

MIMER_HANDLE_INVALID The statementhandle parameter
was not recognized as a handle.

MIMER_NONEXISTENT_COLUMN_PARAMETER The referenced parameter does not
exist.

MIMER_NULL_VIOLATION Cannot assign the null value to a
non-nullable parameter.

MIMER_OUTOFMEMORY If not enough memory could be
allocated.

MIMER_PARAMETER_NOT_INPUT The referenced parameter is not an
input or input/output parameter,
which is required when calling a
data input routine.

216 Chapter 7 Mimer SQL C API Reference
MimerSetUUID

Mimer SQL Version 11.0 217
Programmer’s Manual

Chapter 8

Idents and
Privileges

This chapter discusses Mimer SQL idents, privileges and database connections.

Mimer SQL Idents
An ident is an authorization-ID used to identify different kinds of users in a Mimer SQL
database.
There are three kinds of ident in Mimer SQL: USER, PROGRAM and GROUP.
Idents connect to a database through the CONNECT statement and the ENTER statement is
used to take up the privileges provided by a PROGRAM ident (see below).
Every USER ident has a unique ident name and an optional private password which must
be correctly supplied to the CONNECT or ENTER statement in application programs. A
USER ident may access the database without explicitly providing a username or password
on condition that the username for the user currently logged in to the operating system
correspond to the definition of the USER in the Mimer SQL database.
Every PROGRAM ident has a unique ident name and a private password which must be
correctly supplied to the CONNECT or ENTER statement in application programs.

USER
USER idents are authorized to connect to a Mimer SQL database by using the CONNECT
statement in an application program, or by entering the correct ident name and password
in an interactive environment, or by using an OS_USER login.
Any privileges a USER ident holds may be exercised once the ident has logged on. USER
idents are generally associated with specific physical individuals authorized to connect to
the database.

PROGRAM
PROGRAM idents provide specific privileges required when executing certain operations.
PROGRAM idents may not initiate a connection to a Mimer SQL database, but may be
entered from within an application program or interactive environment by using the
ENTER statement.

218 Chapter 8 Idents and Privileges
Database Privileges

A connection should have been established before the ENTER statement is used, see
Chapter 4, Connecting to a Database. Entering a PROGRAM ident is analogous to logging
on as a USER ident, in that the PROGRAM ident gains access to the system and any
privileges the ident holds become applicable.
PROGRAM idents are generally associated with specific functions within the system, not
with physical individuals.

GROUP
GROUP idents are collective identities that provide common privileges for groups of users
or PROGRAM idents.
Any privileges granted to or revoked from a GROUP ident automatically apply to all
members of the group.
Any ident can be a member of as many groups as required, and one group can include any
number of members.
GROUP idents provide a facility for organizing the privilege structure in the database
system.

Database Privileges
The access of each ident to the database is defined by privileges granted within the
system.
The privileges are grouped as follows:
• System privileges
• Object privileges
• Access privileges.

System Privileges

Object Privileges

Privilege Explanation

BACKUP gives the right to perform databank backup and restore operations.

DATABANK gives the right to create databanks.

IDENT gives the right to create idents.

SCHEMA gives the right to create schemas.

SHADOW gives the right to create and manage databank shadows.

STATISTICS gives the right to execute the UPDATE STATISTICS statement.

Privilege Explanation

TABLE gives the right to create tables in a specified databank.

Mimer SQL Version 11.0 219
Programmer’s Manual

Access Privileges

About Privileges
System privileges are automatically granted to the system administrator at installation,
and may be passed on to other idents.
Object and access privileges are initially granted only to the creator of an object. The
creator may however grant the privileges on to other idents.
All privileges may be granted with or without GRANT OPTION, which controls the right
of the receiving ident to grant the privilege on to another ident.
Certain operations are not controlled by explicit privileges, but may only be performed
by the creator of the object involved. These operations include ALTER (with the exception
of ALTER IDENT, which may be performed by either the ident himself or by the creator
of the ident), DROP and COMMENT. Similarly, privileges may only be revoked by their
grantor.

SEQUENCE gives the right to create sequences in a specified databank.

EXECUTE gives the right to access a routine or to enter (connect to) a specified
PROGRAM ident.

MEMBER grants membership in a specified GROUP ident.

USAGE gives the right to specify the named domain where a data type would
normally be specified (in contexts where use of domains is allowed) or
the right to use a specified sequence or collation.

Privilege Explanation

Privilege Explanation

SELECT gives the right to read the table contents.

INSERT gives the right to add new rows to the table.

DELETE gives the right to remove rows from the table.

UPDATE gives the right to update the contents of the table.

REFERENCES gives the right to use the primary key or unique keys of the table as a
foreign key from another table.

220 Chapter 8 Idents and Privileges
Database Privileges

Mimer SQL Version 11.0 221
Programmer’s Manual

Chapter 9

Transaction
Handling and

Database Security
This chapter explains transaction principles, transaction control statements, logging and
protecting against data loss.

Transaction Principles
A transaction is an atomic operation which may not be divided into smaller operations.
Three transaction phases exist: build-up, during which the database operations are
requested; prepare, during which the transaction is validated; commitment, during which
the operations performed in the transaction are written to disk.
Read-only transactions have only two phases: build-up and prepare.
Transaction build-up may be started explicitly or implicitly, see Starting Transactions on
page 225; prepare and commitment are both initiated explicitly through a request to
commit the transaction (using COMMIT).
In interactive application programs, build-up takes place typically over a time period
determined by the user, while prepare and commitment are part of the internal process of
committing a transaction, which occurs on a time-scale determined by machine
operations.

Optimistic Concurrency Control
Since Mimer SQL uses optimistic concurrency control (OCC), deadlocks never occur, see
Locking on page 223 for a further discussion of deadlocks. How optimistic concurrency
control works in Mimer SQL is described below.
The transaction begins by taking a snapshot of the database in a consistent state. During
build-up, changes requested to the contents of the database are kept in a write-set and are
not visible to other users of the system. This allows the database to remain fully accessible
to all users. The application program in which build-up occurs will see the database as
though the changes had already been applied. Changes requested during transaction
build-up become visible to other users when the transaction is successfully committed.

222 Chapter 9 Transaction Handling and Database Security
Transaction Principles

During build-up, a read-set records the state of the database as seen at the time of each
operation (including intended changes). If the state of the database at commitment is
inconsistent with the read-set, a conflict is reported and the transaction is rolled back (i.e.
the write-set is erased and no changes are made to the database). This can happen if, for
instance, a transaction updates a row which gets deleted by another user after build-up has
started but before the transaction is committed. The application program is responsible
for taking appropriate action if a transaction conflict occurs.

Concurrency Control Guidelines
Because of the nature of this concurrency control protocol, it is important that some of the
implications are understood.
A transaction that exists for a long elapsed time has a greater chance of conflicting with
changes made by other users than a transaction with a short elapsed time.
At the other extreme, an application that immediately commits every executed SQL
statement will seldom meet any conflicts, but will incur unnecessary overhead.
In general:
• keep transactions as short as is reasonably possible
• keep interactive user dialogs outside of transactions
A common situation that can generate unnecessarily large read-sets is the following: an
application program reads through the rows in a table in a loop construct, with a
conditional exit to update a row on user intervention.
It is tempting to simply place a COMMIT after the update statement, for example:

EXEC SQL DECLARE c_1 CURSOR FOR SELECT…
loop
 EXEC SQL FETCH c_1
 INTO :VAR1, :VAR2, ..., :VARn;
 display VAR1, VAR2, ..., VARn;
 prompt "Update row?";
 exit when ANSWER = "YES";
end loop;
EXEC SQL UPDATE table
 SET ...
 WHERE CURRENT OF c_1;
EXEC SQL COMMIT;

However, the FETCH loop can create a large read-set while waiting for the user update
request, risking transaction conflict at the UPDATE.
A tempting solution for this problem might be:

EXEC SQL DECLARE c_1 CURSOR FOR SELECT…
loop
 EXEC SQL FETCH c_1
 INTO :VAR1, :VAR2, ..., :VARn;
 display VAR1, VAR2, ..., VARn;
 prompt "Update row?";
 exit when ANSWER = "YES";
 EXEC SQL ROLLBACK;
end loop;
EXEC SQL UPDATE table
 SET ...
 WHERE CURRENT OF c_1;
EXEC SQL COMMIT;

But since ROLLBACK closes all cursors, this will not work.

Mimer SQL Version 11.0 223
Programmer’s Manual

Instead, something like the following is a better approach:
EXEC SQL DECLARE c_1 CURSOR FOR SELECT…
EXEC SQL SET TRANSACTION READ ONLY;
loop
 EXEC SQL FETCH c_1
 INTO :VAR1, :VAR2, ..., :VARn;
 display VAR1, VAR2, ..., VARn;
 prompt "Update row?";
 exit when ANSWER = "YES";
end loop;
EXEC SQL ROLLBACK;
EXEC SQL UPDATE table
 SET ...
 WHERE col1 = :VAR1,
 col2 = :VAR2, ...
EXEC SQL COMMIT;

The risk of a transaction conflict in the final transaction is minimal, because both the size
and duration of the transaction is minimized. The use of a read-only transaction can
significantly improve the performance of the FETCH statements.
A number of changes are necessary if we want to loop over FETCH, UPDATE and COMMIT.

EXEC SQL DECLARE c_1 CURSOR WITH HOLD FOR SELECT…
loop
 EXEC SQL FETCH c_1
 INTO :VAR1, :VAR2, ..., :VARn;
 display VAR1, VAR2, ..., VARn;
 prompt "Update row?";
 if ANSWER = "YES" then
 EXEC SQL COMMIT;
 EXEC SQL UPDATE table
 SET ...
 WHERE col1 = :VAR1,
 col2 = :VAR2, ...
 EXEC SQL COMMIT;
 end if;
end loop;

The cursor is declared WITH HOLD in order to remain open and positioned after COMMIT.
COMMIT is used instead of ROLLBACK, since holdable cursors does not remain open after
ROLLBACK.
The SET TRANSACTION statement is removed, because the existence of an open holdable
cursor prohibits a change of transaction mode. The cursor cannot be accessed both in
READ ONLY and in READ WRITE mode.

Locking
Deadlock situations, which can be relatively common in some database management
systems where records are locked during transaction build-up, can not occur in
Mimer SQL.
In Mimer SQL it is impossible for two processes to be waiting for a record locked by the
other process. In some other database management systems this situation may require
operator intervention to resolve the problem.

224 Chapter 9 Transaction Handling and Database Security
Transactions and Logging

In any database system, at some stage in a transaction, the data records must be locked to
prevent access by other processes and to ensure that the transaction is not interrupted. In
the Mimer SQL system, no change is made to the database contents during the transaction
build-up and no records are locked. This means that the database can be freely accessed
(and updated) by any other process; the data accessed by the transaction is only locked
during the commit phase. In this way, locks are held only for a very short period of time.
The problems associated with locking are further reduced since only those records that
are actually to be updated are locked. Other data in the same table continues to be
accessible to other transactions.

Transactions and Logging
Changes made to a database may be logged, to provide back-up protection in the event of
hardware failure, provided that the changes occur within a transaction and that the
databanks involved have the LOG option. Transaction handling is, therefore, important
even in standalone environments where concurrency control issues do not arise.

Options
Transaction control and logging is determined at the databank level by options set when
the databank is defined. The options are:

• LOG
All operations on the databank are performed under transaction control. All
transactions are logged.

• TRANSACTION
All operations on the databank are performed under transaction control. No
transactions are logged.

• WORK
All operations on the databank are performed without transaction control (even if
they are requested within a transaction), and are not logged. Sets of operations
(DELETE, UPDATE or INSERT on several rows) that are interrupted will not be rolled
back.

• READ ONLY
Only read operations are allowed, i.e no UPDATE, DELETE or INSERT can be
performed.

Note: All important databanks should be defined with LOG option, so that valuable
data is not lost by any system failure.

Mimer SQL Version 11.0 225
Programmer’s Manual

Protecting Against Data Loss
The following sections discuss how system interruptions and hardware failure are
handled.

System Interruptions
If a transaction build-up is interrupted by a system failure or a program termination
(deliberate or otherwise) the transaction is aborted and none of the requested changes are
made to the database.
Transactions which are interrupted after the request to commit, but before all operations
in the transaction have been executed on the database, are completed by the automatic
recovery functionality when the databank involved is next accessed. There is no
possibility of transaction conflict in such an automatic completion, since no other process
can access the affected data as long as an incomplete transaction is pending.
In the event of a system failure that interrupts one or more application programs, it may
be necessary to manually examine the database contents to determine which transactions
failed to commit before the interruption.

Hardware Failure
A databank that is damaged by hardware failure (e.g. a disk crash) may be recovered
using back-up copies and the transaction log (LOGDB), provided that all write operations
on the databank have been logged (and that the back-up copies and the LOGDB databank
are intact).
Backup and restore facilities are described in the Mimer SQL System Management
Handbook.

Transaction Control Statements
The following sections explain how to start, end and optimize transactions. You can also
read about consistency and exception diagnostics in transactions. Further, transaction
options, cursors and error handling are discussed.

Starting Transactions
Transaction start may be set to EXPLICIT or IMPLICIT.
The default transaction start setting is IMPLICIT, which means a transaction will be
started automatically whenever one is needed.

To set the transaction start mode, use the statements:
SET TRANSACTION START EXPLICIT;

SET TRANSACTION START IMPLICIT;

Different database connections can use different transaction start options.

226 Chapter 9 Transaction Handling and Database Security
Transaction Control Statements

The START statement can always be used to explicitly start a transaction. This is useful if
a number of related updates are to be performed and it is desirable that all the updates
succeed or fail together to maintain consistency.
You cannot start a transaction while a transaction is already active.

Explicit Transaction Start
With this setting, transactions are never automatically started. All transactions must be
explicitly started by executing the START statement.
Any update operation (INSERT, UPDATE or DELETE) involving a table in a databank with
the TRANS or LOG option must occur within a transaction. An error will be raised if such
an update is attempted without first starting a transaction.
All the statements issued after the START statement and before the transaction is
concluded are grouped together within that single transaction.
A transaction is concluded by executing a COMMIT or ROLLBACK statement.

Implicit Transaction Start
With this setting, a transaction is started automatically (if one is not already active) by a
reference to an object stored in a databank with the TRANS or LOG option (i.e. if none of
the objects referenced are stored in a databank with the TRANS or LOG option, no
transaction is required and therefore one is not started).
The START statement may be used to explicitly start a transaction if required, typically to
allow several updates to be grouped together within a single transaction for consistency,
as already described.
An automatically started transaction is concluded by executing a COMMIT or ROLLBACK
statement.
All the statements issued after the initiating update and before the concluding COMMIT or
ROLLBACK statement are grouped together within that single transaction.

Ending Transactions
Transactions must be ended with the COMMIT or ROLLBACK statement.

• COMMIT
This statement requests that the operations in the write-set are executed on the
database, making the changes permanent and visible to other users. The SQLSTATE
value returned when a COMMIT statement is executed indicates either that the
transaction commitment was successful (SQLSTATE = '00000') or that a
transaction conflict occurred (SQLSTATE <> '00000').

• ROLLBACK
This statement abandons the transaction. The read-set and write-set are dropped and
no changes are made to the database. ROLLBACK is always successful.
Note: A transaction in Mimer SQL is never physically rolled-back in the sense of

undoing changes made to the database, since changes are not actually
effected until a successful COMMIT is performed. However, the ROLLBACK
statement may free internal resources.

Mimer SQL Version 11.0 227
Programmer’s Manual

Transactions that are not successfully committed due to a transaction conflict do not have
to be explicitly rolled back. The ROLLBACK statement is most commonly used in
exception routines for handling error situations that are detected by the application during
transaction build-up.
If a connection or program is terminated without requesting a COMMIT or ROLLBACK for
the current transaction, the system will abort the transaction. None of the changes
requested during the transaction build-up will be made to the database.
Transaction handling in BSQL differs slightly from that described here – see the
Mimer SQL User’s Manual, Chapter 6, Handling Transactions, for details.

Optimizing Transactions
The following SET TRANSACTION options are used to optimize transaction performance:

• READ ONLY
This setting should always be used for transactions that do not require update access
to the database. Significant performance gains can be achieved, especially for
queries retrieving large numbers of rows, when this setting is used in queries when
there is no need for update access to the database.

• READ WRITE
This setting should only be used for transactions that require update access to the
database. This is the default setting for a transaction.

The default option is READ WRITE, or the option defined to be the default for the current
session by using the SET SESSION statement, see Setting Default Transaction Options
on page 228.
The SET TRANSACTION READ command only affects the single next transaction started
after it is used.

Consistency Within Transactions
The SET TRANSACTION … ISOLATION LEVEL options can be used to control the degree
to which the changes occurring within one transaction are affected by the changes
occurring within other concurrently executing transactions.
The default option is REPEATABLE READ, or the option defined to be the default for the
current session by using the SET SESSION statement, see Setting Default Transaction
Options on page 228.
The SET TRANSACTION … ISOLATION LEVEL command only affects the single next
transaction started after it is used.

Options
The following options are available:

• SERIALIZABLE
This setting guarantees that the end result of the operations performed by two or
more concurrent transactions will be the same as if the transactions had been
executed in a serial fashion, where one executes to completion before the other
starts.

228 Chapter 9 Transaction Handling and Database Security
Transaction Control Statements

• REPEATABLE READ
This setting offers the same consistency guarantee as serializable, except that the
concurrency effect known as phantoms may be encountered (see below for a
reference to the definition of this concurrency effect).

• READ COMMITTED
This setting offers the same consistency guarantee as repeatable read, except that the
concurrency effect known as non-repeatable read may also be encountered (see
below for a reference to the definition of this concurrency effect).

• READ UNCOMMITTED
This setting offers the same consistency guarantee as read committed, except that
the concurrency effect known as dirty read may also be encountered (see below for
a reference to the definition of this concurrency effect).

For a definition of the concurrency effects mentioned above (phantoms, non-repeatable
read and dirty read) refer to the Mimer SQL Reference Manual, Chapter 12, SET
TRANSACTION.
All of the isolation level settings guarantee that each transaction will be executed
completely or not at all and that no updates will be lost.

Exception Diagnostics Within Transactions
The SET TRANSACTION DIAGNOSTICS SIZE option allows the size of the diagnostics
area to be defined. An unsigned integer value specifies how many exceptions can be
stacked in the diagnostics area, and examined by GET DIAGNOSTICS, see the Mimer SQL
Reference Manual, Chapter 12, GET DIAGNOSTICS, in situations where repeated
RESIGNAL operations have effectively been performed.
The SET TRANSACTION DIAGNOSTICS SIZE setting only affects the single next
transaction to be started.
The default SET TRANSACTION DIAGNOSTICS SIZE setting (50 or whatever has been
defined to be the default by using SET SESSION) applies unless an alternative is
explicitly set before each transaction.

Setting Default Transaction Options
The SET SESSION statement can be used to define the default settings for the transaction
options set by SET TRANSACTION READ, SET TRANSACTION ISOLATION LEVEL and
SET TRANSACTION DIAGNOSTICS SIZE.
As these SET TRANSACTION commands only affect the single next transaction started
after they are used, it is often convenient to define the desired default options for each of
them.
A detailed description of the SET SESSION statement can be found in the Mimer SQL
Reference Manual.

Mimer SQL Version 11.0 229
Programmer’s Manual

Statements in Transactions
The tables that follow summarize whether statements may or may not be used inside
transactions.

Access Control Statements

Connection Statements

Data Definition Statements

Data Manipulation Statements

Statements Allowed Comments

GRANT

REVOKE

Yes Must be the only statement in a
transaction.

Statements Allowed Comments

CONNECT

SET CONNECTION

Yes

DISCONNECT Yes A ROLLBACK is performed on
any active transaction.

ENTER

LEAVE (program ident)

No

Statements Allowed Comments

ALTER

COMMENT

CREATE

DROP

Yes Must be the only statement in a
transaction.

Statements Allowed Comments

SELECT EXPRESSION

SELECT INTO

FETCH

INSERT

DELETE

DELETE CURRENT

UPDATE

UPDATE CURRENT

Yes

OPEN

CLOSE

Yes ROLLBACK closes all open
cursors.
COMMIT closes all open non-
holdable cursors.

230 Chapter 9 Transaction Handling and Database Security
Transaction Control Statements

Declarative Statements

Diagnostic Statements

Dynamic SQL Statements

ESQL Control Statements

Statements Allowed Comments

DECLARE CONDITION

DECLARE CURSOR

DECLARE HANDLER

DECLARE VARIABLE

Not applicable Declarative statement

Statements Allowed Comments

GET DIAGNOSTICS

RESIGNAL

SIGNAL

Yes

Statements Allowed Comments

PREPARE

DESCRIBE

EXECUTE

EXECUTE IMMEDIATE

EXECUTE STATEMENT

ALLOCATE CURSOR

ALLOCATE DESCRIPTOR

DEALLOCATE DESCRIPTOR

DEALLOCATE PREPARE

GET DESCRIPTOR

SET DESCRIPTOR

Yes See Dynamic SQL on
page 60.

Statements Allowed Comments

DECLARE SECTION

WHENEVER

Not applicable Declarative statement

Mimer SQL Version 11.0 231
Programmer’s Manual

Procedure Control Statements

System Administration Statements

Transaction Control Statements

Statements Allowed Comments

CALL

CASE

COMPOUND STATEMENT

FOR

IF

ITERATE

LEAVE

LOOP

REPEAT

RETURN

SET

WHILE

Yes

Statements Allowed Comments

ALTER DATABANK RESTORE

ALTER DATABASE

DELETE STATISTICS

CREATE BACKUP

SET DATABANK

SET DATABASE

SET SHADOW

UPDATE STATISTICS

No These statements create
internal transactions to
ensure data dictionary
consistency

Statements Allowed Comments

SET SESSION

SET TRANSACTION

START

No These statements control
transaction behavior

COMMIT

ROLLBACK

Yes

232 Chapter 9 Transaction Handling and Database Security
Transaction Control Statements

Cursors in Transactions
A cursor open by the current connection may be closed implicitly by one of the
transaction terminating statements COMMIT and ROLLBACK. ROLLBACK closes all open
cursors for the current connection. COMMIT closes all open cursors for the current
connection, except cursors declared WITH HOLD. Holdable cursors remain open after
COMMIT.
When a stacked cursor is closed, all instances of the cursor are closed.
Cursors are also closed implicitly by LEAVE and DISCONNECT. In SET TRANSACTION
START EXPLICIT mode, cursors may be opened and used outside transactions. Such
cursors remain accessible when an ENTER statement is issued, and remain open when a
LEAVE statement is issued.
This is illustrated in the following statement sequence:

...
EXEC SQL SET TRANSACTION START EXPLICIT;

EXEC SQL DECLARE c_1 CURSOR FOR SELECT col1
 FROM tab1;
EXEC SQL DECLARE c_2 CURSOR FOR SELECT col2
 FROM tab2
 WHERE checkcol = :VAR1;

EXEC SQL OPEN c_1;

loop
 EXEC SQL FETCH c_1
 INTO :VAR1; -- Fetch value from tab1

 EXEC SQL ENTER ... ; -- Change current ident

 EXEC SQL OPEN c_2;
 EXEC SQL FETCH c_2
 INTO ...; -- Fetch row for c_2
 EXEC SQL CLOSE c_2;

 EXEC SQL LEAVE;
end loop;
...

In the above example, the value fetched for the cursor C1 is used to determine the set of
rows addressed by cursor C2. Cursor C1 remains open and positioned during the
ENTER … LEAVE sequence.
Each time the loop is executed, a new value is fetched by C1 and a new set of rows is
addressed by C2. The same behavior applies when LEAVE RETAIN is used to leave a
PROGRAM ident but keep the environment for the ident.

Mimer SQL Version 11.0 233
Programmer’s Manual

A cursor opened and used outside a transaction may however not be used within a
transaction. If the same cursor is required outside and inside a transaction, separate
instances must be opened. Remember that separate instances of a cursor address separate
result sets:

...
EXEC SQL SET TRANSACTION START EXPLICIT;

EXEC SQL DECLARE c_1 REOPENABLE CURSOR FOR SELECT col1
 FROM tab1;

EXEC SQL OPEN c_1;
EXEC SQL FETCH c_1
 INTO ...; -- First row (outside transaction)
...
EXEC SQL START;
EXEC SQL OPEN c_1; -- New instance of cursor
EXEC SQL FETCH c_1
 INTO ...; -- First row again
...

Error Handling in Transactions
In general, errors and exception conditions are reported in SQLSTATE after each
executable SQL statement.
The value of SQLSTATE indicates the outcome of the preceding statement, see
SQLSTATE Return Codes on page 323 for a list of SQLSTATE values.
GET DIAGNOSTICS can be used to get detailed status information after an SQL
statement.
The value of SQLSTATE after a COMMIT statement indicates the success or failure of the
request to commit the transaction, not the outcome of any data manipulations performed
within the transaction.

About WHENEVER
Use of the general error handling statement WHENEVER, see the Mimer SQL Reference
Manual, Chapter 12, WHENEVER, for a description) in transactions requires some care:
• Program control can be transferred to an exception routine in the event of an error.

Make sure that the exception routine is designed to take care of uncompleted
transactions.
Most commonly, the first SQL statement in the exception routine should be GET
DIAGNOSTICS. The exception routine should normally also execute a ROLLBACK
statement. Remember that if the exception routine is used from a statement outside
a transaction, any open cursors belonging to the current ident will be closed by the
ROLLBACK statement. GET DIAGNOSTICS can be used to determine whether or not
a transaction is active.

• For transaction conflict, the SQLSTATE value returned from the COMMIT statement
falls into the SQLEXCEPTION class. If the transaction is to be retried in the event of
conflict, make sure that no WHENEVER SQLEXCEPTION GOTO exception
statement is operative.

234 Chapter 9 Transaction Handling and Database Security
Transaction Control Statements

If WHENEVER error handling is used in an application program, a suitable program
structure for COMMIT statements is:

EXEC SQL WHENEVER SQLEXCEPTION GOTO exception;
...
EXEC SQL WHENEVER SQLEXCEPTION GOTO retry;
EXEC SQL COMMIT;
EXEC SQL WHENEVER SQLEXCEPTION GOTO exception;
...

Mimer SQL Version 11.0 235
Programmer’s Manual

Chapter 10

Distributed
Transactions

Mimer SQL supports distributed transactions based on the XA interface as defined by the
Open Group and Microsoft's Distributed Transaction Coordinator (DTC) protocol.
This means that Mimer SQL can be used in application environments that support
distributed transactions.
Support for distributed transactions is enabled by a special key in the Mimer license file.
The evaluation key that is included in the distribution enables distributed transactions. In
order to use distributed transactions with other licenses obtained from Mimer, make sure
that the distributed transaction option is included.

Terms and Abbreviations
In the field of distributed transactions, a number of terms and abbreviations are used. Here
are the most common ones:

Term/Abbreviation Short for Explanation

XA eXtended Architecture An Open Group (X/Open) standard
for distributed transaction handling.
For more information, visit:
http://www.opengroup.org

DTC Microsoft Distributed
Transaction Coordinator

The transaction manager used in
Windows environments. For more
information, visit:
https://msdn.microsoft.com/library

Application Server N/A A program that handles all
application operations between
users and an organization's business
applications or databases.

MTS Microsoft Transaction
Server

The Microsoft application server

EJB Enterprise JavaBeans The framework for application
servers in the Java environment.

https://msdn.microsoft.com/library
http://www.opengroup.org/

236 Chapter 10 Distributed Transactions
How Does it Work?

How Does it Work?
Normally, an application that uses distributed transactions is a component in an
application server. The application server environment takes care of all transaction
processing. The application component just accesses one or several database servers
(Resource Managers, RM’s) using normal programming interfaces.
Note that the application server or Transaction Manager (TM) are not part of the Mimer
database server. These components are obtained from other sources.
When the application server environment starts a new transaction, it contacts the
Transaction Manager, which assigns a new transaction id (XID) to the transaction. All
operations done by the application components are automatically assigned to this XID.
When the transaction is ready to commit, the TM executes the commit operations
according to the two-phase commit protocol.
In phase 1, each participating RM is asked if it is ready to prepare for commit. By replying
yes, the RM promises that it is able to commit the transaction and remember everything
about the transaction. Although it can not commit the transaction yet, it must secure all
information on disk to make sure that no information can be lost. If the RM determines
that it can not commit the transaction at a later stage, it may answer no to the TM. In this
case, the TM aborts its preparation phase. It contacts all RMs again and tells them to abort
the transaction.
If the TM got a yes from all RMs in the first phase, phase 2 begins. Each RM is asked to
commit the transactions.

Handling failures
The Transaction Manager is responsible for performing the two-phase commit protocol.
It must maintain the current state of this protocol for every transaction it manages. It
should also be able to deal with failures in any component, including itself.
A problematic situation occurs if the contact between the TM and the RM is lost when the
protocol is between phase 1 and 2. In this case, the RM has promised to be able to commit
a certain update, but it does not yet know whether it should actually do so. This is
determined in phase 2. Because of this uncertainty, the RM does not know what value to
return to other transactions that asks for the information that was updated. Should the old
or the new value be returned? A Mimer database server will typically abort transactions
that request data which was updated by a transaction that is in doubt.
The situation is automatically resolved when the contact between the TM and the RM is
reestablished. Since both TM and RM save all information on disk, they may both crash
between phase 1 and 2, and still be able to carry through with the two phase commit
protocol.
However, if the TM somehow fails to reconnect to a Mimer database server that has
prepared transactions in doubt, there is another option. The operator may perform a
heuristic commit or a heuristic rollback. By doing this, the operator does the role that
the TM normally does and resolves the state of the transaction that is in doubt. This can
be done by using the TRANSACTIONS command, described in Mimer SQL User’s
Manual, Chapter 9, TRANSACTIONS.

Mimer SQL Version 11.0 237
Programmer’s Manual

Note that if the TM has already instructed some RMs to (for example) commit, while the
operator does a heuristic rollback on another RM, a transactional inconsistency has been
introduced. This must be resolved manually. Because of this risk, heuristic operations
should be used with due care.

Mimer SQL Support For Microsoft DTC on Windows
Mimer SQL supports the complete distributed transaction model according to the
Microsoft Distributed Transaction Coordinator (MSDTC). This allows transactions to
span several Mimer SQL databases. The database servers can be located on any type of
hardware where Mimer SQL 9.1 or later is supported. To use MSDTC, the client must be
on a Windows platform.
It is also possible to have transactions over heterogeneous database systems. For example,
a single transaction can be performed which updates data in both a Mimer SQL database
and a Microsoft SQL Server database.
The support allows code written for Microsoft Transaction Server and COM+ to be used
with Mimer SQL. The transaction can be managed automatically by the COM+ server.
I.e. transactional components are fully supported and transactional attributes can be
‘Supported’, ‘Required’, or ‘Requires New’. Please see your COM+ documentation for a
thorough discussion of these options.
There is no distributed transaction support for Mimer SQL servers older than 9.1.

Mimer SQL Support for Java Enterprise Edition
Mimer SQL has full support for the distributed transactions in Java Enterprise Edition
(Java EE) through the XA support in the Mimer JDBC Driver. With Java EE any XA
compliant data source can take part in a distributed transaction. The distributed
transactions are handled by the Java EE Application Server and specified by the
application developer in a declarative manner. This way the application developer does
not have to include any transaction handling logic in the application. Distributed
transactions can be used in several different parts of the Java EE framework, for example
in Enterprise Java Beans (EJB).
To be able to use Mimer SQL in a distributed transaction an XA data source must be
created in the application server. How this is done differ between different application
servers, consult your manual to see how it is done. When defining an XA data source for
Mimer SQL, the com.mimer.jdbc.MimerXADataSource Java class should be used.
For more information about the Mimer JDBC Driver, see the Mimer JDBC Driver Guide.

238 Chapter 10 Distributed Transactions
Mimer SQL Support for Java Enterprise Edition

Mimer SQL Version 11.0 239
Programmer’s Manual

Chapter 11

Mimer SQL Stored
Procedures

In Mimer SQL, the term stored procedures refers to routines, i.e. functions and
procedures.
Mimer SQL stored procedures conform to the SQL/PSM standard. The SQL/PSM
standard consists of:
• syntax and semantics for variable and cursor declarations
• assignment of the results of expressions to variables and parameters
• conditional statements
• control statements for looping and branching
• condition and exception handling
• getting diagnostics for status information and routine invocations.
Modules can be used to collect a number of routines together as a group.

Mimer SQL PSM Debugger
You can debug routines and triggers using Mimer SQL’s Java-based graphic debugger for
PSM routines. The debugger supports watching variables, step-wise execution and setting
breakpoints. For more information, see The Mimer SQL PSM Debugger on page 275.

About Routines
A routine is either defined as a function or as a procedure. Essentially the same constructs
may be used in both functions and procedures.
A routine can be created by declaring it in a module definition, see Modules on page 253,
or be created on its own by executing the CREATE FUNCTION or CREATE PROCEDURE
statement. A routine created on its own cannot be subsequently added to a module.
A routine belongs to the schema in which it was created and the routine name may be
qualified in the normal way with the name of the schema. Only the ident with the same
name as the schema to which a routine belongs may refer to it by its unqualified name, all
other idents must use the fully qualified routine name.
It is possible to have multiple functions and procedures with the same name within a
schema as long as they differ with regard to either the number of parameters or the data
type for the parameters. This is called parameter overloading.

240 Chapter 11 Mimer SQL Stored Procedures
About Routines

To distinguish between routines with the same name it is possible to give a specific name
when creating a routine. This specific name can used when granting or revoking execute
privilege for the routine or when dropping the routine.
It is possible for a function to have the same qualified name as a procedure, because the
invocation of a function is distinct from that of a procedure.
In order to invoke a routine, the ident invoking it must have been granted EXECUTE
privilege on the routine. Routines may be recursively invoked.
Note: When routines and modules are created, the create statement must be executed

as one single statement. For example, using BSQL, the create statement must
be delimited by the @ character, see the Mimer SQL User’s Manual, Chapter 7,
Creating Functions, Procedures, Triggers and Modules, for details and
examples.

The following points should be noted for procedures:
• they are invoked by using the CALL statement.
• any result from a procedure must be returned via one of the output parameters,

except in the special case of a result set procedure, which can return rows of a
result set to a cursor, see Result Set Procedures on page 264.
The following points should be noted for functions:

• they are invoked from an SQL statement where a value is required. Certain
restrictions apply, see Invoking Functions on page 260. For example:
SET :isbn = mimer_store_book.format_isbn('1558604618');

• the parameters of a function provide input only and the function result is returned
as the value of the function invocation.

A routine essentially consists of static SQL source that is stored in the data dictionary and
which may be invoked by name whenever it is to be executed.
The SQL source for a routine comprises a definition of various routine components, see
Syntactic Components of a Routine Definition on page 245 for details, followed by the
routine body.
The routine body consists of a single executable SQL statement - typically a compound
SQL statement, i.e. local declarations and a number of SQL statements delimited by a
BEGIN and END. See Scope in Routines – the Compound SQL Statement on page 248.
Note: It is recommended that a compound SQL statement always be used for the

body of a routine, as this offers the greatest flexibility and results in a
consistent structure for all routines.

It is possible to declare exception handlers within a compound SQL statement to handle
specific exceptions or classes of conditions, see Declaring Exception Handlers on
page 269.

Functions
A function is invoked by specifying the function invocation where a value expression
would normally be used. The parameters of a function are used to provide input only,
values cannot be passed back to the calling environment through the parameters of a
function.

Mimer SQL Version 11.0 241
Programmer’s Manual

A function always returns a single value and the data type of the return value is defined
in the returns clause, which is specified after the parameter definition part of the function
definition.
The function returns its value when a RETURN statement is executed within the body of
the function. The data type of the value expression in the RETURN statement must be
assignment-compatible with the data type specified in the returns clause of the function.

Functions and SQL Statements
The SQL statements that apply to a function are:

Example 1
CREATE FUNCTION SQUARE_INTEGER(p_root INTEGER) RETURNS INTEGER
CONTAINS SQL
BEGIN
 RETURN p_root * p_root;
END

Example 2
CREATE FUNCTION mimer_store_web.session_expiration_period()
 RETURNS INTERVAL HOUR TO MINUTE
-- Defines the period that a session can be unused
DETERMINISTIC
RETURN INTERVAL '10' MINUTE(3); -- Intentionally very short

Example 3
CREATE FUNCTION date_plus_time (d date, t time(6))
RETURNS timestamp

-- Create a timestamp, from a date plus time input
DETERMINISTIC
RETURN cast(d as timestamp) + (t - time '00:00:00') hour to second(6);

Statement Description

ALTER FUNCTION alters an already existing function, see Mimer SQL Reference
Manual, Chapter 12, ALTER FUNCTION

CREATE FUNCTION creates a function that exists on its own, see the Mimer SQL
Reference Manual, Chapter 12, CREATE FUNCTION

DROP FUNCTION drops a function that exists on its own, see the Mimer SQL
Reference Manual, Chapter 12, DROP

GRANT EXECUTE grants the privilege to invoke a function, see the Mimer SQL
Reference Manual, Chapter 12, GRANT OBJECT
PRIVILEGE

REVOKE EXECUTE revokes the privilege to invoke a function, see the Mimer SQL
Reference Manual, Chapter 12, REVOKE OBJECT
PRIVILEGE

COMMENT ON FUNCTION defines a comment on a function, see the Mimer SQL
Reference Manual, Chapter 12, COMMENT.

242 Chapter 11 Mimer SQL Stored Procedures
About Routines

Example 4
CREATE FUNCTION mimer_store_book.keyword_id(p_keyword VARCHAR(48))
 RETURNS INTEGER
-- Inserts a word in the KEYWORDS table
-- and returns the identifier with which the keyword is associated
MODIFIES SQL DATA
BEGIN
 DECLARE v_keyword_id INTEGER;

 DECLARE CONTINUE HANDLER FOR NOT FOUND
 BEGIN
 INSERT INTO mimer_store_book.keywords(keyword)
 VALUES (UPPER(TRIM(p_keyword)));

 SET v_keyword_id = CURRENT VALUE FOR mimer_store_book.keyword_id_seq;
 END; -- of not found handler

 SELECT keyword_id
 INTO v_keyword_id
 FROM mimer_store_book.keywords
 WHERE keyword = TRIM(p_keyword);

 RETURN v_keyword_id;
END -- of routine mimer_store_book.keyword_id

Procedures
A procedure is normally invoked explicitly by executing the CALL statement and does not
return a value. The parameters of a procedure can be used to provide input and may be
used to pass values back to the calling environment.
There is a special type of procedure, called a result set procedure, which returns rows of
a result set to a cursor when it is invoked by executing the FETCH statement in that
context.
A result set procedure is distinguished from a normal procedure by having a returns clause
specified after the parameter definition part of the procedure definition, see Result Set
Procedures on page 264 for a detailed description of result set procedures.

Procedures and SQL Statements
The SQL statements that apply to a procedure are:

Statement Description

ALTER PROCEDURE alters an already existing procedure, see Mimer SQL
Reference Manual, Chapter 12, ALTER PROCEDURE

CREATE PROCEDURE creates a procedure that exists on its own, see the Mimer SQL
Reference Manual, Chapter 12, CREATE PROCEDURE

DROP PROCEDURE drops a procedure that exists on its own, see the Mimer SQL
Reference Manual, Chapter 12, DROP

GRANT EXECUTE grants the privilege to invoke a procedure, see the Mimer SQL
Reference Manual, Chapter 12, GRANT OBJECT
PRIVILEGE

REVOKE EXECUTE revokes the privilege to invoke a procedure, see the
Mimer SQL Reference Manual, Chapter 12, REVOKE
OBJECT PRIVILEGE

Mimer SQL Version 11.0 243
Programmer’s Manual

Example 1
CREATE PROCEDURE mimer_store_web.delete_basket(p_session_no VARCHAR(16))
-- Deletes expired baskets
MODIFIES SQL DATA
BEGIN
 IF p_session_no = '*' THEN
 -- '*' indicates that all expired sessions should be deleted
 DELETE
 FROM mimer_store.orders
 WHERE order_id IN (SELECT order_id
 FROM mimer_store_web.sessions
 WHERE last_accessed < LOCALTIMESTAMP -
 mimer_store_web.session_expiration_period());
 ELSE
 -- Delete the specified session
 DELETE
 FROM mimer_store.orders
 WHERE order_id = (SELECT order_id
 FROM mimer_store_web.sessions
 WHERE session_no = p_session_no);
 END IF;
END -- of routine mimer_store_web.delete_basket

CALL mimer_store_web.delete_basket('*');

COMMENT ON PROCEDURE mimer_store_web.delete_basket
 IS 'Deletes expired baskets';

DROP PROCEDURE mimer_store_web.delete_basket;

CALL invokes a procedure, see the Mimer SQL Reference Manual,
Chapter 12, CALL

COMMENT ON PROCEDURE defines a comment on a procedure, see the Mimer SQL
Reference Manual, Chapter 12, COMMENT.

Statement Description

244 Chapter 11 Mimer SQL Stored Procedures
About Routines

Example 2
CREATE PROCEDURE mimer_store_book.catalogue_authors(IN p_item_id INTEGER,
 IN p_authors_list VARCHAR(128))
-- Stores author names as keywords and forms a link between a book
-- and the keywords
MODIFIES SQL DATA
BEGIN
 DECLARE v_author VARCHAR(50);
 DECLARE v_authors VARCHAR(130);
 DECLARE v_offset, v_length INTEGER;

 SET v_authors = REPLACE(' ' || p_authors_list || ' ', ' and ', ';');
 SET v_authors = REPLACE(v_authors, ' & ', ';');
 SET v_authors = TRIM(v_authors);

extract_authors:
 LOOP
 IF v_authors = '' THEN LEAVE extract_authors; END IF;

 SET v_offset = POSITION(';' IN v_authors);

 IF v_offset <> 1 THEN
 IF v_offset = 0
 OR v_offset > 49 THEN
 SET v_length = 48;
 ELSE
 SET v_length = v_offset - 1;
 END IF;

 SET v_author = mimer_store_book.authors_name(
 SUBSTRING(v_authors FROM 1 FOR v_length));

 BEGIN
 DECLARE v_keyword_id INTEGER;

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 -- Ignore all SQL errors
 END; -- of sqlexception handler

 SET v_keyword_id = mimer_store_book.keyword_id(v_author);

 INSERT INTO mimer_store_book.authors(keyword_id, item_id)
 VALUES (v_keyword_id, p_item_id);
 END;
 END IF;

 IF v_offset = 0 THEN LEAVE extract_authors; END IF;

 SET v_authors = TRIM(SUBSTRING(v_authors FROM v_offset+1));
 END LOOP extract_authors;
END -- of routine mimer_store_book.catalogue_authors

Mimer SQL Version 11.0 245
Programmer’s Manual

Syntactic Components of a Routine Definition
The following sections discuss parameters, language indicators, clauses, scope, variables
and data types when working with routines.

Routine Parameters
A routine may have zero or more parameters and each parameter must have a name and
a data type specified.
Each parameter of a procedure can have an optional mode specification (IN, OUT or
INOUT – see CREATE PROCEDURE in the Mimer SQL Reference Manual for details).
When the mode is not explicitly specified, IN is assumed by default.
It is not possible to specify the mode for the parameters of a function (they always have
the default mode, IN).
A parameter name must be unique within the routine. The parameter name can be up to
128 characters in length, see the Mimer SQL Reference Manual, Chapter 6, Naming
Objects, for further details about naming SQL objects.
The parameter data type can be any data type supported by Mimer SQL, except any of the
large object types, see the Mimer SQL Reference Manual, Chapter 6, Data Types in SQL
Statements.
A parameter name may be referenced in an unqualified manner throughout a routine, at
all scope levels – see Scope in Routines – the Compound SQL Statement on page 248 for
a discussion of scope in routines.

Examples:
CREATE FUNCTION onefunction(a INTEGER, b DECIMAL(5,2))
RETURNS DECIMAL(5,2)
BEGIN
 ...
END

CREATE PROCEDURE lookup(IN i INTEGER, OUT retval VARCHAR(20))
BEGIN
 ...
END

Parameter Overloading
Mimer SQL supports the possibility to define multiple functions or procedures with the
same name as long as they differ with regard to the number of parameters or the data type
of the parameter. It is not possible to have multiple functions that only differ with regard
to the return data type.

246 Chapter 11 Mimer SQL Stored Procedures
Syntactic Components of a Routine Definition

As an example, it is possible to create two functions like
SQL>create function f(c1 char) returns int return 1;
SQL>create function f(c1 integer) returns int return 2;

and these can be used as
SQL>set ? = f('1');
 ?
===========
 1

SQL>set ? = f(1);
 ?
===========
 2

In this case there is no problem deciding which routine that should be invoked in the two
cases since there can be no implicit conversion from a character type to integer or vice
versa. Some interesting cases arise when there are parameter overloading and where there
are implicit conversions between the parameter types. For instance, if we have these
functions

SQL>create function f(p char varying(2))
SQL& returns int return 1;
SQL>create function f(p nchar varying(2))
SQL& returns int return 2;

Given the statement
SQL>set ? = f('a');

which routine should be invoked? The data type of the actual argument is char and there
is no routine with a parameter list that matches the invocation exactly. In this case a type
precedence list is used to determine the proper subject routine. For CHAR the type
precedence list is CHAR, CHARACTER VARYING, NCHAR and NCHAR VARYING which
means that the function returning 1 will be chosen in this case. If there are multiple
parameters, the subject routine is determined by evaluating the type precedence list for
each parameter, going from left to right.
The type precedence lists are found in Mimer SQL Reference Manual, Appendix H, Type
Precedence Lists.

Specific Names and Parameter List
When specifying a routine in a drop, grant or revoke statement the routine must be
uniquely identifiable. This is no problem as long as parameter overloading is not used. If
there are multiple functions or procedures with the same name there are two ways of
specifying a unique routine. The first is by using the specific name for the routine. A
specific name can be defined when the routine is created. If no specific name is given, a
unique name is generated automatically. This name can be seen in the view
INFORMATION_SCHEMA.ROUTINES. As an example:

CREATE PROCEDURE p(p1 INT, p2 CHAR(20))
SPECIFIC p_int_char
…
GRANT EXECUTE ON SPECIFIC PROCEDURE p_int_char
TO public WITH GRANT OPTION;

Mimer SQL Version 11.0 247
Programmer’s Manual

The other way to distinguish between overloaded routines in DDL statements is to use a
data type list. Given the above procedure definition, the grant statement can be written as

GRANT EXECUTE ON PROCEDURE p(INT,CHAR) TO public WITH GRANT OPTION;

To specify a routine without parameters, the syntax is
GRANT EXECUTE ON PROCEDURE p() TO public WITH GRANT OPTION;

Routine Parameters and Null Values
All parameters accept null values. Use CAST to invoke a routine with a null value as a
parameter, as follows:

CALL mimer_store_music.AddTrack(718751799622, CAST(NULL AS int), 'Null Set',
'3:53')

Routine Language Indicator
The language indicator specifies the language of the routine. Currently, the only language
name supported is SQL.
If no language indicator is specified, LANGUAGE SQL is assumed by default.

Routine Deterministic Clause
The deterministic clause for a routine can specify NOT DETERMINISTIC or
DETERMINISTIC. If a deterministic clause is not specified, NOT DETERMINISTIC is
assumed by default.
A DETERMINISTIC routine is one that is guaranteed to produce the same result every
time it is invoked with the same set of input values.
Therefore, a DETERMINISTIC routine may not contain a reference to: CURRENT_DATE,
LOCALTIME, LOCALTIMESTAMP or BUILTIN.UTC_TIMESTAMP.
Specifying a routine to be DETERMINISTIC allows repeated invocations of it to be
optimized.

Routine Access Clause
The access clause for a routine specifies which SQL statements are permitted within the
routine.
The three different options for the routine access clause (CONTAINS SQL, READS SQL
DATA and MODIFIES SQL DATA) are described under CREATE PROCEDURE in the Mimer
SQL Reference Manual. If no routine access clause is specified, then CONTAINS SQL is
assumed.
If the routine contains a SELECT statement, READS SQL DATA is required. (Or if a READS
SQL DATA routine is called.)
If the routine contains a DELETE or an UPDATE statement, MODIFIES SQL DATA is
required. (Or if a MODIFIES SQL DATA routine is called.)

248 Chapter 11 Mimer SQL Stored Procedures
Syntactic Components of a Routine Definition

Scope in Routines – the Compound SQL Statement
A compound SQL statement allows a sequence of procedural SQL statements to be
considered as a single SQL statement, see COMPOUND STATEMENT in the Mimer SQL
Reference Manual for a description of the syntax.
A routine body may contain only one executable SQL statement and the compound SQL
statement allows a routine to be defined that can actually contain any number of SQL
statements.
A compound SQL statement also defines a local scope in which variables, exception
handlers, and cursors can be declared. Compound SQL statements may be nested, one
within the other, and thus local scopes may be nested.
A compound SQL statement may be labeled, which effectively names the local scope
defined by it. The label name can be used whenever the scope environment needs to be
referred to explicitly, e.g. when qualifying the names of objects which have been declared
in the compound SQL statement. The label name must not be the same as a routine name.
It is important to understand the effect of scoping on declared items, particularly with
respect to: out-of-scope references to variables, see Declaring Variables on page 250, the
scope within which an exception handler remains in effect and the flow of control effects
following the use of different types of exception handler, see Declaring Exception
Handlers on page 269.
The SQL statement LEAVE is specifically provided to give the programmer the ability to
force the flow of control to exit from a labeled scope.

Example
CREATE PROCEDURE some_procedure(INOUT y INTEGER)
CONTAINS SQL
s0:
BEGIN
 ...
s1:
 BEGIN
 IF y < 0 THEN
 SET y = 0;
 LEAVE s0;
 END IF;
 ...
 END s1;
 ...
END s0

In the example above, the effect of the LEAVE statement is to pass flow of control to the
statement END s0, i.e. flow of control exits from the scope labeled s0.
All open cursors declared in a compound SQL statement are closed whenever flow of
control leaves the compound SQL statement for any reason.
Note: A compound SQL statement may be preceded by a label which names the

scope delimited by the BEGIN and END (this is called the beginning label).
Specifying the label next to the END is optional. However, if a label is specified
next to the END, the beginning label must be specified.

Mimer SQL Version 11.0 249
Programmer’s Manual

The ATOMIC Compound SQL Statement
The execution of any SQL statement, other than a procedure-control-statement,
is atomic. See the Mimer SQL Reference Manual, Chapter 12, Procedural SQL
Statements, for a definition of a procedure-control-statement.
The execution of a compound SQL statement defined as ATOMIC is also atomic.
When the execution of an SQL statement is atomic, an atomic execution context becomes
active while the statement, or any contained subquery, is executing. While an atomic
execution context is active, it is possible for another atomic execution context to become
active within it.
While an atomic execution context is active the following is true:
• It is not possible to explicitly terminate a transaction, thus all changes made within

the atomic execution context occur within the same transaction.
• If an exception occurs during the execution of a statement and there is an undo

handler declared for this exception, then all delete, insert and update statements
executed within the atomic compound statement are undone. If there is no undo
handler, only the statement that caused the exception will be undone.

Note: If the atomic statement contains operations on tables located in a databank
defined with work option, these operations will not be part of the atomic
statement but will be executed immediately. If the atomic statement is
terminated by an SQL exception, such operation will not be undone.

An atomic compound SQL statement is defined by specifying the keyword ATOMIC next
to the BEGIN delimiter. The COMMIT and ROLLBACK statements cannot be used within an
atomic compound SQL statement.
A compound SQL statement is explicitly defined as not being atomic by specifying NOT
ATOMIC next to the BEGIN delimiter. If nothing is specified next to the BEGIN delimiter,
NOT ATOMIC is assumed by default.
If the compound SQL statement contains a declaration for an UNDO exception handler, see
Declaring Exception Handlers on page 269, the compound SQL statement must be
ATOMIC.

Examples:
CREATE FUNCTION an_atomic_function(i INTEGER)
RETURNS INTEGER
BEGIN ATOMIC
 ...
 -- All statements executed between this BEGIN
 -- and END execute within the same active atomic
 -- execution context.
 -- UNDO exception handlers are permitted.
 -- No COMMIT or ROLLBACK allowed!
 ...
END

CREATE PROCEDURE a_non_atomic_procedure(i INTEGER)
BEGIN NOT ATOMIC
 ...
 -- This compound SQL statement is not atomic.
 -- COMMIT and ROLLBACK statements are permitted.
 -- No UNDO exception handlers allowed!
 ...
END

250 Chapter 11 Mimer SQL Stored Procedures
Syntactic Components of a Routine Definition

CREATE FUNCTION a_default_function(i INTEGER) RETURNS INTEGER
BEGIN
 ...
 -- This compound SQL statement is not atomic, by default.
 -- COMMIT and ROLLBACK statements are permitted.
 -- No UNDO exception handlers allowed!
 ...
END

Declaring Variables
It is possible to declare variables, cursors, condition names and exception handlers at the
beginning of a compound SQL statement. These items can, therefore, be declared in a
routine when a compound SQL statement is used for the routine body.
This section discusses the declaration of variables. Discussions about declaring the other
items mentioned above can be found in the following sections:
• cursors, see Using Cursors on page 262
• condition names, see Declaring Condition Names on page 268
• exception handlers, see Declaring Exception Handlers on page 269.
Variables of any data type supported by Mimer SQL may be declared. The name of a
variable must be unique within the scope of its declaration and must not conflict with the
name of any of the routine parameters.
Variable names can be a maximum of 128 characters in length and are case insensitive.
See the Mimer SQL Reference Manual, Chapter 6, Naming Objects, for further details.
More than one variable of the same type can be declared in a single variable declaration,
see the examples below.
It is possible to specify an optional expression, which may be null, that defines the default
value for a variable declaration. The variable(s) created by the variable declaration are
given the initial value derived from the default expression. If a default expression is not
specified, the value null is assumed.

Examples:
DECLARE z INTEGER;
DECLARE x, y INTEGER DEFAULT 9;
DECLARE abx VARCHAR(50);
DECLARE a INTEGER DEFAULT NULL;

Note: It is possible to declare a variable that has the same name as a column name in
a table. All ambiguous references will be interpreted as a reference to a column
name rather than a variable. It is therefore recommended that a suitable naming
convention be adhered to that clearly distinguishes between the names of table
columns and variables.

The name of a variable may be qualified in the normal way with the beginning label of
the scope in which it has been declared.

Mimer SQL Version 11.0 251
Programmer’s Manual

Example
CREATE PROCEDURE some_procedure(IN x INTEGER)
s0:
BEGIN
 DECLARE a, b INTEGER;
s1:
 BEGIN
 DECLARE b, c INTEGER;
 ...
 END s1;
s2:
 BEGIN
 DECLARE y INTEGER;
 ...
 END s2;
END s0

The qualified names for the variables in the preceding example are as follows:
s0.a, s0.b, s1.b, s1.c and s2.y.

The ROW Data Type
Mimer SQL supports a data type called the ROW data type. It can be used in a compound
SQL statement in place of the data type specified when a variable is declared.
A variable that is declared as having the ROW data type implicitly defines a row value,
which is a single construct that has a value that effectively represents a table row.
A row value is composed of a number of named values, each of which has its own data
type and represents a column value in the overall row value.
A ROW data type can be defined either by explicitly specifying a number of field-
name/data-type pairs or by specifying a number of table columns from which the
unqualified names and data types are inherited.

ROW Data Type Syntax
The syntax for defining a ROW data type is:

The following points apply to the specification of a ROW data type:
• A domain cannot be specified for data-type.
• The value specified for data-type can be a ROW data type specification.
• Two fields in the same ROW data type specification must not have the same name

(this restriction applies equally to fields named by specifying a field-name value
and those named by inheriting the unqualified name of a table column).

• If table-name is specified without a list of column names, all the columns in the
table are used to define fields in the ROW data type.

252 Chapter 11 Mimer SQL Stored Procedures
Syntactic Components of a Routine Definition

Using the ROW Data Type
A ROW variable field is referenced like this: variable-name.field-name.
A value may be assigned to one of the fields in a ROW variable in the same way as a value
would be assigned to a variable declared with the same data type as the field. The data
type of the field must be assignment compatible with the value being assigned to it.
If the declaration of a ROW variable does not include a DEFAULT clause, each field in the
ROW variable is set to null initially.
The value of a field in a ROW variable may be used in the same way as any value of that
type.
When a ROW data type is defined by specifying table columns, the names and data types
of its fields are inherited from the columns in the table(s). Subsequently assigning values
to the ROW variable will not affect the table(s) used to define the ROW data type.
A row value, which may be the value of a ROW variable, may be assigned to a ROW
variable. The row value and the ROW variable are assignment-compatible if, and only if,
both contain the same number of values and each value in the row value is assignment-
compatible with the corresponding field in the ROW variable.
Two row values, one or both of which may be the value of a ROW variable, may be
compared. The row values are comparison-compatible if, and only if, both contain the
same number of values and each value in one is comparison-compatible with the
corresponding value in the other.
A ROW variable may be used within a compound SQL statement in the following contexts:
• As the only expression specified in a RETURN statement used in a result set

procedure. The ROW variable must be assignment-compatible with the row value
defined by the procedure VALUES clause.

• As the only target variable specified in the INTO clause of a SELECT INTO
statement. The row value selected must be assignment-compatible with the ROW
variable and will be assigned to it.

• As the only target variable specified in the INTO clause of a FETCH statement. The
row value fetched must be assignment-compatible with the ROW variable and will
be assigned to it.

• As the procedure-variable or expression in a SET assignment statement (see the
description above of assignment-compatibility involving ROW variables).

• As an argument in a comparison (see the description above of comparison-
compatibility involving ROW variables).

Row Value Expression
A row value expression is an expression that specifies a row value. The values that
represent the column values of the row value expression are specified as value
expressions in a comma-separated list that is delimited by parentheses.
A row value expression can be used in the following contexts:
• As the only expression in a RETURN statement used in a result set procedure.
• As the expression following the DEFAULT keyword in a DECLARE VARIABLE

statement for a variable declared to have the ROW data type.
• As a row value in a comparison or assignment operation.

Mimer SQL Version 11.0 253
Programmer’s Manual

Examples:
RETURN (24, 16, 'xyz', 11.3, x+4/9);

DECLARE rc ROW (a INTEGER, b INTEGER, s VARCHAR(10))
 DEFAULT (14, 27, 'hello');

IF rc = (14, 27, 'hello') THEN
 SET rc.s = 'bye';
END IF;

SET rc = (99, 105, 'new value');

Modules
A module is a collection of routines. All the routines in a module are created by declaring
them when the module is created. Routines cannot be added to or removed from a module
after the module has been created.
A module belongs to the schema in which it is created and all the routines contained in a
module must belong to the same schema as the module.
The name of a routine in a module may be qualified in the normal way by using the name
of the schema to which the routine belongs. The module name is never used to qualify the
name of a routine.
Note: It is not possible to grant EXECUTE privilege on a module. In order to allow an

ident to invoke a routine, whether it exists on its own or in a module, EXECUTE
privilege on the routine must be granted to the ident.

When a module is dropped, all the routines in the module will be dropped as well. See
Using DROP and REVOKE on page 275 for a discussion of CASCADE effects on modules
and routines.
The operations that may be performed on a module are:
• CREATE MODULE

• DROP MODULE

• COMMENT ON MODULE

Refer to the Mimer SQL Reference Manual, Chapter 12, SQL Statements for a description
of the SQL statements mentioned above, brief examples follow.

Examples:
CREATE MODULE module_1
 DECLARE PROCEDURE p1 ... ;
 DECLARE PROCEDURE p2 ... ;
 DECLARE FUNCTION f1 ... ;
 ...
END MODULE

COMMENT ON MODULE module_1 IS 'This is my example module';

DROP MODULE module_1 CASCADE;

254 Chapter 11 Mimer SQL Stored Procedures
SQL Constructs in Routines

SQL Constructs in Routines
The following SQL constructs are specifically provided for use in the body of a routine.

Assignment Using SET
The SET statement is used to assign a value to a variable declared in a routine or an output
parameter of a procedure (i.e. a parameter with mode OUT or INOUT).

Examples:
SET a = 5;
SET x = NULL;
SET y = 11 + a;
SET d = CURRENT_DATE;
SET z = NEXT VALUE FOR Z_SEQUENCE;
SET (x, y) = (CASE y WHEN 1 THEN y ELSE 0 END, 64);

Conditional Execution Using IF
The IF statement provides a mechanism for conditional execution of SQL statements
based on the truth value of a conditional expression.
Note: If the conditional expression includes (or equals) null, the conditional

expression evaluates to false. Testing for the null value must be done by using
IS NULL, see the Mimer SQL Reference Manual, Chapter 9, The NULL
Predicate.

A basic IF statement consists of a conditional expression followed by a list of one or more
SQL statements in a THEN clause, which are executed if the conditional expression
evaluates to true and, optionally, a list of one or more SQL statements in an ELSE clause
which are executed if the conditional expression evaluates to false.
All of the predicates supported by Mimer SQL are allowed in the conditional expression
of an IF statement – see the Mimer SQL Reference Manual, Chapter 9, Predicates.
One or more IF statements can be nested, one within the other, by using an ELSEIF
clause in place of the ELSE clause in the IF statement containing another.
The IF statement does not in any sense define a local scope, it is simply a mechanism for
conditionally executing a sequence of SQL statements.
Once the SQL statements to be executed have been selected, they execute in the same way
as any ordinary sequence of SQL statements. This point is particularly important when
considering exception condition handling behavior, see Managing Exception Conditions
on page 267.

Mimer SQL Version 11.0 255
Programmer’s Manual

Examples:
IF x > 50 THEN
 SET x = 50;
 SET y = 1;
ELSE
 SET y = 0;
END IF;

IF y IN (2,3,4) THEN
 ...
ELSE
 ...
END IF;

IF x > 50 THEN
 SET x = 50;
 SET y = 2;
ELSEIF x > 25 THEN
 SET y = 1;
ELSE
 SET y = 0;
END IF;

IF NOT EXISTS (SELECT *
 FROM table_1) THEN
 ...
ELSE
 ...
END IF;

IF X > (SELECT c1
 FROM t1
 WHERE ...) THEN
 ...
ELSE
 ...
END IF;

Conditional Execution – the CASE Statement
The CASE statement provides another mechanism for conditional execution of SQL
statements. The CASE statement comes in two forms, a simple case and a searched case.

Simple Case
A simple case works by evaluating equality between one value expression and one or
more alternatives of a second value expression. For example:

DECLARE y INTEGER;

CASE y
 WHEN 1 THEN ...
 WHEN 2 THEN ...
 WHEN 3 THEN ...
 ELSE ...
END CASE;

256 Chapter 11 Mimer SQL Stored Procedures
SQL Constructs in Routines

Searched Case
A searched case works by evaluating, for truth, a number of alternative search conditions.
For example:

CASE
 WHEN EXISTS (SELECT *
 FROM BILL) THEN ...
 WHEN x > 0 OR y = 1 THEN ...
 ELSE ...
END CASE;

About Case Statements
For both forms of the CASE statement the following is true:
• A sequence of one or more SQL statements can follow the THEN clause for each of

the conditional alternatives, in the same way as for an IF statement, even though
only a single implied SQL statement is shown in the examples above.

• Each alternative sequence of SQL statements in a CASE statement is treated in the
same way, with respect to the behavior of exception handlers etc., as has already
been described for sequences of SQL statements in an IF statement, see
Conditional Execution Using IF on page 254.

• Like the IF statement, the CASE statement simply provides a mechanism for
selecting a sequence of SQL statements to execute. The CASE statement as a whole
is not considered, in any sense, to be a single statement.

• The conditional part of each WHEN clause is evaluated, working from the top of the
CASE statement down. The SQL statements that are actually executed are those
following the THEN clause of the first WHEN condition to evaluate to true. If none of
the WHEN conditions evaluate to true, the SQL statements following the CASE
statement ELSE clause are executed.

The presence of an ELSE clause in the CASE statement is optional and if it is not present
(and none of the WHEN conditions evaluate to true) an exception condition is raised to
indicate that a case was not found for the CASE statement.
Note: If it is desired that there be no operation performed and no exception condition

raised if none of the WHEN conditions evaluate to true, then an ELSE clause
should be specified as an empty compound SQL statement.

Only the single selected sequence of SQL statements that follow a THEN or the ELSE is
executed before the CASE statement terminates. There is no potential fall-through to
subsequent THEN sequences as is found in case statements in some other programming
environments.
Note: The CASE statement is distinct from the CASE expression – see the

Mimer SQL Reference Manual, Chapter 12, CASE and Mimer SQL Reference
Manual, Chapter 9, CASE Expression.

Mimer SQL Version 11.0 257
Programmer’s Manual

Iteration
The following sections describe how you can use iteration.

Iterating through a result set - FOR loop
A for loop can be used to iterate through all records in a result set and perform some
operations for each record. This is a vast simplification compared to using a cursor.
A simple example of a for loop is

FOR SELECT surname, forname FROM customers
 WHERE customer_id IN
 (SELECT customer_id FROM orders
 WHERE datetime BETWEEN DATE '2006-01-01' AND DATE '2006-06-31') DO
 CALL orderStat(surname,forname);
END FOR

I.e. call the orderStat routine for each record in the customers table that fulfil the where
criteria. Within the body of the for statement it is possible to reference the column values
as ordinary variables. This also means that each item in the select list must have a name
and that name must be unique within the select list.
The body of the for statement is an atomic statement, which means that it cannot contain
statements such as start, commit and rollback.
It is possible to use a result set procedure in a for loop

FOR CALL coming_soon('Blues') DO
 IF producer IN ('Bill Vernon','Bill Ham') THEN
 INSERT INTO stats(format,release_date,…)
 VALUES (format,release_date,…);
 END IF;
END FOR

In this case the correlation names in the returns clause of the result set procedure
definition can be used as variable names in the body of the for loop.
The select or call statement in the for loop can be labelled and this label can be used to
qualify variable references.

l1: BEGIN
 DECLARE forname CHAR(12);
 …
 FOR l2 AS SELECT forname FROM customers DO
 IF l1.forname <> l2.forname THEN
 …
 END IF;
 END FOR;
END

The label used cannot be the same as any label of a compound statement enclosing the for
loop.

Iteration Using LOOP
The LOOP statement may be preceded by a label that can be used as an argument to LEAVE
in order to terminate the loop. The LOOP statement can contain a sequence of one or more
SQL statements that are executed, in order, repeatedly.
The iteration is terminated by executing the LEAVE statement, or if an exception condition
is raised.

258 Chapter 11 Mimer SQL Stored Procedures
SQL Constructs in Routines

Example
s1:
LOOP
...

IF ecounter > 10000 THEN
LEAVE s1;

END IF;
END LOOP s1;

Iteration Using WHILE
The WHILE statement may be preceded by a label that can be used as an argument to
LEAVE in order to terminate the while loop. The WHILE statement can contain a sequence
of one or more SQL statements that are executed, in order, repeatedly.
The WHILE statement includes a conditional expression and iteration continues as long as
this expression evaluates to true. Iteration may also be terminated by executing the LEAVE
statement, or if an exception condition is raised.

Example
SET i = 0;
s1:
WHILE i <= 10 DO
 ...
 SET i = i + 1;
END WHILE s1;

Iteration Using REPEAT
The REPEAT statement may be preceded by a label that can be used as an argument to
LEAVE in order to terminate the repeat loop. The REPEAT statement can contain a
sequence of one or more SQL statements which are executed, in order, repeatedly.
The REPEAT statement includes an UNTIL clause, which specifies a conditional
expression, and iteration continues until this expression evaluates to true. Iteration may
also be terminated by executing the LEAVE statement, or if an exception condition is
raised.

Example
SET i = 0;
s1:
REPEAT
 ...
 SET i = i + 1;
UNTIL i > 10
END REPEAT s1;

Mimer SQL Version 11.0 259
Programmer’s Manual

Using ITERATE to Skip Statements
You can use an ITERATE statement to skip the remaining statements in an iteration as
shown in the following examples:

SET x = 0:
s1:
REPEAT
 SET x = x + 1;
 ...
 IF x < 10 THEN
 ITERATE s1; -- execution continues at the beginning
 -- of the repeat statement
 END IF;
 ...
UNTIL x = 20 END REPEAT s1;

Using ITERATE in all Iteration Statements
You can use ITERATE in all iteration statements in stored procedures. ITERATE is not
restricted to the innermost statement. For example:

 SET x = 0;
s1:
 REPEAT
 SET x = x + 1;
s2:
 BEGIN
s3:
 LOOP
 ...
 IF x < 10 THEN
 ITERATE s1;
 ELSEIF x < 20 THEN
 ITERATE s3;
 END IF;
 ...
 END LOOP s3;
 END s2;
 UNTIL x = 20
 END REPEAT s1;

Note: The statement ITERATE s1 will cause an implicit leave of the compound
statement labeled s2.

Invoking Procedures and Functions
The following sections discuss invoking procedures and functions.

Invoking Procedures – CALL
The CALL statement is used to invoke a procedure. The name of the procedure may be
qualified with the name of the schema to which it belongs. A value expression or target
variable must be specified for each of the procedure’s parameters, see the Mimer SQL
Reference Manual, Chapter 6, Target Variables, for the definition.
If the procedure parameter has mode OUT or INOUT, a target variable must be specified.
For procedure parameters with mode IN, a value expression may be specified.
SQL/PSM is not strongly typed, so the expression specified for each procedure parameter
need not have exactly the same data type as the parameter, however the expression must
be assignment-compatible with the procedure parameter for which it is supplied, see the
Mimer SQL Reference Manual, Chapter 7, Assignments, for a discussion of assignment
and implicit data type conversions.

260 Chapter 11 Mimer SQL Stored Procedures
SQL Constructs in Routines

Examples:
CALL PROC1();

CALL PROC2(x, y);

CALL IDENT1.PROC7(CURRENT_DATE, x+3, z);

Invoking Functions
Functions are not invoked by calling them explicitly. A function is invoked, and it returns
its value, when it is used in a procedure-control-statement or in an assignment
where a value-expression would normally be used.
The name of the function may be qualified with the name of the schema to which it
belongs.
If MODIFIES SQL DATA has been specified for the access-clause of the function, it
must not be used in the expression following the DEFAULT keyword in a DECLARE
VARIABLE statement.

Examples:
IF fn(x) > 70 THEN
 ...
ELSE
 ...
END IF;

SET v_Artist = Mimer_Store_Music.ArtistName(p_RecordedBy) || '%';

IF Mimer_Store.Index_Text(Data.Title) LIKE v_Title THEN
 ...
END IF;

Comments in Routines
Any text that occurs after -- and before end-of-line in a routine is taken to be a comment.

Example
CREATE PROCEDURE tstproc(y INTEGER)
-- This is a comment: Note that Y has mode IN (default)
READS SQL DATA
BEGIN
 DECLARE b INTEGER;
 -- Here is another comment
 SET b = y + 22; -- Y is input to the procedure
 ...
END

Restrictions
The following groups of SQL statements may not be used in a routine:
• Access Control statements
• Data Definition statements
• Connection statements
• ESQL Control statements
• Security Control statements

Mimer SQL Version 11.0 261
Programmer’s Manual

• Dynamic SQL statements
• System Administration statements.
Refer to the Mimer SQL Reference Manual, Chapter 12, SQL Statements for a definition
of the statement groups mentioned above.
Note: Any SQL statements used in a routine must be executable, so the usual

restriction on the use of SELECT versus SELECT INTO applies (only the latter
being considered executable - the former may, however, be used in a
conditional expression, e.g. in an IF statement or a cursor declaration).

The following restrictions apply to result set procedures:
• A COMMIT or ROLLBACK statement must not be executed in a result set procedure

because it will interfere with the open cursor that will exist in the context from
where the result set procedure is called.

• A function or procedure that executes a COMMIT or ROLLBACK statement must not
be invoked from within a result set procedure.

• A function or procedure that has MODIFIES SQL DATA specified for its access
clause must not be invoked from within a result set procedure.

Manipulating Data
The following sections discuss how to use write operations, cursors and SELECT INTO
when manipulating data.

Write Operations
You can use INSERT, UPDATE and DELETE statements in a function or procedure
provided MODIFIES SQL DATA has been specified for the access clause, see Routine
Access Clause on page 247.
You can use routine parameters and variables in these statements wherever an expression
can normally be used, as shown in the examples below.

Example
CREATE PROCEDURE mimer_store_book.add_title(IN p_book_title VARCHAR(48),
 IN p_authors VARCHAR(128),
 IN p_published_by VARCHAR(48),
 IN p_format VARCHAR(20),
 IN p_isbn CHAR(18),
 IN p_date_released CHAR(10),
 IN p_price DECIMAL(7, 2),
 IN p_stock SMALLINT,
 IN p_reorder_level SMALLINT)
-- Add the details for a book entity; inserts against the join view which fires
-- the instead of trigger
MODIFIES SQL DATA
BEGIN
 -- Insert into join view
 INSERT INTO mimer_store_book.details(title, authors_list, publisher,
 format,isbn, release_date,
 price, stock, reorder_level)
 VALUES (p_book_title, p_authors, p_published_by, p_format,
 p_isbn, p_date_released, p_price, p_stock,
 p_reorder_level);
END -- of routine mimer_store_book.add_title

262 Chapter 11 Mimer SQL Stored Procedures
Manipulating Data

ROW_COUNT Option
You can use the ROW_COUNT option of the GET DIAGNOSTICS statement may be used
immediately after an INSERT, UPDATE, DELETE, SELECT INTO or FETCH statement to
determine the number of rows affected by the preceding statement.

Example
DECLARE v_rows INTEGER;
...
INSERT INTO mimer_store_book.details ...;
GET DIAGNOSTICS v_rows = ROW_COUNT;
IF v_rows > 0 THEN

Note: All SQL statements except GET DIAGNOSTICS will overwrite the information
in the diagnostics area.

Using Cursors
You can declare and use cursors in a compound SQL statement to receive a result set from
a select-expression or from a result set procedure.
A cursor may not have the same name as another cursor declared in the same scope.
Cursors in a procedural usage context are used in much the same way, in terms of the SQL
statements used, as cursors declared outside routines. It is possible to open cursors, fetch
data into variables and use the statements UPDATE and DELETE WHERE CURRENT OF
cursor.

Example 1
DECLARE NREC ROW AS (SOMETABLE);
DECLARE C CURSOR FOR SELECT * FROM SOMETABLE;
BEGIN
DECLARE EXIT HANDLER FOR NOT FOUND CLOSE C;
OPEN C;
LOOP
FETCH C INTO NREC;
...

END LOOP;
END;

Example 2
DECLARE D DATE DEFAULT CURRENT_DATE;
DECLARE C1,C2 CHAR(5);
DECLARE Z SCROLL CURSOR FOR CALL PROC(1,D);
DECLARE I INTEGER;
...
OPEN Z;
...
FETCH FIRST FROM Z INTO C1;
...
FETCH ABSOLUTE I FROM Z INTO C2;

FETCH ABSOLUTE I FROM Z INTO C2;

Example 1 demonstrates detection of the NOT FOUND exception as a method of detecting
that a FETCH statement does not return any data. If a NOT FOUND exception occurs in the
example, an exit handler is invoked. After the exit handler has finished, the flow of
control leaves the compound SQL statement.

Mimer SQL Version 11.0 263
Programmer’s Manual

Alternatively, the GET DIAGNOSTICS statement can be used to retrieve the number of
rows affected by the FETCH statement, as shown below.

Example
DECLARE ROWS INTEGER;
L1:
LOOP
 FETCH X INTO I_CHARGE_CODE,I_AMOUNT;
 GET DIAGNOSTICS ROWCNT = ROW_COUNT;
 IF ROWCNT = 0 THEN
 LEAVE L1;
 END IF;
END LOOP;
CLOSE X;

Restrictions
The following specific restrictions apply to cursors used in routines:
• no dynamic functions can be used (i.e. extended cursor names and the use of SQL

descriptors)
• REOPENABLE cursors are not allowed
• the use of the keyword RELEASE with the CLOSE statement is not permitted.
Using FETCH to get result set data from a result set procedure may cause parts of the result
set procedure to execute, see Result Set Procedures on page 264. The result set procedure
will be in use until the associated cursor is closed.

SELECT INTO
Another way of fetching data is by using a SELECT INTO statement. This can only be
used when one single row is fetched from the database. If more than one row fulfills the
search criteria, an exception condition is raised. If no data is found, a not found condition
is raised.

Example
SELECT currency, v_price * exchange_rate
 INTO p_local_currency, p_local_price
 FROM mimer_store.customers

JOIN mimer_store.countries AS cnt ON cnt.code = country_code
 JOIN mimer_store.currencies AS crn ON crn.code = currency_code
 FETCH 1;

264 Chapter 11 Mimer SQL Stored Procedures
Result Set Procedures

Transactions
It is possible to start and end transactions within a routine. A transaction is implicitly
started when a routine that accesses the database is invoked.
It is also possible to explicitly start a transaction by using the START statement. When a
transaction is ended, either by a COMMIT or ROLLBACK statement, all open cursors are
closed.

Example
START;
UPDATE table
 SET ...
 WHERE col = v_str, ...
...
COMMIT;

It is possible to affect the behavior of transactions by using the SET TRANSACTION and
SET SESSION statements.
Note: If a compound SQL statement is defined as ATOMIC, a transaction cannot be

terminated within it because execution of the COMMIT or ROLLBACK statements
is not permitted.

Result Set Procedures
A result set procedure is a special type of procedure that allows a result set to be returned.
A result set procedure is called by specifying it in a cursor declaration and then using
FETCH to get the result set data.
In interactive SQL, a result set procedure is called by using the CALL statement and the
result set data is dealt with in the same way as a select.

Example (ESQL):
EXEC SQL DECLARE c_1 CURSOR FOR CALL result_proc(1, 5);

A result set procedure is distinguished when it is created or declared by a RETURNS clause
which follows the parameter part of the procedure definition.
The RETURNS clause defines the data types of the columns in the result set and may
contain an AS clause which names the columns.

Example
CREATE PROCEDURE barcode(IN p_ean BIGINT)
-- result set procedure that returns book or music details for the given EAN
RETURNS TABLE(title VARCHAR(48), creator VARCHAR(48), format VARCHAR(20),
priced decimal(7,2), item_id INTEGER)
READS SQL DATA
BEGIN
 ...
END

All result set procedure parameters have mode IN, therefore, any data returned from a
result set procedure is returned via the procedure’s result set.
The option MODIFIES SQL DATA must not be specified for the access clause of a result
set procedure, see Routine Access Clause on page 247.

Mimer SQL Version 11.0 265
Programmer’s Manual

Note: A function or procedure that has MODIFIES SQL DATA specified for its access
clause must not be invoked from within a result set procedure.

A result set procedure must not execute a COMMIT or ROLLBACK statement, because
this would close the cursor that is used in order to call the result set procedure.
Note: A function or procedure that executes a COMMIT or ROLLBACK statement must

not be invoked from within a result set procedure.
A row in the result set of a result set procedure is returned by executing the RETURN
statement. The arguments to a RETURN statement can be null, an expression or a variable
which has the ROW data type.
When a FETCH is executed, the SQL statements in the body of the result set procedure are
executed until a RETURN statement is executed.
The execution of the result set procedure is then suspended until the next FETCH
statement is executed for the calling cursor, then flow of control within the result set
procedure continues until the next RETURN statement is encountered, or until the end of
the procedure is reached.
After flow of control has exited from the scope of a result set procedure the next attempt
to FETCH more data into the calling cursor will flag end-of-set.
Thus, a result set procedure call can be used in place of the usual SELECT when declaring
a cursor.

266 Chapter 11 Mimer SQL Stored Procedures
Result Set Procedures

The following example, using ESQL, is intended to demonstrate how execution within
the result set procedure proceeds, and is suspended, in response to FETCH statements
being executed for the calling cursor:

EXEC SQL
 CREATE PROCEDURE result_proc(x INTEGER)
 RETURNS TABLE (txt VARCHAR(10), xp INTEGER)
 CONTAINS SQL
 BEGIN
 DECLARE xp INTEGER DEFAULT x;

 RETURN ('FIRST ROW', xp);

 SET xp = x * 2;
 RETURN ('SECOND ROW', xp);

 SET xp = x * 3;
 RETURN ('THIRD ROW', XP);
 END;

EXEC SQL DECLARE c_1 CURSOR FOR CALL result_proc(3);
EXEC SQL OPEN c_1;

EXEC SQL WHENEVER NOT FOUND GOTO done;

EXEC SQL FETCH c_1
 INTO :T, :X;
(This will fetch 'FIRST ROW', 3)
Result set procedure flow of control suspended at XP=X*2

EXEC SQL FETCH c_1
 INTO :T, :X;
(This will fetch 'SECOND ROW', 6)
Result set procedure flow of control suspended at XP=X*3

EXEC SQL FETCH c_1
 INTO :T, :X;
(This will fetch 'THIRD ROW', 9)
Result set procedure flow of control suspended at END;

EXEC SQL FETCH c_1
 INTO :T, :X;
Flow of control exits from procedure scope and the NOT FOUND exception is
raised.

done:
EXEC SQL CLOSE c_1;

More typically, a loop construct would be used in the result set procedure to deal with
RETURN statements. It is also permissible to use a cursor within the result set procedure
to get data to be returned via a SELECT.
Closing the cursor for a result set procedure will close any open cursors declared within
it and no further execution of the procedure will occur.
Reopening the cursor will start execution of the result set procedure afresh from the
beginning (i.e. no state information is saved between a close and reopen).

Mimer SQL Version 11.0 267
Programmer’s Manual

Managing Exception Conditions
An exception is raised if an error occurs when executing an SQL statement. Every
exception is identified by an exception condition, expressed in terms of its SQLSTATE
value.

About SQLSTATES
An SQLSTATE value is represented by the keyword SQLSTATE followed by a 5-character
string containing only uppercase alphanumeric characters. The first two characters of the
string identify the exception class and the last three the exception sub-class.
In Mimer SQL, the range of possible SQLSTATE values is divided into standard values
and implementation-defined values. The implementation-defined values are those
beginning with the characters J-R, T-Z, 5-6 and 8-9. For a list of the values, see
Mimer SQL Reference Manual, Appendix E, SQLSTATE Return Codes.
Whenever an exception is raised, the exception condition is placed in the diagnostics area
and the SQLSTATE value can be retrieved by using the RETURNED_SQLSTATE option of
the GET DIAGNOSTICS statement.

Condition Names
In addition to expressing an exception condition in terms of its SQLSTATE value, it is
possible (within a compound SQL statement) to declare a condition name to represent it.
Whenever a condition name is used, it is immediately translated into the SQLSTATE value
it represents. For more information, see Declaring Condition Names on page 268.

SIGNAL Statements
It is possible to raise an exception without an error occurring by using the SIGNAL
statement. When the SIGNAL statement is used, the specified exception condition is
placed in the cleared diagnostics area, expressed as its SQLSTATE value, and control
proceeds as if an error had just occurred.
It possible to return specific error messages with the SIGNAL statement by using the
optional SET clause.

Example
SIGNAL SQLSTATE 'UE456'
 SET message_text = 'The specified horse, ' || horse ||
 ' does not exist in the database';

Exception Handlers and Actions
It is possible to declare exception handlers in a compound SQL statement that perform
some action when exceptions are raised. The action defined by the exception handler is
associated with one or more specific exception conditions, or one or more exception class
groups, specified when the exception handler is declared. For more information, see
Declaring Exception Handlers on page 269.
If there is an exception handler action defined for an exception condition that is raised,
the exception handler action is performed and execution continues in the manner defined
by the type of the exception handler.

268 Chapter 11 Mimer SQL Stored Procedures
Managing Exception Conditions

If no exception handler action has been defined for an exception condition that is raised,
the default error handling mechanism is invoked (which usually makes the exception
condition visible to the calling environment).
If the exception NOT FOUND or an SQLWARNING is raised in an unhandled situation,
execution will continue and the exception will be cleared by execution of the next
statement in the procedure. The GET DIAGNOSTICS statement can be used to test for the
NOT FOUND exception and an SQLWARNING.

RESIGNAL Statements
It may be necessary for an exception handler action to re-raise the current exception
condition or to raise an alternative exception condition. The RESIGNAL statement is
provided for this purpose and it may only be executed from within an exception handler.
If RESIGNAL is executed without specifying an exception condition, the current exception
condition remains in the diagnostics area and the error handling mechanism proceeds to
deal with the error as if the current exception handler action had not been found.
If an exception condition is specified (in the same way as for SIGNAL), this is pushed onto
the top of the stack of exceptions in the diagnostics area, becoming the current SQLSTATE
value, and the error handling mechanism proceeds as just described.
The size of the exceptions stack in the diagnostics area is set by using the
SET TRANSACTION DIAGNOSTICS SIZE statement, see Exception Diagnostics Within
Transactions on page 228.
Use of RESIGNAL is useful in situations where there are nested exception handler actions
defined and it is required that an enclosing exception handler action be invoked from an
inner one, or where the default error handling mechanism is to be allowed to proceed from
some point within a defined exception handler action. As with the SIGNAL statement it
is possible to supply a specific message text.

Example
RESIGNAL;

RESIGNAL SQLSTATE 'UE456'
SET message_text = 'The horse ' || horse || ' does not exist';

Declaring Condition Names
As discussed in the previous section, exception conditions are identified by an SQLSTATE
value. Whenever an exception is raised, the exception condition that identifies it is stored
in the diagnostics area in the form of its SQLSTATE value.
It is always possible to specify an exception condition by using its SQLSTATE value, e.g.
SQLSTATE VALUE 'S0700', however it is often desirable to declare a condition name
that represents the SQLSTATE value in a way that more meaningfully describes the
exception.
Condition names may be declared in a compound SQL statement, see the Mimer SQL
Reference Manual, Chapter 12, COMPOUND STATEMENT, for a detailed description.

Mimer SQL Version 11.0 269
Programmer’s Manual

Example
DECLARE invalid_parameter CONDITION FOR SQLSTATE 'UE456';
...
SIGNAL invalid_parameter;

Following this declaration, the condition name INVALID_PARAMETER can be used
instead of the SQLSTATE value SQLSTATE VALUE 'UE456' whenever there is a need to
refer to this exception condition.
If a condition name is used in a signal statement the associated SQLSTATE value and the
condition name is placed in the diagnostics area. If the condition does not have an
associated SQLSTATE value, the SQLSTATE value 45000 is used. A condition is always
local to a routine, i.e. consider the following example:

create procedure p2()
begin
 declare condition c1;
 ...
 signal c1;
end

create procedure p1()
begin
 declare condition c1;
 declare exit handler for c1
 begin
 ...
 call p2();
 ...
 end
end

In this case the exit handler in the procedure p1 will not be invoked when the statement
signal c1 is executed.In order to catch a signaled condition the associated SQLSTATE
must be used. The condition identifier can be propagated by using a RESIGNAL statement.
All SQLSTATE values in Mimer SQL that lie outside the range of standard values are
treated as implementation-defined, so all SQLSTATE values are handled in the same way
and may be specified explicitly in all situations.

Declaring Exception Handlers
Exception handlers may be declared in a compound SQL statement in order to define an
action which will be executed if specified exceptions are raised within the scope of the
exception handler.
The structure of the handler action is the same as the body of a routine, i.e. a single
executable procedural SQL statement. The exceptions to which the handler action will
respond may be specified as a list of exception conditions or by specifying one or more
exception class groups.
The exception class groups are:
• SQLWARNING covers SQLSTATE values beginning with 01.
• NOT FOUND covers SQLSTATE values beginning with 02.
• SQLEXCEPTION covers all other SQLSTATE values (including those in the

implementation defined range), excluding those beginning with 00.
An exception handler that is declared to respond to one or more exception class groups is
referred to as a general exception handler.

270 Chapter 11 Mimer SQL Stored Procedures
Managing Exception Conditions

An exception condition may be specified by its SQLSTATE value or a condition name
declared to represent it. An exception handler which is declared to respond to one or more
specific exception conditions is referred to as a specific exception handler.
The same exception condition must not be specified more than once in the same exception
handler declaration.
An exception handler can either be a general exception handler or a specific exception
handler, i.e. an exception handler declaration cannot contain both exception class groups
and specific exception conditions.
Exception handlers are declared in the local handler declaration list of a compound SQL
statement and the scope of an exception handler is that compound SQL statement plus all
the SQL statements contained within it except when another routine is invoked. When a
user defined routine is invoked all exception handlers in the calling routine will get out of
scope and they will get into scope again when the invoked routine has finished executing,
e.g:

CREATE PROCEDURE innerMost(INT x)
BEGIN
 -- no handlers in this routine
 IF x > 0 THEN
 SIGNAL SQLSTATE 'UE345';
 ELSE
 SIGNAL SQLSTATE 'UE543';
 END IF;
END

CREATE PROCEDURE outerMost()
BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE 'UE345' BEGIN END;
 DECLARE CONTINUE HANDLER FOR SQLSTATE 'UE543' BEGIN END;
 CALL innerMost(0);
 CALL innerMost(1);
 CALL innerMost(2);
END

When the signal statement with exception UE543 in the innerMost routine is executed,
the execution of this routine will be stopped as there is no handlers declared. The
exception will the be propagated to the outerMost routine which has a continue handler
for this exception. This means that the execution will proceed with the next call statement.
This will cause a new exception (UE345) being signaled. Again this exception will be
propagated to the calling routine and the first exception handler will be invoked. As this
is an exit handler the execution will continue after the end of the compound statement in
the outerMost routine, i.e. the statement call innerMost(2) will never be executed.
The exception handler will be executed if one of the exceptions it is declared to respond
to is raised within the scope of the handler.
A local handler declaration list can only contain one exception handler declared to
respond to a particular exception condition or exception class group.
It is possible to declare a general and a specific exception handler, both of which cover
the same scope, where an exception condition specified for the specific handler is in one
of the exception class groups specified for the general handler. If the exception condition
is raised in this situation, the specific handler is executed in preference to the general
handler.

Mimer SQL Version 11.0 271
Programmer’s Manual

It is possible for the scope of two specific exception handlers, which respond to the same
exception condition, to overlap. This will be the case if there are two nested compound
SQL statements and each declares a specific exception handler for the same exception
condition (this is permitted, provided the two exception handlers are not declared in the
same local handler declaration list). In this situation the innermost exception handler
action will be executed.
The same is true for two general exception handlers in this situation.
The RESIGNAL statement can be used in situations like this, in the inner exception handler
action, to get the outer exception handler action to execute by propagating the exception
out from the exception handler action which is currently executing.

Types of Exception Handlers
Exception handlers fall into the following types:

• Exit Handler
This type of exception handler will execute when the exception condition(s) that
apply to it are raised. After the handler has executed, flow of control exits the scope
of the compound SQL statement containing the exception handler declaration, by
effectively performing a LEAVE, see Scope in Routines – the Compound SQL
Statement on page 248.

• Continue Handler
This type of exception handler will execute when the exception condition(s) that
apply to it are raised. After the handler has executed, flow of control continues by
executing the SQL statement immediately following the SQL statement that raised
the exception.

• Undo Handler
The execution of this type of handler will be initiated when the exception
condition(s) that apply to it are raised. Before the handler action executes, all
changes made by the executed SQL statements in the compound SQL statement, or
by any SQL statements triggered by them, are canceled. The handler action is then
executed and flow of control exits the scope of the compound SQL statement
containing the exception handler declaration, by effectively performing a LEAVE,
see Scope in Routines – the Compound SQL Statement on page 248.
Note: An UNDO exception handler can only be declared in a compound SQL

statement that has been defined as ATOMIC, see The ATOMIC Compound
SQL Statement on page 249.

272 Chapter 11 Mimer SQL Stored Procedures
Managing Exception Conditions

Examples of Exception Handlers
s1:
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 ...
 END;
 ...
 END s1;

s2:
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE 'S0700'
 BEGIN
 ...
 END;
 ...
 END s2;

s3:
 BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE 'S0700'
 BEGIN
 ...
 END;
 ...
s4:
 BEGIN ATOMIC
 DECLARE UNDO HANDLER FOR SQLSTATE 'S0700'
 BEGIN
 ...
 END;
 ...
 END s4;
 ...
 END s3;

Create a function iadd that adds two integer values, in an overflow and underflow safe
way, using an exit handler. The SQLSTATE value 22003 means “numeric value out of
range”:

create function iadd(p1 int, p2 int) returns int
begin
 declare exit handler for sqlstate value '22003'
 return case when p1 < 0 and p2 < 0 then -2147483648
 else 2147483647

end;
 return p1 + p2;
end

Mimer SQL Version 11.0 273
Programmer’s Manual

Using the GET DIAGNOSTICS Statement
The GET DIAGNOSTICS statement can be used in an exception handler to get the specific
SQLSTATE value that provoked execution of the exception handler.

Example
Create a function iadd that adds two integer values, in an overflow and underflow safe
way, using an exit handler. The SQLSTATE value 22003 means “numeric value out of
range”, the native error -10302 means overflow, and the native error -10303 means
underflow:

create function iadd(p1 int,p2 int) returns int
begin
 declare exit handler for sqlstate value '22003'
 begin
 declare a int;
 get diagnostics exception 1 a = native_error;
 return case when a = -10303 then -2147483648
 when a = -10302 then 2147483647

end;
 end;
 return p1 + p2;
end

Example
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 DECLARE v_state CHAR(5) DEFAULT '?????';
 GET DIAGNOSTICS EXCEPTION 1 v_state = RETURNED_SQLSTATE;
 CASE v_state
 WHEN '22003' THEN ...
 WHEN '20000' THEN ...
 ELSE RESIGNAL;
 END CASE;
 END; -- of sqlexception handler

Note that GET DIAGNOSTICS must be the first statement in the exception handler as the
diagnostics area always contains information about the latest statement.
The GET DIAGNOSTICS statement can also be used to get information about warnings
and not found exceptions.

Example
SELECT format into v_format FROM formats where category_id = v_category_id;
GET DIAGNOSTICS EXCEPTION 1 v_state = RETURNED_SQLSTATE;
IF v_state = '02000' THEN
-- not found
ELSE
-- found
END IF;

274 Chapter 11 Mimer SQL Stored Procedures
Access Rights

As mentioned, to describe an error always use GET DIAGNOSTICS in an exception
handler. I.e. it is not meaningful to place GET DIAGNOSTICS after a statement to check
for errors. Example:

BEGIN
 DECLARE v_state CHAR(5);
 DECLARE EXIT HANDLER FOR sqlexception
 BEGIN
 ...
 END;
 INSERT INTO format(format,category_id) VALUES (v_format,v_category_id);
 GET DIAGNOSTICS EXCEPTION 1 v_state = RETURNED_SQLSTATE;
END

If an exception occurs in the INSERT statement this will be catched by the exception
handler and as this is an exit handler the execution will resume after the compound
statement. Thus, the diagnostics statements will never be invoked in this case. Even if it
is a continue handler the GET DIAGNOSTICS statement is superfluous as the handler
would clear the diagnostics information.

Access Rights
The ident creating a routine must, as is usual, have the appropriate access rights on the
tables and other database objects referenced from the SQL statements in the routine. The
creating ident must also have the right to create objects in the schema to which the routine
is to belong (i.e. the ident must be the creator of the schema).
The right of the creator to access referenced database objects is verified when the CREATE
FUNCTION, CREATE MODULE or the CREATE PROCEDURE statement is executed.
If an ident wishes to invoke a routine, that ident must have EXECUTE privilege on the
routine.
Note: In order for the creator of a routine to grant EXECUTE privilege on the routine

to another ident, the creator must have the WITH GRANT option in affect for all
the access rights held on all the database objects referenced within the routine.

The above note is an important security point, because granting EXECUTE privilege on a
routine is effectively granting appropriate access rights to the given ident on all the
database objects referenced in the routine, therefore all those access rights must be held
by the grantor with the WITH GRANT option.
An ident may be granted EXECUTE privilege on a routine with the WITH GRANT option
and if this option is in affect, the ident may grant EXECUTE privilege on that routine to
other idents.
Routines can be used as a security layer in the database. By having EXECUTE privilege on
a routine granted, an ident only gets the right to perform the specific operations specified
in the routine and not general access to the referenced database objects.
Note: It is not possible to grant EXECUTE privilege on a module, only on routines.

Mimer SQL Version 11.0 275
Programmer’s Manual

Using DROP and REVOKE
Care must be taken if database objects are dropped with the CASCADE option, and when
REVOKE is performed, particularly with respect to routines and modules.
It is important to bear in mind the following points in connection with modules and
routines:
• Dropping an object referenced by an SQL statement in a routine will cause the

routine to be dropped.
• If the access rights on a database object are revoked from the creator of a routine

that contains an SQL statement referencing the object, the routine will be dropped.
• If a routine belonging to a module is dropped because of the effects of a cascade,

the routine is effectively removed from the module (i.e. the module is not dropped).
If an ident attempts to drop a routine for which there is a compiled version currently being
held by another ident, the DROP operation will fail because the routine is in use.
When a routine is invoked, it is compiled and the compiled version of the routine is held
by the invoking ident. Any other idents invoking a routine while a compiled version of it
exists will use the existing compiled version and this will be held by them as well.
A compiled version of a routine will generally be held by an ident until the ident
disconnects. If the routine invocation is contained in a dynamic SQL statement,
deallocating the statement will release the compiled version of the routine immediately
without the need for a disconnect.

The Mimer SQL PSM Debugger
Using Mimer SQL’s Java-based graphic PSM Debugger, you can select and run a stored
function or stored procedure in an environment that enables you to:
• view the stored source of the routine
• watch the values of the input parameters and declared variables
• observe the results of executing the routine.
You can interactively set breakpoints in the routine being debugged or in other routines
or triggers invoked by this routine. When a breakpoint is set the execution will halt at this
line, if encountered in the flow of execution.
You can execute a routine in step-wise fashion from the beginning or from the point at
which a breakpoint halts execution.
When execution of a routine is interrupted or when a routine is executed in a step-wise
fashion, an indicator next to the source line will show the current flow of control position.

Requirements
The PSM Debugger requires a Java 2 (version 1.2 or later) compatible Java runtime
environment.

Linux: The PSM Debugger is a Java-based program and must be used in an X-
Windows environment.

Win: You can download the Java runtime environment files from: https://www.java.com

https://www.java.com

276 Chapter 11 Mimer SQL Stored Procedures
The Mimer SQL PSM Debugger

Starting the PSM Debugger

To start the PSM Debugger:

The PSM Debugger window opens and the log in dialog box is displayed.

Logging In
Logging in to the Mimer SQL PSM Debugger establishes a connection to a database
server and enables you to access the routines stored in the database.

To log in:
1 In the login dialog box, enter the following details:

2 Click OK to connect to the database, or Cancel to quit the Mimer SQL PSM
Debugger.
Once you have logged in to the Mimer SQL PSM Debugger, you will be accessing
the database as the ident you specified in the log in dialog box and you can choose
a routine to debug by selecting it from the Choose a procedure drop-down list.

Linux: Enter the following command:
java -jar /usr/lib/psmdebug.jar

or, use the psmdbg command.
On Linux and macOS, the PSM Debugger can also be started from the
Start Menu.

VMS: The PSM debugger is not included in the VMS distribution. PSM procedures
can be debugged remotely from a workstation using another graphical operating
system.

Win: Click Start, navigate to where you installed Mimer SQL and select SQL-PSM
Debugger.

Database The name of a database that is accessible from the node you are
running on. The syntax for the database URL in the login dialog
box is:
hostname[:port]/database

If the database resides on your local machine, specify localhost
as the host name.
For example:
localhost/testdb

Username The name of the ident you wish to use to access the database.

Password The password to be used for the specified ident.

Mimer SQL Version 11.0 277
Programmer’s Manual

Choosing a Routine
Choose a stored function or stored procedure to debug by selecting it from the drop-down
list.
The list displays the routines for which you hold EXECUTE privilege. When you have
selected a routine, you must specify values for all the input parameters.

Specifying the Input Parameters
When you select a routine with input parameters, a dialog box will list the name and data
type of each input parameter and you must specify values for them.
When you have specified values for all the input parameters, click OK to view the source
for the routine, or click Cancel to go back to selecting a routine from the drop-down list.

Viewing the Source Code for a Routine
When you have selected a routine and specified the input parameter values, the routine
source is displayed.
It is possible to watch the values of declared variables and routine parameters declared as
input or input/output by selecting them from the Variable details drop-down list.
You can set a breakpoint on a line of the routine source by clicking on the indicator to the
left of the source line in the source window.

Watching Variables and Input Parameters
Once you have selected a variable or parameter from the drop-down list, its name and
current value (when defined) are shown in the table below the list.
The watched values are updated in the table as the routine executes.

Setting Breakpoints
To set a breakpoint in a routine or trigger invoked by the current routine, you can choose
a routine or a trigger from the list in the Breakpoints menu.
When you click on the indicator to left of a source line in the source window, the indicator
will change color.
If the indicator is red, there is a breakpoint set on that source line which will halt execution
of the routine when it is encountered.
If the indicator next to a source line is white, then no breakpoint is set on that line.

Executing a Routine

To execute a routine:
• Click Go to execute the routine to the end or to the next breakpoint.
• Click Step Into to execute the next line. If this line contains a call statement or a

function invocation, the execution will halt at the first line in the invoked routine.

278 Chapter 11 Mimer SQL Stored Procedures
The Mimer SQL PSM Debugger

• Click Step Over to execute the next line. This mode will not stop the execution if
there is a routine invocation, unless there is a breakpoint set.

• Click Cancel to force continuous routine execution to stop.
Whenever the value of a watched variable or parameter changes, the value shown for it
in the table will be updated and will be displayed in red. Unchanged values will be
displayed in black.
When execution of a routine is halted by a breakpoint, flow of control is positioned just
before execution of the source line on which the breakpoint is set. An arrow to the left of
the source line shows where execution has been halted.
To continue executing a routine that has been halted at a breakpoint, click Go, Step Into
or Step Over.
Whenever execution of a routine is halted, because a breakpoint was encountered or
during step-wise execution, the source line at which the routine is halted appears with an
arrow to the left of it. The current flow of control position is just prior to execution of that
source line.
The results of executing the routine are shown in the window below the routine selection
drop-down list. The Mimer SQL PSM Debugger gives the same results feedback during
execution of a routine as Mimer BSQL.

Mimer SQL Version 11.0 279
Programmer’s Manual

Chapter 12

Triggers
This chapter discusses database triggers: how to create them, execute them and drop
them.
A trigger defines an SQL statement that is automatically executed before, after, or instead
of a specified data manipulation operation on a particular table or view.
A trigger can either be a statement trigger which means that the trigger is executed once
for a data manipulation statement, or a row trigger which means that the trigger is
executed once for each row affected by the data manipulation statement causing the
trigger.
The execution of the SQL statement can be made conditional on the evaluation of a search
condition.
The SQL statement in the trigger definition is typically a compound SQL statement, thus
allowing a number of SQL statements to be executed by the trigger. The compound SQL
statement must be defined as ATOMIC. Thus, the body of a trigger is similar to the body
of a routine and the same language constructs may be used within it. In this code it is
possible to refer to the data that was affected by the data manipulation statement which
caused the trigger to be executed.
In a statement trigger the affected data is stored in temporary tables. The data in these
tables can only be read and not modified. Depending on which event that causes the
trigger there can be one or two tables. For delete there is an old table containing all rows
that are deleted. For insert there is a new table containing all inserted rows. An update
trigger will have both an old and a new table. The old table contains the rows as they were
before the update took place while the new table contains the rows as they are after the
update has taken place.
In order to be able to refer to these temporary tables, the trigger definition must contain a
referencing clause which identifies which names that are used when referencing these
tables in any DML statement within the trigger body. The old and new table will have the
same layout as the table on which the trigger is defined. An example can be seen below.
A row trigger, depending on the event, will have old row and new row variables that can
be referred to in the trigger code. These row variables will have fields with the same name
and data type as the columns in the table on which the trigger is defined.
A delete trigger will have an old row variable that contains the deleted row. An insert will
have a new row variable that contains the inserted data. An update trigger will have both
an old row and a new row variable. Individual data items in these variables are referenced
by using dot notation. (See the row trigger example below where o.country_code is
used to refer to data for the deleted row.) The old row variable is read only but the new
row variable can be modified in a before trigger (except that columns defined as large
objects are read only in this version of Mimer SQL.)

280 Chapter 12 Triggers
Creating a Trigger

Creating a Trigger
A trigger is created by using the CREATE TRIGGER statement, see the Mimer SQL
Reference Manual, Chapter 12, CREATE TRIGGER.

Example of statement trigger:
CREATE TRIGGER products_after_insert AFTER INSERT ON products
REFERENCING NEW TABLE AS pdt
FOR EACH STATEMENT
BEGIN ATOMIC
 -- Force the update trigger to fire
 UPDATE products
 SET product_search = DEFAULT
 WHERE product_id IN (SELECT product_id
 FROM pdt);
END -- of trigger products_after_insert

A trigger is created on a named table or view and the trigger must be created in the schema
to which the table or view belongs.
The trigger name must follow the rules for naming private database objects, see the
Mimer SQL Reference Manual, Chapter 6, Naming Objects, and the name must be unique
within the schema in which the trigger is created.
You can create any number of triggers on a named table, each of which may have the
same trigger time, see Trigger Time on page 281, and trigger event, see Trigger Event on
page 284, specified.
If two or more triggers exist on the same table with the same trigger time and trigger
event, they will be executed in the same order as they were created.

Example of row trigger:
create trigger checkExists before delete on currencies
referencing old row as o for each row
 if exists (select *

from countries
where countries.currency_code = o.currency_code) then

 signal sqlstate 'UE123'
set message_text = 'Depending row in countries exists';

 end if

When creating a trigger using the BSQL tool it is convenient to enclose the code as
@
create trigger setversion before udpate on document_versions
referencing new row as new_version old row as old_version
begin atomic
 if old_version.version = new_version.version then
 set new_version.version = new_version.version + 1;
 end if;
end
@

thus avoiding conflicts when using ; as a delimiter in the trigger definition.

Mimer SQL Version 11.0 281
Programmer’s Manual

Trigger Time
The trigger time specifies when, in relation to the execution of the triggering data
manipulation statement, the trigger is executed.
The possible values for the trigger time for a base table are:

• BEFORE
This specifies that the trigger will be executed prior to the execution of the
triggering data manipulation statement. The table name must specify a base table
which is located in a databank with TRANS or LOG option.

• AFTER
This specifies that the trigger will be executed following the execution of the
triggering data manipulation statement.

• INSTEAD OF
For a view it is possible to create instead of triggers. This specifies that the trigger
will execute when the triggering data manipulation statement would normally be
executed. In this case the triggering data manipulation statement itself has no direct
effect, it only causes the trigger to execute.

It is possible to have both row and statement triggers for the same event on a base table.
The logic for invoking statement and row triggers for a base table can schematically be
seen as:

--
-- invoke before statement triggers
--
 call before_statement_trigger_1;
 ...

call before_statement_trigger_n;

 get_data:
 loop
--
-- get rows affected by data manipulation statement
--
 if not found then
 leave get_data;
 end if;
--
-- invoke before row triggers
--
 call before_row_trigger_1;

 ...
call before_row_trigger_n;

--
-- save data to old/new table if used
--

--
-- do actual operation
--

delete/insert/update;
--
-- invoke after row triggers (currently not supported)
--
 call after_row_trigger_1;
 ...

call after_row_trigger_n;
end loop;

282 Chapter 12 Triggers
Trigger Time

--
-- invoke after statement triggers
--

call after_statement_trigger_1;
...
call after_statement_trigger_n;

Note that this schema includes after row triggers even though these are not supported in
this version of Mimer SQL.
Analogously with views, if you have both statement and row trigger the schematical code
for invoking triggers would look like

get_data:
loop

--
-- get rows affected by data manipulation statement
--

if not found then
leave get_data;

end if;
--
-- execute instead of row trigger
--

call instead_of_row_trigger_1;
...
call instead_of_row_trigger_n;

--
-- save data to old/new table if used
--

end loop;
--
-- call instead of statement triggers
--

call instead_of_statement_trigger_1;
...
call instead_of_statement_trigger_n;

Note that this schema includes instead of row triggers even though these are not supported
in this version.

Mimer SQL Version 11.0 283
Programmer’s Manual

Example
Example of an instead of trigger, which can be used for handling join views.

CREATE TRIGGER book_details_instead_of_update
 INSTEAD OF UPDATE ON mimer_store_book.book_details
REFERENCING NEW TABLE AS new_bd
BEGIN ATOMIC
--
-- Update one table with some of the data from the join view
--
 UPDATE titles
 SET authors_list = (SELECT authors_list
 FROM new_bd
 WHERE item_id = titles.item_id)
 WHERE item_id IN (SELECT item_id
 FROM new_bd);
--
-- Update another table using another column from the join view
--
 UPDATE producers
 SET producer_name = (SELECT publisher
 FROM new_bd
 WHERE item_id = producers.producer_id)
 WHERE producer_id IN (SELECT item_id
 FROM new_bd);
END

Example
The following example describes how triggers can be used to log all changes made to a
table:

create table maintab (c1 integer primary key, c2 varchar(10));

create table logtab (ts timestamp default localtimestamp,
username nvarchar(128) collate SQL_IDENTIFIER

default session_user,
operation varchar(6),
c1old integer, c2old varchar(10),
c1new integer, c2new varchar(10));

@
create trigger maintabinserts after insert on maintab
referencing new table as newt
for each statement
begin atomic
insert into logtab (operation, c1new, c2new)
select 'INSERT', newt.c1, newt.c2
from newt;

end
@

@
create trigger maintabupdates after update on maintab
referencing new table as newt
 old table as oldt
for each statement
begin atomic
insert into logtab (operation, c1old, c2old, c1new, c2new)
select 'UPDATE', oldt.c1, oldt.c2, newt.c1, newt.c2
from oldt, newt
where oldt.mimer_rowid = newt.mimer_rowid;

end
@

284 Chapter 12 Triggers
Trigger Event

@
create trigger maintabdeletes after delete on maintab
referencing old table as oldt
for each statement
begin atomic
insert into logtab (operation, c1old, c2old)
select 'DELETE', oldt.c1, oldt.c2
from oldt;

end
@

A trigger’s old and new tables’ rows are sorted in the same order. This means that if old
table data and new table data are fetched in parallel, the corresponding rows will be read
even if the primary key has been updated.
This example’s update trigger uses the mimer_rowid pseudo-key to ensure the
performance when joining the old and new tables.

Trigger Event
The trigger event specifies the data manipulation statement that will cause the trigger to
execute. The possible values for the trigger event are: INSERT, UPDATE and DELETE.
A statement trigger will be executed once each time the specified data manipulation
statement is executed on the table on which the trigger was created.
A row trigger will be executed once for each row affected when the specified data
manipulation statement is executed on the table on which the trigger was created.
Note: If the trigger time is INSTEAD OF, the trigger event itself has no effect on the

table (view), it just causes the trigger to execute. The environment executing
the trigger event behaves as if the data manipulation statement is actually being
executed, even though no changes actually occur in the table(s) that would
normally be affected. The only data manipulations possible in this case are
those performed by the trigger action.

Trigger Action
The trigger action, like the body of a routine, consists of a single procedural SQL
statement. In addition, the execution of the SQL statement can be made conditional on the
evaluation of a search condition.
The search condition is specified in the optional WHEN clause of the CREATE TRIGGER
statement.
As for routines, it is recommended that a compound SQL statement always be used for
the trigger action.
Note: The entire trigger action must be executed in a single atomic execution

context, therefore if a compound SQL statement is used, it must be defined as
ATOMIC, see The ATOMIC Compound SQL Statement on page 249.

The SQL statement(s) of the trigger action are always executed within the transaction
started for the trigger event. The normal restrictions on the use of certain procedural SQL
statements within a transaction apply.
In addition, because the trigger action must be atomic, a COMMIT or ROLLBACK statement
cannot be executed within it.

Mimer SQL Version 11.0 285
Programmer’s Manual

The creator of the trigger must hold the appropriate access rights, with grant option, for
all the operations performed within the trigger action. This is checked when the CREATE
TRIGGER statement is executed.
If the trigger time specified for the trigger is BEFORE, the following restrictions apply to
the trigger action:
• the trigger action must not contain any SQL statement that performs data update

(i.e. DELETE, INSERT and UPDATE statements are not permitted)
• a routine whose access clause is MODIFIES SQL DATA must not be invoked from

within the trigger action.
If an exception is raised from the trigger action, it can be handled within the trigger by
declaring a handler in the normal way for a compound SQL statement, see Declaring
Exception Handlers on page 269.
If there is no handler declared in the trigger action to handle the exception, it will
propagate to the environment executing the trigger event and will be dealt with
appropriately there. The default behavior at that level will be to undo the effect of the
trigger event and all the operations performed in the trigger action.
It is possible to explicitly raise an exception from within the trigger action, or from within
an exception handler declared in it, by executing the SIGNAL statement.

Altered Table Rows
When the rows of the database table on which the trigger was created are examined from
within the trigger action, they will always reflect the actual data manipulations performed
by the trigger event and the trigger action.
In the case of an AFTER statement trigger, all rows inserted by the trigger event will be
visible, all rows deleted by the trigger event will not be found and all rows updated by the
trigger event will appear in their altered state.
In the case of an INSTEAD OF trigger, none of the data manipulations specified by the
trigger event will seen when the table is examined because the trigger event does not
actually perform any of its data change operations.
The rows of the old table and the new table will always show the changes that were
specified by the trigger event, even if these changes were not actually performed on the
database table (as is the case for INSTEAD OF triggers).

Recursion
Any data manipulation statements occurring in a trigger action will be executed in the
normal way. It is, therefore, possible that the execution of a data manipulation statement
in the trigger action may lead to the execution of another trigger or the recursive execution
of the current trigger.
In either case, the execution context of the current trigger action is preserved and the
newly invoked trigger executes in the normal way, in its own execution context, with
appropriate versions of any old table and new table or old row and new row variables.

286 Chapter 12 Triggers
Comments on Triggers

Example
The following trigger is called recursively. An update statement causes the trigger to fire
even when no rows are updated, hence the presence of a when clause to avoid an infinite
recursive invocation.

CREATE TRIGGER products_after_update
 AFTER UPDATE ON products
REFERENCING NEW TABLE AS pdt
WHEN (EXISTS (SELECT * FROM pdt))
BEGIN ATOMIC
 UPDATE products
 SET product_search = product_search_code(product),
 product = (SELECT capitalize(TRIM(product))
 FROM pdt
 WHERE product_id = products.product_id)
 WHERE product_id IN (SELECT product_id FROM pdt
 WHERE product_search <>
 product_search_code(products.product)
 OR product <> capitalize(TRIM(products.product));
END

Comments on Triggers
The COMMENT ON TRIGGER statement can be used to create a comment on a trigger.
Only the creator of the schema to which the trigger belongs may create a comment on the
trigger.

Using DROP and REVOKE
The following points apply to triggers when using DROP and REVOKE with triggers:
• A trigger can be dropped by using the DROP TRIGGER statement.
• Only the creator of the trigger can drop it using the DROP TRIGGER statement.
• When a trigger is dropped, the comments created on it are also dropped.
• Dropping an object referenced from an SQL statement in a trigger action will cause

the trigger to be dropped.
• If the required privileges held on a database object are revoked from the creator of

a trigger whose trigger action contains an SQL statement referencing the object,
the trigger will be dropped.

Mimer SQL Version 11.0 287
Programmer’s Manual

Chapter 13

User-Defined Types
And Methods

User-defined types provides a mechanism for defining new data types that can be used in
table definitions and stored procedures. For a user-defined type it is possible to create
methods belonging to the type. See Methods on page 288 for more details.
There are two categories of user-defined types - distinct types and structured types.

Distinct Types
A distinct type is based on a predefined data type.

Example
CREATE TYPE size AS INTEGER;

This creates a distinct type. When a distinct type is created, there is an implicit creation
of a function for converting a value of the type on which the user-defined type is based to
the user-defined type. By default this function has the same name as the user-defined type.

Example
SELECT name, integer(length) FROM container;

It is not possible to compare two instances of different distinct types. This is regardless of
if the types on which the distinct types are based are comparable or not. Also, it is not
possible to declare an instance of a distinct type with a value of the type on which the
distinct type is based. I.e. a statement like

SELECT name FROM container WHERE length = 450;

is not valid. To do this comparison, either value need to be converted:
SELECT name FROM container WHERE integer(length) = 450;
SELECT name FROM container WHERE length = size(450);

It is possible to override the default naming of the implicitly created function and method.
This is done by using the following syntax:

288 Chapter 13 User-Defined Types And Methods
Methods

Example
CREATE TYPE size AS integer

CAST(source as distinct) WITH cast_from_int_to_size
CAST(distinct as source) WITH cast_from_size_to_int;

INSERT INTO container VALUES ('Large x450', cast_from_int_to_size(450));

SELECT name, cast_from_size_to_int(length) FROM container;

Methods
 There are three different types of methods - constructor, and instance.

Static methods
A static method does not have the connection with an instance of a user-defined type (like
a constructor method has), but works almost the same as a function. The only difference
is how they are invoked.

Instance methods
An instance method can only be used with an actual instance of a user-defined type.
Instance methods have an implicit parameter SELF that represents the actual value
instance used when invoking the method.

Creating Methods
Creating a method is done in two steps, the first is the creation of a method specification
and the second is the actual creation.
There can be multiple methods with the same name as long as they either differ by the
number of parameters or the type of the parameters.
The method specification can either be given when creating the type or it can be added by
using an ALTER TYPE statement.

Examples
CREATE TYPE bool AS boolean
 CAST(distinct AS source) WITH bool

METHOD asChar() RETURNS varchar(5);
CREATE METHOD asChar() FOR bool

RETURN CASE WHEN self THEN 'TRUE' ELSE 'FALSE' END;

As can be seen, the type of method is specified in the method specification and the
CREATE METHOD statement. (The method type can be omitted if an instance method is
created.) It is possible to use all PSM statements when creating a method. The for clause
with the type name is needed since it is possible to have methods with the same name and
parameters for different user-defined types.
There are some specific rules for constructor methods, the method name must be the same
as the name of the user-defined type and the return type must be the user-defined type.
A method specification can be dropped from a type by using a variant of the alter type
statement. If there are any method defined using that method specification, that method
will be dropped if cascade is specified.

Mimer SQL Version 11.0 289
Programmer’s Manual

Example
ALTER TYPE ymd DROP CONSTRUCTOR METHOD ymd(date) CASCADE;
ALTER TYPE ymd DROP STATIC METHOD add RESTRICT;

If neither RESTRICT nor CASCADE is specified, RESTRICT is default. Note that it is
necessary to specify the data type of the parameters if there are multiple methods with the
same name and method type for the user-defined type. The second example will only be
successful if there is only one static method named add for the type ymd. To specify a
method with no parameters an empty pair of parenthesis () can be used.
See Mimer SQL Reference Manual, Chapter 12, CREATE METHOD for additional
information.

Invoking Methods
Methods are invoked differently depending on the type of the method.

Invoking a constructor method
A constructor method is used with the NEW operator when creating a new instance of a
user-defined type.

When using the NEW operator, the constructor function will be invoked first. This function
assigns default values to all attributes. The constructor function returns the instance and
this will be passed as an implicit parameter to the constructor method together with the
explicit parameter. The constructor method modifies the attributes and returns the
instance. It is possible to have a constructor method without parameters.

Example
BEGIN

DECLARE a ymd;

SET a = NEW ymd(CURRENT_DATE);
END

290 Chapter 13 User-Defined Types And Methods
Methods

Invoking an instance method
An instance method is invoked by using dot notation on a expression that evaluates to a
user-defined type.

Example
BEGIN

DECLARE a ymd;
DECLARE b int;

SET a = NEW ymd(DATE'2010-04-23');
--
-- invoke the implicitly created instance method m
-- for retrieving the value of the attribute m
--

SET b = a.m()

...
--
-- as the instance method compare returns a user-defined type,
-- the method asChar for this user-defined type can be invoked on that result
--

IF a.compare(2010,11,2).asChar() = 'TRUE' THEN
...
END IF;

END

Invoking a static method
A static method is invoked with a double-colon syntax.

Example
SELECT ymd::add(c) FROM t;

Dropping Methods
Dropping a method will have effects on objects using it. The DROP statement may either
have a restrict or cascade option. Restrict means that if there are any objects depending
on the method the drop will not be done. If cascade is specified all such objects will be
dropped.

Example
DROP STATIC METHOD add FOR ymd CASCADE;

See Mimer SQL Reference Manual, Chapter 12, DROP for details.

Mimer SQL Version 11.0 291
Programmer’s Manual

Chapter 14

Spatial Data
The pre-defined schema BUILTIN contains user-defined types and methods used to store
and search spatial data in an efficient manner. The functionality allows positions to be
indexed and searched quickly.
There are two basic groups of spatial data:
• Geographical data, i.e. positions on the surface of the Earth. See Geographical

Data on page 291.
• Coordinate system data, i.e. positions in a two-dimensional plane. See Coordinate

System Data on page 301.

Geographical Data
The following user-defined types are used to store geographical data:

BUILTIN.GIS_LATITUDE
The builtin.gis_latitude data type is used to store latitude values. Valid values are
between -90° and 90°. Negative values denote south latitudes, and positive values north
latitudes.

Type SQL type Description

BUILTIN.GIS_LATITUDE BINARY(4) A distinct user-defined type that stores
latitude values.
See BUILTIN.GIS_LATITUDE on
page 291.

BUILTIN.GIS_LONGITUDE BINARY(4) A distinct user-defined type that stores
longitude values.
See BUILTIN.GIS_LONGITUDE on
page 294.

BUILTIN.GIS_LOCATION BINARY(8) A distinct user-defined type that is
used to store a location on Earth. It has
a latitude and a longitude component.
See BUILTIN.GIS_LOCATION on
page 297.

292 Appendix 14 Spatial Data
Geographical Data

The following routines belong to the user-defined type:

Example

Create a table and insert a few values
create table latitudes (lat builtin.gis_latitude, description varchar(40));

Use builtin.gis_latitude to convert input values.
insert into latitudes values (builtin.gis_latitude(0),'Equator');
insert into latitudes values (builtin.gis_latitude(66.5619),'Arctic Circle');
insert into latitudes values (builtin.gis_latitude(-23.4389),

'Tropic of Capricorn');

Add an index to ensure search performance.
create index latx on latitudes (lat);

Read the latitude values, without any conversion
SQL>select * from latitudes;
lat description
======== ==
80000000 Equator
A7AC8A38 Arctic Circle
720781F8 Tropic of Capricorn

 3 rows found

Routine Routine type Description

BUILTIN.GIS_LATITUDE Function (constructor) Creates an instance of the
type, with decimal input.

AS_DECIMAL Instance method Returns data as a decimal
value.

AS_DOUBLE Instance method Returns data as a double
precision value.

AS_TEXT Instance method Returns data as text,
DDMMSS.ssss format, with
a leading N for north or S for
south.

AS_TEXT(fmt) Instance method Returns data as text, on a
format specified by the fmt
parameter:
1 = DDMMSS.ssss format,
with a leading + for north and
- for south
2 = DDMMSS.ssss format,
with a leading N for north and
S for south
3 = DD°MM'SS.ssss'' format,
with a trailing N for north and
S for south.

Mimer SQL Version 11.0 293
Programmer’s Manual

Read the latitude values as decimal
Use the as_decimal method to return the data as a decimal value.

SQL>select lat.as_decimal(), description from latitudes;
description

=========== ==
0.0000000 Equator

66.5619000 Arctic Circle
-23.4389000 Tropic of Capricorn

 3 rows found

Read the latitude values as double precision
Use the as_double method to return the data as a double precision value.

SQL>select lat.as_double(), description from latitudes;
description

======================== ==
0.0000000000000000E+000 Equator
6.6561899999999994E+001 Arctic Circle

-2.3438900000000000E+001 Tropic of Capricorn

 3 rows found

Return the latitude values as character, default format
Use the as_text method to return the data as DDMMSS.ssss text, with a leading N for
north or S for south.

SQL>select lat.as_text(), description from latitudes;
description

==================== ==
N000000.0000 Equator
N663339.9000 Arctic Circle
S232616.9000 Tropic of Capricorn

 3 rows found

Return the latitude values as character, N/S format
The as_text method with input value 1 will return data as DDMMSS.ssss text, with N
for north and S for south.

SQL>select lat.as_text(1), description from latitudes;
description

==================== ==
N000000.0000 Equator
N663339.9000 Arctic Circle
S232616.9000 Tropic of Capricorn

 3 rows found

Return the latitude values as character, +/- format
The as_text method with input value 2 will return the data as DDMMSS.ssss text, with
+ for north and - for south.

SQL>select lat.as_text(2), description from latitudes;
description

==================== ==
+000000.0000 Equator
+663339.9000 Arctic Circle
-232616.9000 Tropic of Capricorn

 3 rows found

294 Appendix 14 Spatial Data
Geographical Data

Return the latitude values as character, traditional format
The as_text method with input value 3 will return the data as character, with ° for
degrees, ' for minutes and '' for seconds.

SQL>select lat.as_text(3), description from latitudes;
description

==================== ==
00°00'00.0000''N Equator
66°33'39.9000''N Arctic Circle
23°26'16.9000''S Tropic of Capricorn

 3 rows found

SELECT the latitude values north of latitude N60
Use builtin.gis_latitude for input values.

SQL>select lat.as_decimal(), description
SQL&from latitudes
SQL&where lat > builtin.gis_latitude(60);

description
=========== ==
66.5619000 Arctic Circle

 1 row found

BUILTIN.GIS_LONGITUDE
The builtin.gis_longitude data type is used to store longitude values. Valid values
are between -180° and 180°. Negative values denote west longitudes, and positive values
east longitudes.
The following routines belong to the user-defined type:

Routine Routine type Description

BUILTIN.GIS_LONGITUDE Function (constructor) Creates an instance of the
type, with decimal input.

AS_DECIMAL Instance method Returns data as a decimal
value.

AS_DOUBLE Instance method Returns data as a double
precision value.

AS_TEXT Instance method Returns data as text,
DDDMMSS.ssss format,
with a leading E for east and
W for west.

Mimer SQL Version 11.0 295
Programmer’s Manual

Examples

Create a table and insert a few values
create table longitudes (long builtin.gis_longitude, description varchar(40));

Use builtin.gis_longitude to convert input values.
insert into longitudes values (builtin.gis_longitude(0),'Prime Meridian');
insert into longitudes values (builtin.gis_longitude(-110.0),'Saskatchewan, W');
insert into longitudes values (builtin.gis_longitude(141.0),'South Australia, E');

Add an index to ensure search performance.
create index longx on longitudes (long);

Read the longitude values, without any conversion
SQL>select * from longitudes;
long description
======== ==
80000000 Prime Meridian
3E6F5500 Saskatchewan, W
D40AE480 South Australia, E

 3 rows found

Read the longitude values as decimal
Use the as_decimal method to return the data as decimal.

SQL>select long.as_decimal(), description from longitudes;
description

============ ==
0.0000000 Prime Meridian

-110.0000000 Saskatchewan, W
141.0000000 South Australia, E

 3 rows found

AS_TEXT(fmt) Instance method Returns data as text, on a
format specified by the fmt
parameter:
1 = DDDMMSS.ssss
format, with a leading + for
east and - for west
2 = DDDMMSS.ssss
format, with a leading E for
east and W for west
3 = DDD°MM'SS.ssss''
format, with a trailing E for
east and W for west.

Routine Routine type Description

296 Appendix 14 Spatial Data
Geographical Data

Read the longitude values as decimal
Use the as_double method to return the data as double precision.

SQL>select long.as_decimal(), description from longitudes;
description

============ ==
0.0000000 Prime Meridian

-110.0000000 Saskatchewan, W
141.0000000 South Australia, E

 3 rows found

Return the longitude values as character, default format
The as_text method with input value 1 will return data as DDDMMSS.ssss text, with a
leading E for east and W for west.

SQL>select long.as_text(), description from longitudes;
description

==================== ==
E0000000.0000 Prime Meridian
W1100000.0000 Saskatchewan, W
E1410000.0000 South Australia, E

 3 rows found

Return the longitude values as character, E/W format
Use the as_text method to return the data as DDDMMSS.ssss text, with a leading E for
east and W for west.

SQL>select long.as_text(1), description from longitudes;
description

==================== ==
E0000000.0000 Prime Meridian
W1100000.0000 Saskatchewan, W
E1410000.0000 South Australia, E

 3 rows found

Return the longitude values as character, +/- format
The as_text method with input value 2 will return the data as DDDMMSS.ssss text,
with a leading + for east and - for west.

SQL>select long.as_text(2), description from longitudes;
description

==================== ==
+0000000.0000 Prime Meridian
-1100000.0000 Saskatchewan, W
+1410000.0000 South Australia, E

 3 rows found

Mimer SQL Version 11.0 297
Programmer’s Manual

Return the longitude values as character, traditional format
The as_text method with input value 3 will return the data as DDD°MM'SS.ssss'' text,
with a trailing E for east and W for west.

SQL>select long.as_text(3), description from longitudes;
description

==================== ==
000°00'00.0000''E Prime Meridian
110°00'00.0000''W Saskatchewan, W
141°00'00.0000''E South Australia, E

 3 rows found

SELECT the longitude values between longitude W60 and W30
Use builtin.gis_longitude for input values.

SQL>select long.as_decimal(), description
SQL&from longitudes
SQL&where long between builtin.gis_longitude(-120)
SQL& and builtin.gis_longitude(-90);

description
============ ==
-110.0000000 Saskatchewan, W

 1 row found

BUILTIN.GIS_LOCATION
The distinct user-defined type builtin.gis_location is used to store a location on
Earth. It has a latitude component and a longitude component. (See
BUILTIN.GIS_LATITUDE on page 291 and BUILTIN.GIS_LONGITUDE on page 294
for details.)
The following routines belong to the user-defined type:

Routine Routine type Description

BUILTIN.GIS_LOCATION(lat,long) Function
(constructor)

Creates an instance of
the type. The lat
parameter is for latitude,
the long parameter is for
longitude.

AS_TEXT Instance
method

Returns “latitude,
longitude” data as
DDMMSS.ssss values
text, with N/S and E/W
notation.

298 Appendix 14 Spatial Data
Geographical Data

AS_TEXT(fmt) Instance
method

Returns “latitude,
longitude” data on a
format specified by the
fmt parameter:
1 = DDMMSS.ssss
formats, with + for east
and north, and - for west
and south
2 = DDMMSS.ssss
formats, with leading N
for north and S for south,
and E for east and W for
west
3 = DD°MM'SS.ssss''
formats, with trailing N
for north and S for south,
and trailing E for east and
W for west

LATITUDE Instance
method

Used to retrieve the
latitude part of the
location.

LONGITUDE Instance
method

Used to retrieve the
longitude part of the
location.

INSIDE_RECTANGLE(ll,ur) Instance
method

Method that returns
whether a location is
inside a rectangular area
of the map. The ll
parameter is for the
lower left corner of the
rectangle, and the ur
parameter is for the
upper right corner.
May use indexes when
available.

Routine Routine type Description

Mimer SQL Version 11.0 299
Programmer’s Manual

Example

Create a table and insert a few values
create table locations (location builtin.gis_location, place nvarchar(30));

Use builtin.gis_location for input values.
insert into locations values
(builtin.gis_location(40.752134,-73.974638),'Chrysler Building');

insert into locations values
(builtin.gis_location(40.6892,-74.0445),'Statue of Liberty');

insert into locations values
(builtin.gis_location(40.735681,-73.99043),'Union Square');

insert into locations values
(builtin.gis_location(40.829167,-73.926389),'Yankee Stadium');

insert into locations values
(builtin.gis_location(40.756,-73.987),'Times Square');

insert into locations values
(builtin.gis_location(40.767778,-73.971667),'Central Park Zoo');

insert into locations values
(builtin.gis_location(40.729861,-73.991434),'Astor Place');

insert into locations values
(builtin.gis_location(40.779447,-73.96311),'Metropolitan Museum');

insert into locations values
(builtin.gis_location(40.782975,-73.958992),'Guggenheim Museum');

insert into locations values
(builtin.gis_location(40.703717,-74.016094),'Battery Park');

Add an index to ensure search performance.
create index locx on locations (location);

Read the inserted data, as it is
Use no conversion, just read raw data.

SQL>select * from locations;
location place
================ ==============================
938574C831D14FB0 Chrysler Building
93857151CDB2ED40 Statue of Liberty
9385743BF532D198 Union Square
9385767D45C6367C Yankee Stadium
9385749CB7EE7100 Times Square
938574E0D98B7224 Central Park Zoo
93857439F8594B58 Astor Place
938574EC2E0A0838 Metropolitan Museum
938574ECFAA0FE28 Guggenheim Museum
9385740CA864BB18 Battery Park

 10 rows found

300 Appendix 14 Spatial Data
Geographical Data

Read the inserted data, as text
Use the as_text method to return more readable locations.

SQL>select location.as_text(), place from locations;
place

== ==============================
N404507.1340,W0735826.6380 Chrysler Building
N404120.2000,W0740238.5000 Statue of Liberty
N404406.6810,W0735924.4300 Union Square
N404944.1670,W0735533.3890 Yankee Stadium
N404521.0000,W0735913.0000 Times Square
N404601.7780,W0735815.6670 Central Park Zoo
N404344.8610,W0735927.4340 Astor Place
N404644.4470,W0735746.1100 Metropolitan Museum
N404655.9750,W0735728.9920 Guggenheim Museum
N404210.7170,W0740057.0940 Battery Park

 10 rows found

Read the inserted data, as decimal
Use the as_decimal methods to return the locations’ latitude and longitude components.

SQL>select location.latitude().as_decimal(),
SQL> location.longitude().as_decimal(),
SQL> place
SQL&from locations;

place
=========== ============ ==============================
40.7521340 -73.9746380 Chrysler Building
40.6892000 -74.0445000 Statue of Liberty
40.7356810 -73.9904300 Union Square
40.8291670 -73.9263890 Yankee Stadium
40.7560000 -73.9870000 Times Square
40.7677780 -73.9716670 Central Park Zoo
40.7298610 -73.9914340 Astor Place
40.7794470 -73.9631100 Metropolitan Museum
40.7829750 -73.9589920 Guggenheim Museum
40.7037170 -74.0160940 Battery Park

 10 rows found

Find the locations inside an area
Use the inside_rectangle method to find locations. Remember that
builtin.gis_location wants decimal input!

SQL>select location.as_text(1), place from locations
SQL&where location.inside_rectangle(builtin.gis_location(40.75,-74.0),
SQL& builtin.gis_location(40.80,-73.0));

place
== ==============================
N404507.1340,W0735826.6380 Chrysler Building
N404521.0000,W0735913.0000 Times Square
N404601.7780,W0735815.6670 Central Park Zoo
N404644.4470,W0735746.1100 Metropolitan Museum
N404655.9750,W0735728.9920 Guggenheim Museum

 5 rows found

Mimer SQL Version 11.0 301
Programmer’s Manual

Find the same locations, but order them from south to north.
SQL>select location.as_text(1), place from locations
SQL&where location.inside_rectangle(builtin.gis_location(40.75,-74.0),
SQL& builtin.gis_location(40.80,-73.0))
SQL&order by location.latitude;

place
== ==============================
N404507.1340,W0735826.6380 Chrysler Building
N404521.0000,W0735913.0000 Times Square
N404601.7780,W0735815.6670 Central Park Zoo
N404644.4470,W0735746.1100 Metropolitan Museum
N404655.9750,W0735728.9920 Guggenheim Museum

 5 rows found

Coordinate System Data
The following user-defined type is used to store coordinate system data:

BUILTIN.GIS_COORDINATE
The distinct user-defined type builtin.gis_coordinate is used to store points in a
two dimensional coordinate system. This type has an x and a y component, both
represented by an integer value.
The following routines belong to the user-defined type:

Type SQL type Description

BUILTIN.GIS_COORDINATE BINARY(8) This type has an x and a y component
in a flat coordinate system.
See BUILTIN.GIS_COORDINATE
on page 301.

Routine Routine type Description

BUILTIN.GIS_COORDINATE(x,y) Function
(constructor)

Creates an instance of the
type.

X Instance
method

Used to retrieve the x unit of
the point.

Y Instance
method

Used to retrieve the y unit of
the point.

INSIDE_RECTANGLE(ll,ur) Instance
method

Method that returns whether a
point is inside a rectangular
area of the coordinate system.
The ll parameter is for the
lower left corner of the
rectangle, and the ur
parameter is for the upper
right corner.
May use indexes when
available.

302 Appendix 14 Spatial Data
Coordinate System Data

Example

Create a table and insert a few values
create table coordinates (id integer primary key, point builtin.gis_coordinate);

Use builtin.gis_coordinate to insert values.
insert into coordinates values (1, builtin.gis_coordinate(25,15));
insert into coordinates values (2, builtin.gis_coordinate(30,40));
insert into coordinates values (3, builtin.gis_coordinate(-3,33));
insert into coordinates values (4, builtin.gis_coordinate(-40,-55));
insert into coordinates values (5, builtin.gis_coordinate(115,25));
insert into coordinates values (6, builtin.gis_coordinate(5,125));
insert into coordinates values (7, builtin.gis_coordinate(-5,125));
insert into coordinates values (8, builtin.gis_coordinate(0,25));
insert into coordinates values (9, builtin.gis_coordinate(76,-1));
insert into coordinates values (10, builtin.gis_coordinate(100,100));

Add an index to ensure search performance.
create index coordsx on coordinates (point);

Read the inserted data, as it is
Use no conversion, just read raw data.

SQL>select * from coordinates;
id point

=========== ================
1 C0000000000001EB
2 C0000000000009D4
3 9555555555555D53
4 3FFFFFFFFFFFF1C2
5 C000000000001787
6 C000000000002AB3
7 9555555555557FE7
8 C000000000000282
9 6AAAAAAAAAAABAFA

10 C000000000003C30

 10 rows found

Read the x and y values
Use the x and y methods to return more readable points.

SQL>select id, point.x() as x, point.y() as y from coordinates;
id x y

=========== =========== ===========
1 25 15
2 30 40
3 -3 33
4 -40 -55
5 115 25
6 5 125
7 -5 125
8 0 25
9 76 -1

10 100 100

 10 rows found

Mimer SQL Version 11.0 303
Programmer’s Manual

Find the points inside an rectangle
Use the inside_rectangle method to find points inside an rectangle.

SQL>select id, point.x() as x, point.y() as y from coordinates
SQL&where point.inside_rectangle(builtin.gis_coordinate(0,0),
SQL& builtin.gis_coordinate(100,100));

id x y
=========== =========== ===========

1 25 15
8 0 25
2 30 40

10 100 100

 4 rows found

Find the same points, but order them by the x coordinate.
SQL>select id, point.x() as x, point.y() as y from coordinates
SQL&where point.inside_rectangle(builtin.gis_coordinate(0,0),
SQL& builtin.gis_coordinate(100,100))
SQL&order by point.x;

id x y
=========== =========== ===========

8 0 25
1 25 15
2 30 40

10 100 100

 4 rows found

304 Appendix 14 Spatial Data
Coordinate System Data

Mimer SQL Version 11.0 305
Programmer’s Manual

Chapter 15

Universally Unique
Identifier - UUID

The pre-defined schema BUILTIN contains the following user-defined type to store
unique identifier data:

The following routines belong to the uuid user-defined type:

Type SQL type Description

builtin.uuid BINARY(16)

Routine Routine type Description

BUILTIN.UUID_NEW() Function Generates a new uuid value, which
with very high probability is
globally unique.

BUILTIN.UUID_FROM_
TEXT(HEXSTRING)

Function Converts a hexadecimal string to an
uuid value.
The HEXSTRING argument
should follow the standard format
hhhhhhhh-hhhh-hhhh-hhhh-
hhhhhhhhhhhh, where each h is a
hexadecimal value represented by
using the characters 0-9 and a-f.

AS_TEXT Instance method Converts a uuid value to a character
representation, using the UUID
standard format.

306 Appendix 15 Universally Unique Identifier - UUID

Example
Create a table and insert a few values:

create table tuuid (uuid builtin.uuid);

insert into tuuid values (builtin.uuid_new());
insert into tuuid values (builtin.uuid_new());

select uuid.as_text() from tuuid;

====================================
039f01f0-a635-11e8-9f4c-aa0004007a04
04494bb0-a635-11e8-9f4c-aa0004007a04

It is also possible to insert uuid values explicitly, either by using a binary constant or
converting a character string using the function bultin.uuid_from_text.

insert into tuuid values (x'62E4BD10A63711E8A174AA0004007A04');
insert into tuuid values

(builtin.uuid_from_text('85dc2790-a637-11e8-a174-aa0004007a04'));

Create an index to improve search performance:
create index tuuid_ix on tuuid (uuid);

select * from tuuid where uuid =
builtin.uuid_from_text('85dc2790-a637-11e8-a174-aa0004007a04'));

More information about uuid can be found at
https://en.wikipedia.org/wiki/Universally_unique_identifier

https://en.wikipedia.org/wiki/Universally_unique_identifier

Mimer SQL Version 11.0 307
Programmer’s Manual

Appendix A

Host Language
Dependent Aspects

You can use embedded SQL (ESQL) statements in any of the following host languages:
• C/C++
• COBOL
• Fortran
Note: It is not a complete description of the rules for writing ESQL programs. The

programmer should use the main body of this manual as a guide to writing
programs, and refer to this appendix for language-specific details.

The following topics are discussed for each language:
• SQL statement format: delimiters, margins, line continuation, comments, special

characters.
• Restrictions.
• Host variables - declarations, SQL data type correspondence, value assignment

rules.
• Preprocessor output format.
• Scope rules.
This appendix describes features of ESQL that differ between the respective host
languages.

308 Appendix A Host Language Dependent Aspects
ESQL in C/C++ Programs

ESQL in C/C++ Programs
Mimer SQL supports ESQL for C/C++ following the ISO/ANSI standard.

SQL Statement Format
The following sections discuss the SQL statement format.

Statement Delimiters
SQL statements are identified by the leading delimiter EXEC SQL and terminated by a
semicolon ;, for example:

EXEC SQL DELETE FROM countries;

Line Continuation
Line continuation rules for SQL statements are the same as those for ordinary C
statements.
For a string constant, a white-space character (ASCII HEX-values 09 - 0D, or 20, i.e.
<TAB>, <LF>, <VT>, <FF>, <CR> or <SP>), can be used to join two or more sub-
strings. Each substring must be separately enclosed in delimiters. For example:

EXEC SQL COMMENT ON TABLE currencies IS 'Holds currency'<CR>
 ' details';

Comments
Comments, from // to end-of-line, or enclosed between the markers /* and */, may be
written anywhere within SQL statements where a white-space is permitted, except
between the keywords EXEC and SQL and within string constants. The comment may
replace the white-space, for example:

EXEC SQL DELETE/* all rows */FROM countries;

Special Characters
The delimiters in SQL are single quotation marks ' for string constants and double
quotation marks " for delimited identifiers. This is contrary to the C string delimiter
usage.

EXEC SQL INSERT INTO "tablename" VALUES ('text string');

A white-space character separates keywords.

Mimer SQL Version 11.0 309
Programmer’s Manual

Host Variables in C/C++
The following sections discuss declarations, SQL data type correspondence and value
assignments.

Declarations
Host variables used in SQL statements must be declared within the SQL DECLARE
SECTION, delimited by the statements BEGIN DECLARE SECTION and END DECLARE
SECTION.
Variables declared within the SQL DECLARE SECTION must conform to the following
rules in order to be recognized by the SQL preprocessor:
• host variables may be of AUTO, EXTERN or STATIC class
• array variables are not permitted with the exception of character arrays
• character arrays are interpreted as null terminated strings. The hostvariable should

be declared with a length one greater than the length of the column, because of the
null termination

• the VARCHAR host variable data type is recognized by the ESQL/C preprocessor
and should be used when variable-length character data is to be returned from SQL
as a null terminated string without any blank padding (the VARCHAR host variable
should be declared with a length one greater than the length of the column, because
of the null termination).

• the NCHAR host variable data type is recognized by the ESQL/C preprocessor and
should be used when Unicode data is to be returned from SQL as a null terminated
string with blank padding. The NCHAR host variable should be declared with a
length one greater than the length of the column, because of the null termination.

• the NCHAR VARYING host variable data type is recognized by the ESQL/C
preprocessor and should be used when variable-length Unicode data is to be
returned from SQL as a null terminated string without any blank padding. The
NCHAR VARYING host variable should be declared with a length one greater than
the length of the column, because of the null termination.

• where binary data is stored in a character array, the size of the array must match the
length of the binary data exactly because binary data is not terminated and
therefore all array elements are significant

• variable names are case significant
• indicator variables should be declared as short or int
• SQLSTATE should be declared as char[6] or VARCHAR[6]
• Only data types CHAR, VARCHAR, NCHAR, NCHAR VARYING, BLOB, CLOB and

NCLOB can be indexed.
When reading any character array host variable, declared as CHAR, VARCHAR, NCHAR or
NCHAR VARYING, the contents of the variable must be null terminated. When a host
variable declared as CHAR or NCHAR is read, its value is blank padded to the same length
as the host variable. When a host variable declared as VARCHAR or NCHAR VARYING is
read, no blank padding is performed.
When any type conversion is done when retrieving a numeric value to a fixed length
character host variable, i.e. CHAR or NCHAR, the data will be right justified. When type
conversion is done when retrieving a value to a variable length character type host
variable, i.e. VARCHAR or NCHAR VARYING, the data will be left justified.

310 Appendix A Host Language Dependent Aspects
ESQL in C/C++ Programs

A syntax diagram showing the variable declarations recognized by the ESQL/C
preprocessor is given below:

where character-declaration is:

and numeric-declaration is:

Mimer SQL Version 11.0 311
Programmer’s Manual

and lob-declaration is:

The following points should be noted:
• In accordance with the syntax rules of C, keywords are case-sensitive and are given

in the required case in the syntax diagram. This deviates from the general practice
in Mimer SQL documentation of using upper-case to denote keywords

• Index must be a number which is 1 or greater

SQL Data Type Correspondence
Valid host data types are listed below for each of the data types used in SQL statements.

SQL data type C variable declaration

SMALLINT
INTEGER
BIGINT

short
int16_t
int
int32_t
long
long long
int64_t

DECIMAL float
double

FLOAT
REAL
DOUBLE PRECISION

float
double

CHARACTER
VARCHAR
DATETIME
INTERVAL

char
varchar a

a. The varchar host variable type is recognized by the ESQL/C preprocessor and converted
to the char data type in C.

NCHAR
NCHAR VARYING

nchar b

wchar_t
nchar varyingc

varwchar_td

b. The nchar host variable type is recognized by the ESQL/C preprocessor and converted to
the wchar_t data type in C.

c. The nchar varying host variable type is recognized by the ESQL/C preprocessor and
converted to the wchar_t data type in C.

d. The varwchar_t host variable type is recognized by the ESQL/C preprocessor and con-
verted to the wchar_t data type in C.

BINARY
BINARY VARYING
BLOB

sql type is blob e

CLOB sql type is clob f

NCLOB sql type is nclob g

312 Appendix A Host Language Dependent Aspects
ESQL in C/C++ Programs

Note: Your C compiler may not support all of these possible declarations.

IEEE floating point
Mimer supports single precision and double precision IEEE floating point values stored
in the C types float and double. Values are stored exactly in the database with the
following exceptions:
• -0.0 is stored as 0.0
• NaN (Not a Number) or Inf (Infinity) values are not permitted in the database and

will not be stored.

Value Assignments
The general rules for conversion of values between compatible but different data types,
see the Mimer SQL Reference Manual, Chapter 6, SQL Syntax Elements, apply to the
transfer of data between the database and host variables, with the data type
correspondence as given in the table above.
When reading any character array host variable, the contents of the variable must be null
terminated. When a fixed length character host variable (char, nchar) is read, its value
is blank padded to the same length as the host variable. When a variable length character
host variable (varchar, nchar varying) is read, no blank padding is performed.
When retrieving a value shorter than a fixed length character array host variable, the host
variable will be padded with blanks (and null terminated). When retrieving a value to a
variable length character host variable, the variable will not be blank padded, just null
terminated.
When retrieving binary data into a character array there is no padding or termination of
the binary string, so all the character array elements have significance. The character
array must, therefore, be declared with exactly the same length as the binary data.

e. The blob host variable type is recognized by the ESQL/C preprocessor and converted to:
struct {
 long hvn_reserved;
 unsigned long hvn_length;
 char hvn_data[L];
 } hvn

Where L is the numeric value of the large object length and hvn is the host variable name
as specified in the lob-declaration.

f. The clob host variable type is recognized by the ESQL/C preprocessor and converted to:
struct {
 long hvn_reserved;
 unsigned long hvn_length;
 char hvn_data[L];
 } hvn

Where L is the numeric value of the large object length and hvn is the host variable name
as specified in the lob-declaration.

g. The nclob host variable type is recognized by the ESQL/C preprocessor and converted to:
struct {
 long hvn_reserved;
 unsigned long hvn_length;
 wchar_t hvn_data[L];
 } hvn

Where L is the numeric value of the large object length and hvn is the host variable name
as specified in the nclob-declaration

Mimer SQL Version 11.0 313
Programmer’s Manual

If a numeric type conversion is done when retrieving a value to a fixed length character
host variable, the data will be right justified. When type conversion is done when
retrieving a value to a variable length character host variable, the data will be left justified.

Example
char cstr[9];
VARCHAR vstr[9];

retrieving the value 'abc ' will give the following result:
cstr = 'abc ' /* blankpadded to eight characters */
vstr = 'abc ' /* the same length as the value */

retrieving the value 123, the values will be as:
cstr = ' 123' /* right justified */
vstr = '123' /* left justified */

See the Mimer SQL Reference Manual, Chapter 6, Special Characters, for a further
discussion of different character string assignments.

Preprocessor Output Format
Output from the ESQL/C preprocessor retains SQL statements from the original source
code as comments. Comments on the same line as SQL statements are retained as
‘comments within comments’, marked by the delimiters /+ and +/.
The preprocessed code is structured to reflect the structuring of the original source code.
The use of the #line directive will ensure that any information from the C compiler will
correctly reference line numbers in the original source code. It will also help a debugger
correctly coordinate display of source lines in the original source file and the generated C
file. Refer to information on running ESQL for the platform you are using for details on
how to get #line directives.

Scope Rules
Host variables follow the same scope rules as ordinary variables in C. SQL descriptor
names, cursor names and statement names must be unique within the compilation unit. A
compilation unit for C is the same as a file (including included files).

314 Appendix A Host Language Dependent Aspects
ESQL in COBOL Programs

ESQL in COBOL Programs
Mimer SQL supports ESQL for COBOL following the COBOL-85 ANSI standard.

SQL Statement Format
The following sections discuss the SQL statement format.

Statement Delimiters
SQL statements are identified by the leading delimiter EXEC SQL and terminated by
END-EXEC.
SQL statements are treated exactly as ordinary COBOL statements with regard to the use
of an ending period to mark the end of a COBOL sentence. Any valid COBOL
punctuation may be placed after the END-EXEC terminator.

Examples:
EXEC SQL DELETE FROM countries END-EXEC.

IF SQLSTATE NOT = "02000" THEN
 EXEC SQL COMMIT END-EXEC
ELSE
 EXEC SQL ROLLBACK END-EXEC.

Margins
Statements (including delimiters) may be written anywhere between positions 8 and 72
inclusive.

Line Continuation
Line continuation rules for SQL statements are the same as those for ordinary COBOL
statements.
If a string constant within an SQL statement is divided over several lines, the first non-
blank character on the continuation line must be a string delimiter. There is no terminating
string delimiter at the end of the line preceding the continuation line.

Example
EXEC SQL SELECT CODE, CURRENCY
 FROM MIMER_STORE.CURRENCIES
 WHERE CODE LIKE :CURRENCY-CODE END-EXEC.
EXEC SQL COMMENT ON TABLE CURRENCIES IS
 'Holds currency
- ' details' END-EXEC.

An alternative way to break a character string constant over several lines, is to use a
white-space character (ASCII HEX-values 09 - 0D, or 20, i.e. <TAB>, <LF>, <VT>,
<FF>, <CR> or <SP>), to join two or more substrings.
Each substring must be separately enclosed in delimiters.

EXEC SQL COMMENT ON TABLE CURRENCIES IS
 'Holds currency'<CR>
 ' details' END-EXEC.

Mimer SQL Version 11.0 315
Programmer’s Manual

Comments
Comment lines, marked by an asterisk (*) in position 7, may be written within SQL
statements. The whole line following a comment mark is treated as a comment.
Debugging lines and page eject lines (marked by D and / respectively in position 7) are
treated as comments by the preprocessor.

Special Characters
The delimiters in SQL are single quotation marks (') for string constants and double
quotation marks (") for delimited identifiers. This is contrary to the default COBOL string
delimiter usage.

EXEC SQL INSERT INTO "tablename" VALUES ('text string') END-EXEC.

Observe that the minus sign (-) is valid in variable names in COBOL. All arithmetic
expressions using this operator should have at least one space separating the operands
from the operator. For example:
:A - B means: variable called A minus column B
:A-B means: variable called A-B

Restrictions
The following restrictions apply specifically to COBOL:
• END-EXEC is a keyword reserved to SQL.
• COBOL figurative constants (such as ZERO and SPACE) may not be used as

constants in SQL statements.

Host Variables in COBOL
The following sections discuss declarations, SQL data type correspondence, preprocessor
output format and value assignments.

Declarations
Host variables used in SQL statements must be declared within the SQL DECLARE
SECTION, delimited by the statements BEGIN DECLARE SECTION and END DECLARE
SECTION.
Variables declared within the SQL DECLARE SECTION must conform to the following
rules in order to be recognized by the SQL preprocessor:
• variable names must begin with a letter. Within this restriction, any valid COBOL

variable name may be used
• host variable structures may not be used
• the specifications JUSTIFIED, BLANK WITH ZERO and OCCURS may not be used
• the data type must be consistent with SQL data types as specified below
• level number 01 or 77 should be used for all variable names that are used in SQL

statements. Other levels may be used for program host variables, but they are not
recognized by the preprocessor

• FILLER entries are ignored for variables used in SQL statements
• Indicator variables should be declared as PIC S9(4) COMP or PIC S9(9) COMP

316 Appendix A Host Language Dependent Aspects
ESQL in COBOL Programs

A syntax diagram for COBOL variable declarations recognized by the ESQL/COBOL
preprocessor is given below. Other declarations are ignored by the preprocessor:

Commas and semicolons may be used in accordance with standard COBOL practice.
The following abbreviations are accepted:

Note: The PIC S9(n)9(m) formulation is not accepted.

SQL Data Type Correspondence
Valid host data types are listed below for each of the data types used in SQL statements.
Varying-length character string structures may be used in ESQL statements in COBOL
programs. In assigning the value of such variables to columns, the current length of the
string is used.
The variable name used in SQL statements is the name of the structure (level 01
declaration), not of the character string element (level 49).

Abbreviation Full term

PIC PICTURE or PICTURE IS

USAGE USAGE or USAGE IS

COMP COMPUTATIONAL

SYNC SYNCHRONIZED

SQL data type COBOL data
declaration

Comments

SMALLINT
INTEGER
BIGINT

01 name PIC S9(n) COMP. 1 ≤ n ≤ 9

DECIMAL 01 name PIC S9(n)V9(m)
COMP-3.

1 ≤ n+m ≤ 15

FLOAT
DOUBLE PRECISION

01 name COMP-2.

REAL 01 name COMP-1.

Mimer SQL Version 11.0 317
Programmer’s Manual

Value Assignments
The general rules for conversion of values between compatible but different data types,
see the Mimer SQL Reference Manual, Chapter 6, SQL Syntax Elements, apply to the
transfer of data between the database and host variables, with the data type
correspondence as given in the table above.
The first element in a varying-length character string structure is used to store the current
length of the character string. When writing to the variable, the first element is updated
with the current length of the variable. If the column value is longer than the variable, the
value is truncated.

Preprocessor Output Format
Output from the ESQL/COBOL preprocessor retains SQL statements from the original
source code as comments. Comments within SQL statements are retained exactly as
written. The output follows the ANSI standard for record format, and should be compiled
with a COBOL compiler set to accept ANSI standard.
Debugging lines and page eject lines (using D and / respectively in position 7) remain
unchanged after preprocessing.
The preprocessed code is structured to reflect the structuring of the original source code.

Scope Rules
Host variables follows the same scope rules as ordinary variables in COBOL. SQL
descriptor names, cursor names and statement names must be unique within the
compilation unit. A compilation unit for COBOL is the same as a routine.

CHARACTER
VARCHAR
DATETIME
INTERVAL
CLOB

01 name PIC X(n). 1 ≤ n

SQL data type COBOL data
declaration

Comments

318 Appendix A Host Language Dependent Aspects
ESQL in Fortran Programs

ESQL in Fortran Programs
Mimer SQL supports ESQL for ANSI Fortran-90 fixed format.
Source statements must be provided as fixed format, 80 byte records.

SQL Statement Format
The following sections discuss the SQL statement format.

Statement Delimiters
The leading delimiter EXEC SQL identifies SQL statements. The end of an SQL statement
is marked by the end of the line when the following line does not begin with a
continuation character. The Fortran-90 statement delimiter ; can also be used.

Example
EXEC SQL DELETE FROM countries

Margins
Statements (including delimiters) may be written anywhere between positions 7 and 72
inclusive.

Line Continuation
Line continuation rules for SQL statements are the same as those for ordinary Fortran
statements. The continuation character is any character except space and 0 (zero) in
position 6. The Fortran limitation of a maximum of 19 continuation lines per statement
does not apply within SQL statements.
For a string constant, a white-space character (ASCII HEX-values 09 - 0D, or 20, i.e.
<TAB>, <LF>, <VT>, <FF>, <CR> or <SP>), can be used to join two or more
substrings. Each substring must be separately enclosed in delimiters.

Examples:
 EXEC SQL SELECT CODE, CURRENCY
+ FROM MIMER_STORE.CURRENCIES
+ WHERE CODE LIKE :CODE

 EXEC SQL COMMENT ON TABLE CURRENCIES IS
+ 'Holds currency'<CR>
+ ' details'

Statement Numbers
Any labeled SQL statement in the source code will generate a CONTINUE statement
during preprocessing. Declarative SQL statements used before the first executable SQL
statement should not be labeled.

Comments
Comment lines, marked by * or C in position 1, may be written within SQL statements.
The whole line following a comment mark is treated as a comment, and the following line
must either be another comment or follow the continuation rules given above.

Mimer SQL Version 11.0 319
Programmer’s Manual

Note: Lines that are completely blank are not treated as comments by the
ESQL/FORTRAN preprocessor. The absence of a continuation character
indicates the end of the previous statement, and a completely blank line may be
used to structure comments in the output from the preprocessor. See
Preprocessor Output Format on page 313 for details.

Fortran-90 style comments may also be used, marked by the ! character (the text between
the ! and the end-of-line is treated as a comment).
Debugging lines (marked with a D in position 1) are treated as comments by the
preprocessor.

Host Variables
The following sections discuss declarations, SQL data type correspondence, value
assignments, preprocessor output format and scope.

Declarations
Host variables used in SQL statements must be declared within the SQL DECLARE
SECTION, delimited by the statements BEGIN DECLARE SECTION and END DECLARE
SECTION.
Variables declared within the SQL DECLARE SECTION must conform to the following
rules in order to be recognized by the SQL preprocessor:
• any valid Fortran variable name may be used.
• variables must be scalar variables (i.e. they may not be elements of vectors or

arrays).
• implicit declaration by means of the IMPLICIT statement or default typing may

not be used.
• Fortran COMPLEX variables may not be used.
• character variables must be declared with a fixed constant length. Expressions and

variable length declarations (such as CHARACTER*(*)) may not be used.
• indicator variables should be declared as INTEGER*2 or INTEGER*4.
A syntax diagram showing the variable declarations recognized by the ESQL/FORTRAN
preprocessor is given below:

The data type declaration must be separated from the variable name by at least one space
(which is not required in Fortran declarations outside the SQL DECLARE SECTION).

320 Appendix A Host Language Dependent Aspects
ESQL in Fortran Programs

Thus the declaration:
INTEGER*2A

is not recognized. The required formulation is:
INTEGER*2 A

Lists of variables following a single default data type declaration are accepted. Any
declarations in a list that are not valid in SQL contexts are ignored by the preprocessor.
Thus, the following statement declares variables A and D as INTEGER*4 and B as
INTEGER*2 for use in SQL statements, while the array C is ignored:

INTEGER*4 A, B*2, C(10), D

SQL Data Type Correspondence
Valid host data types are listed below for each of the data types used in SQL statements.

The following additional points should be noted:
• Fortran does not support DECIMAL data types. A string of digits including a

decimal point is interpreted as a REAL constant in Fortran. Exponential notation
should always be used to specify floating point values in SQL statements.

• DOUBLE PRECISION constants may be written with a D as the exponent marker in
Fortran (e.g. 1.23D+02). The only permissible exponent marker within SQL
statements is E (e.g. 1.23E+02).

Value Assignments
The general rules for conversion of values between compatible but different data types,
see of the Mimer SQL Reference Manual, apply to the transfer of data between the
database and host variables, with the data type correspondence as given in the table above.

Preprocessor Output Format
Output from the ESQL/FORTRAN preprocessor retains SQL statements from the
original source code as comments. The output follows the ANSI standard for record
format, and should be compiled with a Fortran compiler set to accept ANSI standard.
Comments within SQL statements are retained exactly as written.

SQL data type Fortran data declaration

SMALLINT
INTEGER
BIGINT

INTEGER*2
INTEGER*4
INTEGER*8

DECIMAL REAL*4

FLOAT
DOUBLE PRECISION
REAL

REAL*8
DOUBLE PRECISION

CHARACTER
VARCHAR
DATETIME
INTERVAL
CLOB

CHARACTER*n

Mimer SQL Version 11.0 321
Programmer’s Manual

Completely blank lines between SQL statements and following comments cause the
preprocessor to write the comments after the generated SQL call. Otherwise comments
immediately following SQL statements are output before the generated call. Debugging
lines (using D in position 1) remain unchanged after preprocessing.
The preprocessed code is structured to reflect the structuring of the original source code.

Scope Rules
Host variables follows the same scope rules as ordinary variables in Fortran.
SQL descriptor names, cursor names and statement names must be unique within the
compilation unit.
A compilation unit for Fortran is the same as a routine.

322 Appendix A Host Language Dependent Aspects
ESQL in Fortran Programs

Mimer SQL Version 11.0 323
Programmer’s Manual

Appendix B

Return Codes
Mimer SQL returns two kinds of return codes to an application, SQLSTATE and a native
error code (aka. SQLCODE). The SQLSTATE variable returns a standardized, general error
code, which gives a rough description of the status for the most recently executed SQL
statement.
GET DIAGNOSTICS can be called to access the exception information stored in the
diagnostics area that applies to the most recently executed SQL statement, see Run-time
Errors on page 70.
The symbol <%> in the text of error messages listed in this chapter indicates the location
of an identifier inserted at run-time

SQLSTATE Return Codes
SQLSTATE contains a 5-character long return code string that indicates the status of an
SQL statement. These return codes are standardized following the established standards.
Observe that not all standardized SQLSTATE return codes are used by Mimer SQL.
SQLSTATE values consists of two fields. The class field, which is the first two characters
of the string, and the subclass field, which is the terminating three characters of the string.

List of SQLSTATE Values
Class Subclass Meaning

00 000 Successful completion

01 000 Warning

01 002 - disconnect error

01 003 - null value eliminated in set function

01 004 - string data, right truncation

01 005 - insufficient item descriptor areas

01 006 - privilege not revoked

01 007 - privilege not granted

01 008 - implicit zero-bit padding

01 997 - some statement(s) not altered**

324 Appendix B Return Codes
SQLSTATE Return Codes

01 998 - row has been updated**

01 999 - row has been deleted**

01 S01 - error in row

01 S02 - option value changed

01 S05 - cancel treated as close

01 S06 - attempt to fetch before the result set returned the first rowset

01 S07 - fractional truncation

02 000 No data

07 000 Dynamic SQL error

07 001 - using clause does not match dynamic parameter specifications

07 002 - using clause does not match target specifications

07 003 - cursor specification cannot be executed

07 004 - using clause required for dynamic parameters

07 005 - prepared statement is not a cursor specification

07 006 - restricted data type attribute violation

07 007 - using clause required for result fields

07 008 - invalid descriptor count

07 009 - invalid descriptor index

07 00F - invalid DATETIME_INTERVAL_CODE

08 000 Connection exception

08 001 - client unable to establish connection

08 002 - connection name in use

08 003 - connection does not exist

08 004 - server rejected the connection

08 006 - connection failure

08 S01 - communication link failure

09 000 Triggered action exception

0A 000 Feature not supported

0B 000 Invalid transaction initiation

0K 000 Resignal when handler not active

0W 000 Prohibited statement encountered during trigger execution

Class Subclass Meaning

Mimer SQL Version 11.0 325
Programmer’s Manual

21 000 Cardinality violation

21 S01 - insert value list does not match column list

21 S02 - degree of derived table does not match column list

22 000 Data exception

22 001 - string data, right truncation

22 002 - null value, no indicator parameter

22 003 - numeric value out of range

22 005 - error in assignment

22 006 - invalid interval format

22 007 - invalid datetime format

22 008 - datetime field overflow

22 011 - substring error

22 012 - division by zero

22 015 - interval field overflow

22 018 - invalid character value for cast

22 019 - invalid escape character

22 023 - invalid parameter value

22 024 - unterminated C string

22 025 - invalid escape sequence

22 026 - string data, length mismatch

22 027 - trim error

22 029 - noncharacter in UCS string

23 000 Integrity constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

25 S03 - transaction is rolled back

26 000 Invalid SQL statement name

27 000 Triggered data change violation

28 000 Invalid authorization specification

2E 000 Invalid connection name

2F 000 SQL routine exception

Class Subclass Meaning

326 Appendix B Return Codes
SQLSTATE Return Codes

2F 003 - prohibited SQL-statement attempted

2F 005 - function executed no return statement

33 000 Invalid SQL descriptor name

34 000 Invalid cursor name

35 000 Invalid condition number

37 000 Syntax error or access violation
in PREPARE or EXECUTE IMMEDIATE *

3C 000 Ambiguous cursor name

40 000 - transaction rollback

40 001 - serialization failure

42 000 Syntax error or access rule violation

42 S01 - base table or view already exists

42 S02 - base table or view not found

42 S11 - index already exists

42 S21 - column already exists

42 S22 - column not found

44 000 WITH CHECK OPTION violation

45 000 Unhandled user-defined exception

HY 000 General error

HY 001 - memory allocation error

HY 003 - invalid application buffer type

HY 004 - invalid SQL data type

HY 007 - associated statement is not prepared

HY 008 - operation canceled

HY 009 - invalid use of null pointer

HY 010 - function sequence error

HY 011 - attribute cannot be set now

HY 012 - invalid transaction operation code

HY 013 - memory management error

HY 014 - limit on the number of handles exceeded

HY 015 - no cursor name available

HY 016 - cannot modify an implementation row descriptor

Class Subclass Meaning

Mimer SQL Version 11.0 327
Programmer’s Manual

HY 017 - invalid use of an automatically allocated descriptor handle

HY 018 - server declined cancel requestSQLCancel

HY 019 - non-character and non-binary data sent in pieces

HY 020 - attempt to concatenate a null value

HY 021 - inconsistent descriptor information

HY 024 - invalid attribute value

HY 090 - invalid string or buffer length

HY 091 - invalid descriptor field identifier

HY 092 - invalid attribute/option identifier

HY 093 - invalid parameter number

HY 095 - function type out of range

HY 096 - invalid information type

HY 097 - column type out of range

HY 098 - scope type out of range

HY 099 - nullable type out of range

HY 100 - uniqueness option type out of range

HY 101 - accuracy option type out of range

HY 102 - table type out of range

HY 103 - invalid retrieval code

HY 104 - invalid precision or scale value

HY 105 - invalid parameter type

HY 106 - fetch type out of range

HY 107 - row value out of range

HY 108 - concurrency option out of range

HY 109 - invalid cursor position

HY 110 - invalid driver completion

HY 111 - invalid bookmark value

HY C00 - optional feature not implemented

HY T00 - timeout expired

HY T01 - connection timeout expired

IM 000 ODBC specific return codes

Class Subclass Meaning

328 Appendix B Return Codes
SQLSTATE Return Codes

IM 001 - driver does not support this function

IM 008 - dialog failed

S0 000 ODBC 2.0 codes *

S0 001 - base table or view already exists *

S0 002 - base table not found *

S0 011 - index already exists *

S0 012 - index not found *

S0 021 - column already exists *

S0 022 - column not found *

S1 000 General error

S1 001 - memory allocation failure

S1 002 - invalid column number

S1 003 - program type out of range

S1 004 - SQL data type out of range

S1 008 - operation canceled

S1 009 - invalid argument value

S1 010 - function sequence error

S1 012 - invalid transaction operation code specified

S1 090 - invalid string or buffer length

S1 091 - descriptor type out of range

S1 092 - option type out of range

S1 093 - invalid parameter number

S1 095 - function type out of range

S1 096 - information type out of range

S1 097 - column type out of range

S1 098 - scope type out of range

S1 099 - nullable type out of range

S1 100 - uniqueness option out of range

S1 101 - accuracy option type out of range

S1 102 - table type out of range

S1 105 - direction option out of range

Class Subclass Meaning

Mimer SQL Version 11.0 329
Programmer’s Manual

* Return code will only be returned to ODBC applications executing in ODBC 2.0 mode.
‘** Mimer SQL specific SQLSTATE code.

Native Mimer SQL Return Codes
Here the native Mimer SQL return codes are listed together with the associated text
message. See Run-time Errors on page 70 for details on how to retrieve this information
after an exception has been raised.
Sometimes the deprecated term SQLCODE is used when referring to the native return code.
The codes are grouped according to function as follows:

Corrective action is given in general terms for each group of codes. When reporting errors
to Mimer support, make sure you include the native Mimer SQL return code.

S1 106 - fetch type out of range

S1 107 - row value out of range

S1 108 - concurrency option out of range

S1 109 - invalid cursor position

S1 C00 - driver not capable

S1 T00 - timeout expired

Class Subclass Meaning

Code numbers Functional group

> 0 Warnings and Messages

= 0 Success

100 No data

-100 to -999 ODBC Errors and Warnings

-10000 to -10999 Data-dependent Errors

-11000 to -11999 Limits Exceeded

-12000 to -12999 SQL Statement Errors

-14000 to -14999 Program-dependent Errors

-16000 to -16999 Databank and Table Errors

-18000 to -18999 Miscellaneous Errors

-19000 to -19999 Internal Errors

-21000 to -21999 Communication Errors

-22000 to -22999 JDBC Errors

-23000 to -23999 Mimload Errors

-24000 to -24999 Mimer SQL C API Return Codes

330 Appendix B Return Codes
Native Mimer SQL Return Codes

Warnings and Messages
No corrective action is normally required for internal Mimer SQL return code values
greater than zero.

ODBC Errors and Warnings
These errors occur when ODBC calls to Mimer SQL fail for some reason.

Number Explanation

53 Null values eliminated in set function

54 Character string was truncated

55 Insufficient item descriptor areas

56 Privilege not revoked

57 Privilege not granted

58 Zero bits were added to the binary string

90 Login failure

91 Soft enter performed

92 No cursor state was saved on stack

94 Message text not found

100 Row not found for FETCH, UPDATE or DELETE, or the result of a query
is an empty table

100 No data - Item number is greater than the value of count

997 It was not possible to alter all executable statements

998 The row has been updated by an update where current statement for this
cursor

999 The row has been deleted by a delete where current statement for this
cursor

Number Explanation

-100 Illegal sequence

-101 Out of memory

-102 Option out of range

-103 Function not supported

-104 Connection not open

-105 Connection in use

-106 Invalid argument value

-107 Invalid transaction operation code

Mimer SQL Version 11.0 331
Programmer’s Manual

-108 Internal network buffer overflow

-109 Invalid C data type

-110 Invalid SQL data type

-111 Bad address

-112 Function already active

-113 Operation canceled

-114 Wrong number of parameters

-115 Use ODBC function SQLEndTran (or SQLTransact for ODBC 2
applications) to commit or rollback transaction

-116 Statement is not in a prepared state

-117 Invalid transaction state

-118 Unknown statement type

-119 Server data type not supported by client

-120 Unknown data type

-121 Invalid buffer length

-122 String data truncated

-123 Numeric data truncated

-124 Numeric value out of range

-125 Invalid numeric value

-126 Bad parameter passed to numeric package

-127 Invalid column number

-128 Database name mandatory

-129 Connect dialog failed

-130 Data truncated

-131 Invalid connection string attribute

-132 Invalid cursor state

-133 Invalid parameter number

-134 Descriptor type out of range

-135 Invalid type passed to DICOA3

-136 Function type out of range

-137 Invalid cursor name

-138 Duplicate cursor name

Number Explanation

332 Appendix B Return Codes
Native Mimer SQL Return Codes

-139 Cursor hash table corrupt

-140 ODBC database control block chain corrupt

-141 Option type out of range

-142 Option value not supported

-143 Option not supported

-144 Invalid row or keyset size

-145 Invalid concurrency option

-146 Invalid fetch type

-147 Not a scrollable cursor

-148 Row position out of range

-149 Only one SQLPutData for fixed length parameter

-150 SQLPutData does not support block cursors

-151 Driver not capable

-152 Table type out of range

-153 Invalid string length

-154 Data type out of range

-155 Syntax error found in escape clause

-156 DDO buffer overflow

-157 Uniqueness option type out of range

-158 Accuracy option type out of range

-159 Column type out of range

-160 Scope type out of range

-161 Nullable type out of range

-162 Internal type mismatch

-163 Conversion between data types not supported

-164 Invalid date, time, or timestamp

-165 Restricted data type attribute violation

-166 Date, time, or timestamp data truncated

-167 Database has not been configured. Run Configure Mimer 7.1

-168 Translated native SQL string was truncated

-169 ODBC extension DATE, TIME or TIMESTAMP is not supported

Number Explanation

Mimer SQL Version 11.0 333
Programmer’s Manual

-170 ODBC extension OUTER JOIN is not supported

-171 ODBC extension for procedure invocation is not supported

-172 Unrecognized first word in escape clause, expected
'CALL','FN','OJ','D','T' or 'TS'

-173 This server version does not support the used scalar function

-174 Unrecognized scalar function found in escape clause

-175 Argument missing in scalar function

-176 Too many arguments in scalar function

-177 Syntax error, incomplete escape clause

-178 Syntax error, unmatched apostrophe in string literal

-179 Syntax error, unmatched quote in delimited identifier

-180 Invalid data type specified in scalar function CONVERT

-181 Information type out of range

-182 Parameter type may only be used with procedures

-183 Parameter type out of range

-184 Update and delete where current fully supported (not simulated)

-185 Option value changed

-186 Static scrollable cursor used instead of keyset or dynamic cursor

-187 Error in row, please check next error code

-188 Cancel treated as FreeStatement/CLOSE

-189 Attempt to fetch before the result set returned the first rowset

-190 Invalid cursor position

-191 Unknown first parameter in scalar function TIMESTAMPADD

-192 Unknown first parameter in scalar function TIMESTAMPDIFF

-193 Bad parameter passed to datetime package

-194 Out of critical section objects

-196 Invalid attribute option identifier

-197 Attribute cannot be set now

-198 General error

-199 Invalid use of an automatically allocated descriptor

-200 Invalid descriptor field identifier

-201 Invalid descriptor index

Number Explanation

334 Appendix B Return Codes
Native Mimer SQL Return Codes

-202 Associated statement not prepared

-203 Interval second fraction truncated

-204 Interval truncation error

-205 Interval convert error

-206 Year to month interval cannot be converted to a numeric value because it
is not a single field

-207 Interval cannot be converted to a numeric value because it is not a single
field

-208 Invalid interval literal

-209 Interval leading field truncation error

-210 Interval trailing field truncated

-211 Binary data truncated

-212 Binary truncation error

-213 Binary length invalid

-214 Binary data invalid

-215 Binary not supported

-216 Inconsistent descriptor information

-217 Cannot modify IRD

-218 Invalid use of null pointer

-219 Character data not hexadecimal

-220 Internal error

-221 Significant parts of datetime/interval string truncated

-222 Interval field truncation

-223 String data truncated

-224 Binary data truncated

-225 String data truncated

-226 Binary data truncated

-227 Internal error - Must put blob separately

-228 Unicode string data conversion error

-229 LOB data larger than specified in SQL_LEN_DATA_AT_EXEC(x)

-230 Distributed transaction mode is active, but no transaction enlist has been
performed. May be due to early transaction abort or illegal sequence of
calls in application.

Number Explanation

Mimer SQL Version 11.0 335
Programmer’s Manual

Data-dependent Errors
These errors arise when an SQL statement cannot be executed correctly because of the
data content of variables, expressions, and so on in the statement. The appropriate
corrective action is determined by the nature of the error and the specific context in the
application program.

-232 Wide character data types not supported by server

-233 SQL_LEN_DATA_AT_EXEC(n) only allowed for long data types

-235 Maximum escape clause nesting depth reached

-236 The character string '%' could not be casted to an %

-237 An SQL % interval cannot be casted to a %

-238 A non-fractional part of a TIME or a TIMESTAMP was truncated

-239 The % character string '%' could not be casted to an %

-300 Failed to read dictionary

-801 Error loading library XOLEHLP.DLL or locating entry point to
DtcGetTransactionManager in XOLEHLP

-801 Pending transaction, commit or rollback before exit

-802 Unable to retrieve MSDTC transaction object
(IID_IDtcToXaHelperSinglePipe)

-802 Invalid transaction number, must be between 1 and <%>

-803 Unable to retrieve MSDTC resource manager cookie

-803 Server version and BSQL version must be the same when using
READLOG

-804 Unable to translate MSDTC transaction id to an XA transaction id (XID)

-805 Unable to perform distributed transaction enlist

-806 Invalid sequence of calls within ODBC to MSDTC interface routines

-807 Error initiating transaction object

Number Explanation

Number Explanation

-10001 Transaction aborted due to conflict with other transaction

-10002 Transaction aborted due to conflict with in-doubt transaction. Do not retry
transaction until in-doubt state resolved.

-10003 Transaction aborted due to a preceding problem with databanks or
resources

-10004 Current transaction has been invalidated by a conflicting system
administration statement

336 Appendix B Return Codes
Native Mimer SQL Return Codes

-10100 PRIMARY KEY constraint violated, attempt to insert null value in table
<%>, column <%>

-10101 PRIMARY KEY constraint violated, attempt to insert duplicate key in
table <%>

-10102 Domain constraint <%> violated for table <%>, column <%>

-10103 Table constraint <%> violated for table <%>

-10104 View constraint violation

-10105 Referential constraint <%> violated INSERT/UPDATE operation not valid
for table <%>

-10106 INSERT/UPDATE operation not valid for table <%> UPDATE/DELETE
operation not valid for table <%>

-10107 The result of a subquery or select into is more than one row

-10108 Result of SELECT INTO or EXECUTE INTO statement is a table of more
than one row

-10109 Data type constraint violation (numeric value out of range)

-10110 UNIQUE constraint <%> violated for table <%>

-10111 Domain constraint <%> violated for CAST

-10112 Deferred referential constraint <%> violated, INSERT/UPDATE
operation not valid for table <%>

-10113 Deferred referential constraint <%> violated, UPDATE/DELETE
operation not valid for table <%>

-10114 The referential action for the constraint <%> would cause multiple updates
on the table <%>

-10199 Host variable type packed decimal is not supported

-10200 Reserved numeric operand found during data type conversion

-10201 Length error or incorrect value found during data type conversion

-10202 Division by zero attempted

-10203 Negative overflow occurred during data type conversion

-10204 Positive overflow occurred during data type conversion

-10205 Loss of significance occurred during data type conversion

-10207 Undefined value found during data type conversion

-10208 Restricted data type attribute violation

-10210 Error in assignment

-10211 Undefined value found during data type conversion

Number Explanation

Mimer SQL Version 11.0 337
Programmer’s Manual

-10212 Overflow occurred during data type conversion

-10221 The null value cannot be assigned to a host variable because no indicator
variable is specified

-10222 Null not allowed for item descriptor area

-10250 Data type not supported

-10301 Loss of significance occurred in arithmetic operation

-10302 Positive overflow occurred in arithmetic operation

-10303 Negative overflow occurred in arithmetic operation

-10304 Division by zero attempted

-10305 Bad parameter encountered in arithmetic operation

-10306 Invalid input for numeric function

-10307 A corrupt numeric value was encountered

-10308 Binary data truncated

-10309 The binary strings are of unequal length

-10310 Invalid character value for CAST

-10311 String data truncated

-10312 Numeric value out of range

-10313 Illegal (negative) substring length

-10314 Like pattern escape character not followed by underscore or percent
character

-10315 Length of like pattern escape character is not equal to 1

-10316 Data truncated

-10317 Invalid hexadecimal string

-10318 Invalid regular expression <%>

-10319 The search string used in a BEGINS_WORD or MATCH_WORD
invocation contains invalid characters. Only characters that can be used in
an identifier are allowed. More information can be found in the section on
identifiers in the Mimer SQL Reference Manual.

-10321 Datetime loss of significance

-10322 Datetime positive overflow

-10323 Datetime negative overflow

-10325 Bad parameter encountered in datetime operation

-10326 Datetime illegal operand

Number Explanation

338 Appendix B Return Codes
Native Mimer SQL Return Codes

-10327 Invalid datetime value

-10328 Datetime subtype mismatch

-10329 Invalid datetime format

-10331 Interval loss of significance

-10332 Interval positive overflow

-10333 Interval negative overflow

-10335 Bad parameter encountered in interval operation

-10336 Interval illegal operand

-10337 Invalid interval value

-10338 Interval subtype mismatch

-10339 Invalid interval format

-10340 Length error for large object

-10341 Cannot set attribute value for UDT instance as it is null

-10351 Character string contains non-ascii character

-10352 Character string contains illegal Unicode character

-10354 Bad parameter encountered in Unicode conversion routine

-10355 Bad length parameter encountered in Unicode conversion routine

-10356 Character string not aligned on proper byte boundary

-10361 The used collation cannot be loaded

-10371 Coordinate value out of range

-10372 Latitude value out of range

-10373 Longitude value out of range

-10380 Invalid value in fetch first clause, must be larger than zero

-10381 Invalid value in fetch offset clause, must be positive

-10390 The builtin.uuid character representation is invalid. The expected value is
a string in the format
HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH, where each
H is a hexadecimal value specified by using the symbols 0-9 and A-F.

-10401 Illegal character found when converting from Unicode to ASCII

-10402 Illegal character found when converting from ASCII to Unicode

-10403 The argument to the UNICODE_CHAR function is an invalid Unicode
value

-10451 Character or binary string too long

Number Explanation

Mimer SQL Version 11.0 339
Programmer’s Manual

Limits Exceeded
These errors arise when internal limits in the Mimer SQL system are exceeded. Some of
the limitations are determined by installation-specific parameters, while others are fixed
by Mimer SQL. In general, errors of this nature require either re-installation of the system
with extended limitations or modification of the application program to reduce the system
demands.
Contact your Mimer representative if you have difficulty avoiding errors of this nature.

-10601 Invalid value for field of item descriptor area

-10602 Invalid datetime or interval code

-10603 PRECISION field of SQL descriptor cannot be set on non-numeric data
types

-10701 Invalid LEVEL value in item descriptor area

Number Explanation

Number Explanation

-11001 Dynamic storage area exhausted in host level interface (DYNDE3)

-11002 Internal DB dynamic storage area (SQLPOOL) exhausted

-11011 Internal storage (SQLPOOL) for like pattern exhausted

-11012 Transaction list exhausted

-11013 Too many databanks referenced in statement (max 30)

-11014 Too many databanks active in transaction

-11015 The allocated number of realtime tasks in the server has been exhausted

-11047 The maximum number of recursive invocations has been exceeded

-11100 Internal limit exceeded: query stack

-11101 Internal limit exceeded: scan stack

-11102 Internal limit exceeded: generation stack

-11103 Internal limit exceeded: table descriptor list

-11105 Internal limit exceeded: patch table

-11106 Internal limit exceeded: label table

-11107 Internal limit exceeded: traversal stack

-11108 Internal limit exceeded: sco list

-11109 Internal limit exceeded: boolean stack

-11111 Internal limit exceeded: semantic stack

-11112 Internal limit exceeded: working storage

340 Appendix B Return Codes
Native Mimer SQL Return Codes

SQL Statement Errors
These errors arise from syntactic or semantic errors in SQL statements. In general,
syntactic errors in ESQL programs are detected by the preprocessor, so errors cannot arise
at run-time.
Dynamically submitted SQL statements are however parsed at run-time, and the syntax
error codes are returned after attempting PREPARE for a syntactically incorrect source
statement.
Semantic errors can arise at run-time from both dynamic and static SQL statements.

-11113 Internal limit exceeded: statement too complex

-11114 Required temporary table row length is <%>, only <%> is possible

-11115 Internal limit exceeded: restriction group pool

-11118 Internal limit exceeded: scan queue

Number Explanation

Number Explanation

-12001 Too many errors, error collection terminated

-12101 Syntax error, <%> assumed missing

-12102 Syntax error, <%> ignored

-12103 Syntax error, <%> assumed to mean <%>

-12104 Invalid construction

-12106 Internal parser error, analysis aborted

-12107 Syntax analysis resumed here

-12108 Multiple statements not allowed

-12109 Character string literal contains non-ascii character, use nchar literal
instead (i.e. N'text')

-12110 Delimited identifier contains non-ascii character

-12111 Delimited identifier contains invalid character

-12112 Delimited identifier contains illegal Unicode character

-12116 The table <%> does not have a generated primary key

-12117 The internal column MIMER_ROWID cannot be altered

-12119 Password string contains non-ascii character

-12120 Table name too long

-12121 String literal too long

-12122 Numeric literal too long

Mimer SQL Version 11.0 341
Programmer’s Manual

-12123 Invalid password string

-12124 <%> is an invalid hexadecimal literal

-12125 Reserved word may not be used as an identifier

-12126 Invalid name

-12127 Character string literal contains illegal Unicode character

-12128 Result of concatenation too long

-12129 Table definition does not include any column specification

-12131 Table definition includes more than one PRIMARY KEY specification

-12132 Only one column allowed in column list

-12152 <%> not allowed in EXECUTE mode

-12153 It is not possible to set a cardinality for a constraint or index if the
cardinality for the table, to which it belongs, is null

-12154 User name too long

-12155 Cardinality for a constraint or index must be less or equal to the cardinality
of the table to which it belongs

-12156 Column name too long

-12157 Synonym name too long

-12158 Correlation name too long

-12159 Cursor name too long

-12160 Databank name too long

-12161 Shadow name too long

-12162 Host variable name too long

-12163 File name too long

-12164 Label name too long

-12165 Index name too long

-12166 Object name too long

-12167 View name too long

-12168 Domain name too long

-12169 Too many identifier names given

-12174 Syntax error in escape clause, expecting comma before PRODUCT or
CONFORMANCE specification

-12175 Syntax error in escape clause, invalid CONFORMANCE specification

Number Explanation

342 Appendix B Return Codes
Native Mimer SQL Return Codes

-12176 Syntax error in escape clause, invalid YEAR specification

-12177 Syntax error in escape clause, invalid PRODUCT specification

-12178 Syntax error in escape clause, invalid VENDOR specification

-12179 Syntax error in escape clause, expecting VENDOR or YEAR after '--(*'

-12180 Syntax error, unexpected token '*)--'

-12181 Syntax error in escape clause, terminating '*)--' missing

-12182 Syntax error in escape clause

-12200 Table <%> not found, table does not exist or no access privilege

-12201 Table reference <%> is ambiguous

-12202 <%> is not a column of an inserted table, updated table or any table
identified in a FROM clause

-12203 <%> is neither an object table of an INSERT, UPDATE or DELETE
statement, nor specified in a FROM clause

-12204 Column reference <%> ambiguous

-12205 Column <%> not referenced in GROUP BY clause

-12207 DISTINCT specified more than once in a subselect

-12208 SELECT clause of a subquery specifies more than one column

-12209 Column <%> identified in HAVING clause but not included in GROUP
BY clause

-12210 Operand of set function includes a set function

-12211 NEXT VALUE of sequence not allowed in ORDER BY clause

-12212 Operand of set function includes a correlated reference specified in an
expression

-12213 Set function not specified in a SELECT clause or HAVING clause

-12214 Invalid data type used, expected type is <%>

-12215 Operand not of <%> type

-12216 Operands are not comparable

-12217 Set function containing DISTINCT may not be specified within an
expression

-12218 Constant expression not allowed in ORDER BY clause

-12219 The length of the trim character expression is not one

-12220 Expression must be a column

-12221 SELECT clause contains both column expressions and set function
expressions

Number Explanation

Mimer SQL Version 11.0 343
Programmer’s Manual

-12222 ORDER BY expression contains no valid column reference

-12223 ORDER BY clause invalid because it includes a column name that is not
part of the result table

-12224 ORDER BY clause invalid because it includes an integer which does not
identify a column of the result table

-12225 The ORDER BY clause is invalid because it includes duplicate column
references

-12226 Set function argument not bound in HAVING context

-12227 Duplicate column reference in FOR UPDATE OF clause

-12228 ORDER BY clause must contain only SELECT list items when
DISTINCT, GROUP BY or UNION is specified

-12229 Set function not allowed in ORDER BY clause

-12230 Invalid numeric literal

-12231 Update or insert value is null, but the object column <%> cannot contain
NULL values

-12232 Insert value must be a constant expression or NULL

-12233 The number of insert values is not the same as the number of object
columns

-12234 Insert value not compatible with the column <%>'s <%> data type

-12235 Subquery not allowed in ORDER BY clause

-12236 Column name <%> does not identify a unique column of the result table

-12237 User-defined type <%> not found, does not exist or no usage privilege

-12238 Column <%> cannot be updated because it is derived from a set function
or expression

-12239 The use of NULL in a SELECT clause is only allowed in a UNION

-12240 Statement contains too many table references

-12241 Domains not allowed in parameter list

-12242 The corresponding columns of the operands of a UNION do not have
compatible column descriptions

-12243 Result table contains a column for which the type cannot be determined

-12244 Operands of a <%> do not have the same number of columns

-12245 FOR UPDATE clause may not be specified because the result table cannot
be modified

-12246 Column <%> in the FOR UPDATE clause is not part of the identified table
or view

Number Explanation

344 Appendix B Return Codes
Native Mimer SQL Return Codes

-12250 A host variable or parameter marker is not allowed in a view definition

-12251 CREATE VIEW statement must include a column list because the
SELECT clause contains an expression

-12252 CREATE VIEW statement must include a column list because the
SELECT clause contains duplicated column name <%>

-12253 The number of columns specified for the view is not the same as specified
by the SELECT clause

-12254 WITH CHECK OPTION cannot be used for the specified view because it
cannot be modified

-12258 <%> operation not permitted because the view cannot be modified

-12259 <%> operation not permitted because the joined table cannot be modified

-12260 LOAD operation not permitted, as there is a trigger for insert defined on the
table

-12261 INSERT statement not permitted because the object column <%> is
derived from an expression

-12262 The type of the parameter marker cannot be determined

-12263 Parameter markers and host variables not allowed in EXECUTE
IMMEDIATE environment

-12264 Parameter markers may not be specified in SELECT clause

-12265 Literal or computed value overflow

-12266 Decimal divide operation invalid because the result would have a negative
scale

-12267 Duplicate column reference in INSERT column list

-12268 Duplicate column reference in UPDATE set clauses

-12269 Duplicate column name specified in column list

-12270 <%> does not have <%> privilege on object <%>

-12271 Duplicate column reference in GROUP BY clause

-12273 The types of the results of a CASE expression are not type compatible

-12274 The type of the CASE expression result cannot be determined

-12275 At least one result in a CASE expression must be non-null

-12277 Invalid CAST data type specification

-12278 Cannot extract <%> field from data type <%>

-12280 <%> is an invalid datetime literal

-12281 <%> is an invalid interval literal

Number Explanation

Mimer SQL Version 11.0 345
Programmer’s Manual

-12282 Invalid interval qualifier

-12283 Invalid use of interval qualifier

-12284 The recursive WITH-clause <%> may only contain a single UNION-clause

-12285 There can only be a single reference to recursive table <%>

-12286 Incorrectly placed reference to recursive table <%>, it may not occur in
right side of outer join, in a subquery etc.

-12287 The number of with-clause columns does not match the underlying query
select list

-12288 Cycle detected in recursive WITH clause data

-12289 Search and/or cycle-clause may only be used in recursive with-clause

-12290 Locator types may not be passed to client

-12291 ON COMMIT may only be used with temporary tables

-12292 Cannot create index <%>, uniqueness cannot be enforced when IGNORE
NULL specified

-12293 Window function <%> requires ORDER BY in OVER clause

-12294 Duplicate window function name <%>

-12295 Cyclic window function name <%>

-12296 Window function with name <%> not found

-12297 Multiple <%> clauses in window function and referenced window <%>

-12300 Syntax error in escape clause

-12301 Translated native SQL string was truncated

-12302 The function <%> is not supported

-12303 Unrecognized first word, <%> in escape clause expected 'CALL', 'FN','OJ',
'D', 'T' or 'TS'

-12304 Unrecognized scalar function <%>

-12305 Invalid data type <%> in function CONVERT

-12306 Syntax error, incomplete escape clause

-12307 Syntax error, unmatched apostrophe in string literal

-12308 Syntax error, unmatched quote in delimited identifier

-12309 Unknown first parameter <%> in scalar function <%>

-12310 Argument missing in scalar function <%>

-12311 Too many arguments in scalar function <%>

-12330 Statement was not a query

Number Explanation

346 Appendix B Return Codes
Native Mimer SQL Return Codes

-12331 Statement was not an UPDATE, DELETE or INSERT

-12500 A databank named <%> already exists (or filename already used)

-12501 Table <%> does not exist

-12502 <%> does not have <%> privilege

-12503 <%> does not have <%> privilege on object <%>

-12504 Statement not allowed within transaction

-12505 <%> is not a USER or PROGRAM ident

-12506 No privilege

-12507 <%> does not have any databank available (see CREATE DATABANK)

-12509 An ident cannot REVOKE a privilege from itself

-12510 An ident cannot GRANT a privilege to itself

-12511 Duplicate column specification

-12512 Invalid type description

-12513 The cascade option would cause a drop of the last column <%> for table
<%> in schema <%>

-12514 The value for <%> must be less than <%>

-12515 The value of <%> must be <%> than or equal to the value of <%>

-12516 Qualified column name required

-12517 Object <%> does not exist

-12518 Circular grant of membership between groups not permitted

-12519 Invalid type description, <%> length must be between <%> and <%>

-12520 An ident cannot GRANT a privilege to itself

-12521 Create <%> option <%> specified more than once

-12522 Alter <%> option <%> specified more than once

-12523 Databank <%> does not exist

-12524 READ ONLY option only available for ALTER DATABANK

-12525 Alter table option <%> specified more than once

-12526 Default value for NOT NULL column <%> missing

-12527 Constraints and unique indexes must be specified WITHOUT CHECK
when the database is set to AUTOUPGRADE

-12528 It is not allowed to create a shadow when the database is set to
AUTOUPGRADE

Number Explanation

Mimer SQL Version 11.0 347
Programmer’s Manual

-12529 The database cannot be set to AUTOUPGRADE when there are shadows
defined

-12530 Operand not of type <%>

-12531 Operands not comparable

-12532 Invalid option, should be ON or OFF

-12533 Literal or computed value overflow

-12534 Invalid numeric literal

-12535 Invalid identifier, keyword VALUE expected

-12536 Name <%> in PRIMARY KEY specification not recognized as a column
name of current table definition

-12537 <%> must be unqualified

-12538 Default value not compatible with domain definition

-12539 Host variable construction illegal in this context

-12540 <%> is not a column of the specified table(s)

-12541 Data pagesize too small for table record length

-12542 Default value is outside the range specified by domain definition

-12543 Index pagesize too small for table key length

-12544 Too many columns specified in <%> statement

-12545 Primary key column <%> may not be updated because the table is in a
WORK databank

-12546 Column <%> is not type compatible with the corresponding column of the
referenced table

-12547 Number of columns specified in the foreign key is not the same as the
number of columns in the primary key of the referenced table

-12548 Column <%> is not collation compatible with the corresponding column of
the referenced table

-12549 Databank option may not be changed to WORK since <%> either contains
tables with FOREIGN KEY or UNIQUE constraints or sequences

-12550 Table <%> includes a FOREIGN KEY or UNIQUE constraint and may
therefore not be created in a databank with WORK option

-12551 Table <%> is in a databank with WORK option and may therefore not be
used as referential constraint

-12552 A UNIQUE index or a UNIQUE or FOREIGN KEY constraint cannot be
created for table <%> as it is located in a databank with WORK option

-12553 Explicit grant membership on PUBLIC is not permitted

Number Explanation

348 Appendix B Return Codes
Native Mimer SQL Return Codes

-12554 PUBLIC cannot be member of another group

-12555 The option cannot be changed to READ ONLY since <%> contains a table
using a current collation

-12556 <%> cannot be shadowed because it is a WORK databank

-12557 Shadow named <%> already exists

-12558 Ident named <%> already exists

-12559 There is no index <%> defined for <%>

-12560 Table, view, synonym, index or constraint named <%> already exists

-12561 User-defined type or domain <%> not found, does not exist or no usage
privilege

-12562 Only foreign key constraints can be deferrable

-12563 Shadow <%> does not exist

-12564 Ident <%> does not exist

-12565 Maximum row length exceeded by index or key table

-12566 Maximum row length exceeded by base table

-12567 It is not possible to add a file to the databank <%> as there is a shadow
defined for the databank

-12568 EXISTS construction illegal in this context

-12569 ALL or ANY construction illegal in this context

-12570 Set function construction illegal in this context

-12571 Subquery construction illegal in this context

-12572 Too many columns given in FOREIGN KEY clause

-12573 Name <%> in CHECK clause not recognized as a column name of current
table definition

-12574 Name <%> in column constraint not recognized as current column name

-12575 Constraints for generated keys cannot be dropped explicitly

-12577 Default value not compatible with column specification

-12579 No such unique constraint in referenced table

-12580 It is not possible to add new columns to the table since the <%> has an
implicit reference to all columns in <%> statement. There may be further
dependencies.

-12581 Too many columns given in UNIQUE constraint

-12582 UNIQUE constraint equivalent to PRIMARY KEY constraint

-12583 UNIQUE constraint equivalent to previously given UNIQUE constraint

Number Explanation

Mimer SQL Version 11.0 349
Programmer’s Manual

-12584 The added constraint is equivalent to a previously defined PRIMARY KEY
or UNIQUE constraint

-12585 Name <%> in FOREIGN KEY clause not recognized as a column name of
current table definition

-12586 Data pagesize not supported

-12587 Index pagesize not supported

-12588 Compression <%> not supported

-12589 An ident or a schema owning any collation cannot be dropped. Drop
collation first.

-12590 Table contains too many columns

-12591 Cannot create unique index

-12592 Dependencies exist, RESTRICT specified

-12593 Column <%> does not exist

-12594 Column <%> cannot be dropped as it is the only column in table

-12595 Column <%> cannot be dropped, dependencies exist

-12596 Default value for column <%> does not exist

-12597 Change of data type is not allowed for a column included in a key or index

-12598 The data type for a column cannot be changed to a domain if that domain
has any check constraints

-12599 The proposed data type change is not supported

-12600 Change of data type is not supported for a column used by a view, routine
or trigger

-12601 Statement does not support backup of <%>

-12602 The same file name is given for backup and incremental backup

-12603 Database is already OFFLINE

-12604 Database is already ONLINE

-12605 Cannot RESET LOG, because database is ONLINE

-12606 Databank <%> is already OFFLINE

-12607 Databank <%> is already ONLINE

-12608 Cannot RESET LOG, because databank <%> is ONLINE

-12609 Shadow <%> is already OFFLINE

-12610 Shadow <%> is already ONLINE

-12611 Cannot RESET LOG, because shadow <%> is ONLINE

Number Explanation

350 Appendix B Return Codes
Native Mimer SQL Return Codes

-12612 Shadow <%> is already specified

-12613 Cannot set more than one shadow OFFLINE for databank having shadow
<%>

-12614 Statistics cannot be updated for <%> because it is a view

-12615 Filename already used by databank or shadow

-12616 Cannot SET DATABASE OFFLINE, because another user is connected

-12617 Cannot SET DATABANK <%> OFFLINE, because the databank is in use

-12618 INCREMENTAL backups can only be used in conjunction with
EXCLUSIVE

-12619 The column <%> is not of structured type

-12620 A domain or user-defined type named <%> already exists

-12621 A schema named <%> already exists

-12622 The schema name for the index table must be the same as the schema name
for the table

-12623 A PRIMARY KEY constraint for this table has already been defined

-12624 The added PRIMARY KEY or UNIQUE constraint cannot be created as
there are duplicates

-12625 The added referential constraint is not fulfilled by existing records

-12626 The added check constraint criteria is not fulfilled by existing records

-12627 One or more specified columns does not exist in table

-12628 Referenced table or column not found

-12629 FOREIGN KEY not referencing a compatible UNIQUE or PRIMARY
KEY

-12630 Constraint <%> cannot be dropped, dependencies exist

-12631 PRIMARY KEY or UNIQUE column constraint not valid when records
exist

-12632 Collation <%> does not exist

-12633 A collation named <%> already exists

-12634 Invalid collation definition string

-12635 Collation <%> cannot be dropped, used by domain or column

-12636 A collate clause can only be specified for character types

-12637 Expressions with different collating sequences cannot be compared or
concatenated

Number Explanation

Mimer SQL Version 11.0 351
Programmer’s Manual

-12638 Collation specified in ORDER BY must be the same as used in
DISTINCT/UNION

-12639 Column of type large object not allowed in PRIMARY KEY, UNIQUE,
FOREIGN KEY or INDEX

-12640 Precompiled statement <%> does not exist or no execute privilege

-12641 A precompiled statement named <%> already exists

-12642 Invalid SQL construction used in CREATE STATEMENT

-12643 Column of data type large object not allowed in this context

-12644 SQL syntax error, only EXECUTE STATEMENT allowed

-12645 Column of data type large object not allowed in a databank having shadow

-12646 Precompiled statement is not scrollable

-12647 Precompiled statement is scroll only

-12648 Not allowed to change table as it is used by a precompiled statement

-12649 Statement <%> was compiled with an earlier version

-12650 Only the creator of a precompiled statement may alter it

-12651 Invalid syntax in statement invocation

-12562 The constructor function <%> can only be used in a NEW invocation

-12653 A foreign key constraint between <%> and <%> using the same columns
and referencing the same key already exists

-12654 It is not possible to create a special index on a table that has fixed format

-12655 It is not possible to alter table to fixed format since there is a special index
defined on the table

-12656 It is not possible to add a file to the databank <%> since it is removable

-12657 It is not possible to set the databank <%> as removable since it has multiple
files

-12660 No column result set

-12661 The data type list does not match any routine

-12662 There is no matching <%> with the specified number of parameters

-12663 Invalid type description, <%> precision must be between <%> and <%>

-12664 Invalid type description, <%> fraction must be between <%> and <%>

-12665 It is not possible to cast data with type <%> to <%>

-12666 It is not possible to assign data with type <%> to <%>

-12667 It is not possible to compare data with types <%> and <%>

Number Explanation

352 Appendix B Return Codes
Native Mimer SQL Return Codes

-12668 It is not possible to concatenate <%> data and <%> data

-12669 It is not possible to use arithmetic operations on data with types <%> and
<%>

-12670 Support for structured user-defined types is not included in this version

-12671 Support for read only databanks is not included in this version

-12672 Support for this diagnostic item is not included in this version

-12673 CURRENT_COLLATION not allowed for column in unique constraint

-12674 CURRENT_COLLATION not allowed for column in primary key

-12675 CURRENT_COLLATION not allowed for column in unique index

-12676 Collation <%> may not be used as base since it is binary

-12678 INSERT columns must be specified when CREATE STATEMENT, i.e.
INSERT INTO table (column-list) ...

-12679 SELECT * not allowed when CREATE STATEMENT, specify selected
columns (at top level)

-12680 An ident may not drop himself

-12681 CASE expression's return values have different collating sequences

-12682 Columns defined as structured user-defined types cannot be used in
constraints or indexes

-12683 Invalid combination of sequence attributes

-12684 The column <%> has invalid type for a PINYIN index, must be NCHAR
or NCHAR VARYING

-12685 Invalid <%> value specified for column <%>

-12686 Unable to determine result type for expression, use syntax: (datetime1 -
datetime2)interval qualifier, for example: (date '2018-03-04' -
date'1634-01-06')year(3) to month

-12687 Invalid <%> value specified

-12701 <%> is a reserved word, and cannot be used as the name for a symbol

-12702 <%> is a global variable, and cannot be used as the name for a variable or
parameter

-12703 The class <%> is already present in the handler declaration

-12704 The SQLSTATE <%> is already present in the handler declaration

-12705 The condition identifier <%> is already present in the handler declaration

-12706 The condition identifier <%> is already used in another handler in this
scope

Number Explanation

Mimer SQL Version 11.0 353
Programmer’s Manual

-12707 A condition identifier for the SQLSTATE <%> has already been defined in
this scope

-12708 <%> is not a valid SQLSTATE value

-12709 The SQLSTATE <%> associated with the condition identifier <%> is
already present in the handler declaration

-12710 An exception handler for the state (<%>) associated with the condition
identifier <%> has already been defined in this scope

-12711 An exception handler for the state <%> has already been defined in this
scope

-12712 An exception handler for the class <%> has already been defined in this
scope

-12713 The default literal is too large for this data type

-12714 The literal value is too large for this data type

-12715 The type of the default value is not compatible with the type of the variable

-12716 A locator can only be declared for a lob type

-12717 Invalid declaration. The maximum precision for this data type is <%>

-12718 The scale cannot exceed the precision

-12719 A lob type can only be used in PSM if it is declared as a locator

-12720 The number of correlation names for <%>, does not match number of result
types

-12721 The parameter <%> must be declared as IN as it is defined in a function,
method or result set procedure

-12722 The parameter <%> is declared as IN, and cannot be assigned

-12723 The parameter <%> is declared as OUT, and cannot be used in expressions

-12724 <%> cannot be assigned a value directly

-12725 Result set procedures can only be used in cursor declarations

-12726 The formal argument of the routine is IN but the actual argument is OUT

-12727 The formal argument of the routine is OUT but the actual argument is IN

-12728 Literals or expressions cannot be used for OUT parameters

-12729 Return statements are only allowed in result set procedures or functions

-12730 Recursive call to <%>, not allowed

-12731 <%> statement not allowed in result set procedure

-12732 The procedure <%> does not return a result set and cannot be used in a
declare cursor for call

Number Explanation

354 Appendix B Return Codes
Native Mimer SQL Return Codes

-12733 RESIGNAL statement only allowed in exception

-12734 Incorrect number of items in return statement, <%> expected

-12735 Incorrect number of parameters, <%> expected when invoking routine
<%>

-12736 Invalid type for argument, <%> expected

-12737 Too long name <%>

-12738 Duplicate declaration <%>

-12739 x.y.z names not allowed

-12740 There is no matching start label for the ending label <%>

-12741 The label or routine <%> is not defined

-12742 The label <%> is not defined

-12743 Procedure <%> does not exist or no execute privilege

-12744 The variable <%> is not defined

-12745 The condition identifier <%> is not defined

-12746 The cursor <%> is not defined

-12747 The use of a domain (<%>) is invalid in this context

-12748 Operands are incompatible

-12749 The SQL module <%> already exists

-12750 There already exists a procedure named <%> having the same parameters

-12751 Duplicate parameter <%>

-12752 The procedure <%> is declared in an SQL module, and cannot be dropped
directly

-12753 Failed to read data dictionary

-12754 The length of a host variable cannot exceed 32

-12755 Host variables cannot be used within a procedure

-12756 The data type for the parameter marker cannot be determined

-12757 The number of items in the into clause is less than the number of items in
the select list

-12758 The number of items in the into clause is greater than the number of items
in the select list

-12759 The number of items in the fetch into clause is less than the number of items
in the cursor declaration

-12760 The number of items in the fetch into clause is greater than the number of
items in the cursor declaration

Number Explanation

Mimer SQL Version 11.0 355
Programmer’s Manual

-12761 The cursor <%> is declared as not scrollable, only next is allowed as fetch
direction

-12762 The value in a fetch absolute or relative must be an integer

-12763 The argument to fetch absolute must be larger than 0

-12764 A cursor for call is read only and cannot be used in an update or delete
where current statement

-12765 The cursor is declared as read only and cannot be used in an update or
delete where current statement

-12766 The table name in the <%> statement is not the same as the name used in
the cursor declaration

-12767 The column <%> is not specified in the for update list of the cursor
declaration

-12768 The size for a data type must be larger than zero

-12769 It is not allowed to declare exception handlers or condition identifiers for
the SQLSTATE successful completion ('00000')

-12770 The formal argument of the procedure is declared as INOUT but the actual
argument is <%>

-12771 A handler declaration cannot contain both an exception class and
SQLSTATE values or condition identifiers

-12772 The procedure does not return a result set and therefore cannot be used with
a scroll cursor

-12773 <%> is not a column and is not declared as a variable or parameter

-12774 The label <%> has already been declared

-12775 The statement requires <%> access

-12776 <%> statement is only allowed if the access indication is MODIFIES SQL
DATA or READS SQL DATA

-12777 <%> statements are only allowed if the access indication is MODIFIES
SQL DATA

-12778 The access indication for a result set procedure must be READS SQL
DATA or CONTAINS SQL

-12779 An UNDO exception handler can only be specified in an atomic compound
statement

-12780 <%> is an invalid argument for the signal statement, only integer values
allowed

-12781 Only assignment and comparison operations allowed

-12782 The column name <%> has already occurred in this row declaration

-12783 The field <%> is not defined in the row data type for the variable <%>

Number Explanation

356 Appendix B Return Codes
Native Mimer SQL Return Codes

-12784 The row data types do not have the same number of fields

-12785 A row data type variable may not be used as a parameter or result type nor
in a DML statement

-12786 A parameter specified as RESULT is not allowed in <%>

-12787 If a RESULT parameter is specified the return data type for the SQL
invoked function must be a structured user-defined type and the same as the
data type for the parameter

-12788 There can only be one RESULT parameter for an SQL invoked function

-12789 The data type for a parameter defined as RESULT must be a structured
user-defined type and it must be the same as the data type returned by the
SQL invoked function

-12790 The function <%> can not be altered since it is used as an ordering function
for the structured user-defined type <%>. The function must be
deterministic and the return data type must be a predefined data type
excluding large objects.

-12791 The function <%> can not be altered since it is used as an ordering function
for the structured user-defined type <%>. The function must be
deterministic and the return data type must be an integer.

-12792 The collating sequence for the parameter <%> is different from the
collating sequence used in the method specification

-12793 The collating sequence for the return data type is different from the
collating sequence used in the method specification

-12794 The schema names for the dropped method and the user-defined type are
not equal

-12795 Specifying a value by using the keyword DEFAULT is only allowed in
INSERT and UPDATE statements

-12796 Specifying a value by using the keyword NULL is only allowed in INSERT
and UPDATE statements or in a cast expression

-12797 It is not allowed to use the builtin.serialize function on a record that is part
of another record

-12798 The result of the builtin.deserialize function cannot be assigned to a record
that is part of another record

-12800 Functionality not supported: <%>

-12801 Referencing OLD <%> is not allowed if trigger event is INSERT

-12802 Referencing NEW <%> is not allowed if trigger event is DELETE

-12803 The compound statement in a triggered action must be atomic

-12804 Referencing OLD or NEW ROW may only be used if FOR EACH ROW
is specified

Number Explanation

Mimer SQL Version 11.0 357
Programmer’s Manual

-12805 A column list can only be specified if trigger event is UPDATE

-12806 Duplicate column name in OF list

-12807 It is not allowed to modify the <%> table

-12808 The trigger time for a view must be INSTEAD OF

-12809 The trigger time for a base table cannot be INSTEAD OF

-12810 Only the creator of a table can create a trigger for the table

-12811 It is not allowed to create triggers for tables, located in databanks with
WORK option

-12812 Referencing OLD or NEW table is not allowed in FOR EACH ROW
triggers

-12813 A trigger named <%> already exists

-12814 Sequences cannot be created in a databank with WORK option

-12815 The OS_USER name already exists for this ident

-12816 The OS_USER does not exists for this ident

-12817 Add or drop OS_USER is only allowed for idents defined as USER

-12818 Drop password is only allowed for idents defined as USER

-12819 The view cannot be used in an Experience server since it uses functionality
that is specific to an Engine server

-12820 The statement <%> is invalid because it could not be upgraded from an
earlier version of Mimer SQL

-12821 It is not possible to change the name of a parameter when altering a routine

-12822 The alter routine statement would cause the loss of grant option for execute
on the routine. This is due to the presence of statements that uses a privilege
which is held without grant option. The first reference of this type is <%>
privilege on <%> <%>.

-12823 The data type for a parameter declared as RESULT must be the same as the
data type in the returns clause

-12824 It is not possible to alter the returns data type to an incompatible data type
or to change the number of result items since there are objects using this
routine. The first such object is the <%> <%>.

-12825 The return data type for the function <%> can not be changed since there
is a relative ordering for the user-defined type <%> using this function. The
return type must be an integer type.

-12826 The alter routine is not allowed. If a return statement is present in the
routine body a returns clause must also be given.

-12827 The alter operation is invalid since the routine is declared as deterministic
but it contains expressions that are not deterministic

Number Explanation

358 Appendix B Return Codes
Native Mimer SQL Return Codes

-12828 A null call clause can not be specified for a procedure

-12829 Routine attributes or specific name for a method can only be changed by
altering the method specification. A method specification is altered by
using the ALTER TYPE statement.

-12830 There already exists a function named <%> having the same parameters

-12831 Function <%> does not exist or no execute privilege

-12832 The result of the expression is not deterministic while the routine is
declared as deterministic

-12833 All privileges used in a trigger must be held with grant option. This is
violated as <%> privilege on the <%> <%> is not held with grant option.

-12834 Sequence <%> does not exist, or no privilege

-12835 A sequence named <%> already exists

-12836 The keyword NULL cannot be used <%>

-12837 The operands to an overlaps predicate must be of a row data type with two
elements

-12838 The two elements in an operand to the overlaps predicate must either be of
the same type or otherwise it shall be possible to add the second value to
first value

-12839 <%> is not allowed in a before trigger

-12840 The simple value specification for a get diagnostics statement must be of
integer type

-12841 <%> is not allowed in a trigger

-12842 The increment for a sequence must be non zero

-12843 Invalid values for sequence attributes

-12844 Schema <%> does not exist or no privilege

-12845 The schema name for routines in a module definition must be the same as
the schema name for the module

-12846 The value for diagnostics size must be positive

-12847 The ident name in an authorization clause must be the same as the current
user

-12848 A constraint named <%> already exists

-12849 The function <%> MODIFIES SQL DATA and can thus not be used in a
DML statement

-12850 A trigger must be located in the same schema as the table

-12851 A constraint must have the same schema name as the object to which it
belongs

Number Explanation

Mimer SQL Version 11.0 359
Programmer’s Manual

-12852 The schema name for a routine is not the same as the schema name for the
module

-12853 Ident name not allowed as a schema with the same name exists

-12854 A non-deterministic expression is not allowed in a check clause

-12855 Default values with a reference to a sequence combined with a check clause
is not allowed in an alter table statement

-12856 References to LOB columns in the NEW table in an instead of trigger is not
allowed

-12857 The label <%> cannot be used for an iterate statement

-12858 The record <%> is not compatible with the <%>

-12859 Creation of recursive statements is not supported

-12860 No user-defined type or domain named <%> is defined

-12861 The attribute name <%> is already specified in this user-defined type or in
a supertype

-12862 INSTANTIABLE or NOT INSTANTIABLE cannot be specified for a
distinct type

-12863 FINAL or NOT FINAL cannot be specified for a distinct type

-12864 A type cannot be FINAL and NOT INSTANTIABLE

-12865 The default value for the attribute is invalid

-12866 There already exists a routine with specific name <%>

-12867 Parameters for functions and methods may not be specified as IN
explicitly

-12868 A parameter name for the routine is missing

-12869 The type attribute <%> specified multiple times

-12870 No specification for the method <%> was found

-12871 The parameter type does not match method specification for <%>

-12872 The parameter name <%> does not match the name used in method
specification

-12873 A type name must be specified

-12874 A method must be created in the same schema as the type

-12875 A type binding can only be specified for methods

-12876 A structured type must be declared as FINAL or NOT FINAL

-12877 When creating a user-defined type it is not possible to use that type as the
data type for an attribute or as a supertype in an under clause

Number Explanation

360 Appendix B Return Codes
Native Mimer SQL Return Codes

-12878 No <%> method specification exists

-12879 The method does not have the same return data type as the method
specification

-12880 SELF is not allowed as parameter or variable name in an instance method

-12881 A method named <%> is already defined for this user-defined type

-12882 A method specification named <%> with equal parameters is already
defined for this user-defined type or for a subtype or supertype

-12883 The type for the parameter <%> does not match the method specification

-12884 Type user-defined <%> does not exist or no usage privilege

-12885 As the type <%> is declared as NOT INSTANTIABLE it cannot be used
when defining columns or variables

-12886 The method specification <%> does not have a returns clause

-12887 The schema name for the type <%> and the method specification are not
the same

-12888 <%> is a static method and must be invoked with the syntax
typename::method

-12889 <%> is an instance method and must be invoked with the syntax
object.method

-12890 There is no method <%> defined for the type, or no execute privilege

-12891 The attribute <%> does not exist in the type <%>

-12892 The subject routine for <%> cannot be determined, there exists multiple
routines with the same name. Provide more specific data types

-12893 The method specification for <%> cannot be determined, there exists
multiple method specifications with the same number of parameters but
none matching the data types for this method definition

-12894 The distinct type cannot be created since there exists a function with the
name <%> and one parameter having the same type

-12895 The object <%> has been created implicitly and cannot be altered or
dropped

-12896 A constructor method can only be defined for a structured user-defined
type

-12897 A constructor method must have the same name as the user-defined type

-12898 A constructor method must have the same return type as the user-defined
type, <%> does not fulfill this requirement

-12899 <%> is a constructor method and must be invoked using the new operator

-12900 The attribute name is the same as an existing routine

Number Explanation

Mimer SQL Version 11.0 361
Programmer’s Manual

-12901 Source as distinct is only valid for distinct types

-12902 Multiple source as distinct or distinct as source clauses not allowed

-12904 Order full not allowed for state orderings

-12905 There is no EQUALS ordering defined for the type <%>, comparison not
allowed

-12906 Not allowed to create or drop ordering for distinct type

-12907 The user-defined type does not have any ordering

-12908 There is already an ordering defined for this type

-12909 <%> orderings are not supported

-12910 A function named EQUALS with the same parameter types already exists

-12911 There is no FULL ordering defined for the type <%>, comparison not
allowed

-12912 Distinct as source is only valid for distinct types

-12913 Only method specifications can be dropped with the alter type statement

-12914 CASCADE not allowed for alter type or alter routine

-12915 Cast to and from structured types not allowed

-12916 Not possible to add or drop attributes for a distinct type

-12917 Only the creator of a user-defined type may alter it

-12918 Not allowed to add or drop attribute to this type as it is used as the data
type for a column

-12919 The addition of the attribute would cause a circular dependency

-12920 <%> is the last attribute for the type and cannot be dropped

-12921 The cursor <%> is declared in a for statement and cannot be used
explicitly

-12922 All items in the select list in a for statement must be named

-12923 Duplicate name <%> in select list in for statement

-12924 All result items for a result set procedure must have a name when used in a
for statement

-12925 Duplicate result item name <%> for result set procedure which is not
allowed when used in a for statement

-12926 Locators can only be compared with = or <>

-12927 Locators cannot be used in expressions

-12928 The information item <%> has already been specified

Number Explanation

362 Appendix B Return Codes
Native Mimer SQL Return Codes

-12929 <%> is not a constructor function, and cannot be invoked using the new
operator

-12930 The constructor function for the user-defined type <%> cannot be created
since there already exists a function with the same name and parameters

-12931 The default value for <%> is not within the range of the data type

-12932 The literal value <%> is outside the valid range for the data type of the
variable <%>

-12933 The schema for the user-defined type does not match the schema for the
method

-12934 As the type <%> is distinct, a new specification is not allowed

-12935 There is no method specification for the type <%>, with the number of
parameters used in the create method statement

-12936 Invalid type for argument number <%>, expected <%> when invoking
routine <%>

-12937 Invalid type for argument number <%>, expected <%> in operation <%>

-12938 <%> has already been specified

-12939 Ident <%> is not authorized to create external routines

-12940 The host variable <%> is used in multiple contexts where the data types
are incompatible

-12941 The host variable <%> will be assigned multiple times

-12942 The host variable <%> has inconsistent use of indicator variables

-12943 The special column MIMER_ROWID cannot be accessed in a before row
trigger

-12944 <%> cannot be modified as it is defined as a large object

-12945 The definition for the index <%> contains multiple type clauses which is
not allowed

-12946 The column <%> has an invalid data type. If the index type is <%> only
<%> is allowed

-12947 The index <%> is defined as unique, which is not allowed for index type
<%>

-12948 The data type of <%> is not compatible with the data type of <%>

-12949 <%> is a field in the old row variable in a trigger and cannot be assigned

-12950 It is not allowed to specify size for a locator

-12951 The type <%> is not instantiable

-12952 No UNDER privilege on type <%>

Number Explanation

Mimer SQL Version 11.0 363
Programmer’s Manual

-12953 The type <%> is final and cannot be inherited from

-12954 A distinct type cannot have an under clause

-12955 The type <%> is distinct and cannot be inherited from

-12956 A state or relative ordering cannot be defined for an inherited type

-12957 The routine <%> cannot be used as an ordering function. A map ordering
function should have one parameter with the same type as the user-defined
type for which the ordering is defined and the return type must be a
predefined data type. The function must also be deterministic and cannot
modify SQL data.

-12958 The routine <%> cannot be used as an ordering function. A relative
ordering function should have two parameters with the same type as the
user-defined type for which the ordering is defined and the return type
must be integer. The function must also be deterministic and cannot
modify SQL data.

-12960 The type <%> must be a subtype of <%> (the type of the left operand)
when used in a type predicate or treat expression

-12961 The overriding attribute cannot be specified for a method specification
defined as static or constructor, it is only allowed for instance method
specifications

-12962 There is no matching original method specification for <%> in any
supertype of <%>

-12963 The method <%> is an observer or mutator method in a supertype of <%>
and cannot be overridden

-12964 The attribute <%> is inherited and cannot be dropped

-12965 A realtime aggregation for this statement already exists

-12966 The statement <%> can not be used for realtime aggregation since it is not
of type select;

-12967 The interval value <%> does not match the data type <%>, expected
format is <%> with each field in the valid range

-12968 You are not authorized to create an external library

-12969 There already exists a library with the name <%>

-12970 There already exists a library with the name <%> already used by another
library

-12971 The interval value <%> is invalid. The maximum value for the <%> field
in an <%> is <%>.

-12972 The interval value <%> is too large with regard to the given precision

-12973 The library <%> does not exist or you are not authorized to use it

Number Explanation

364 Appendix B Return Codes
Native Mimer SQL Return Codes

Program-dependent Errors
These errors arise as a result of incorrect program construction. In general, corrective
action requires revision of the program source code.

-12974 The value <%> does not match the data type <%>, expected format is
<%> with each field in the valid range

-12975 Invalid access mode NO SQL specified for the routine <%>. NO SQL is
only allowed for external routines.

-12976 The file <%> is not defined for the databank <%>

-12977 <%> is the last remaining file for the databank <%> and cannot be
dropped

-12978 There already exists a file named <%> for the databank <%>

-12979 It is not allowed to add files for the SYSDB databank

-12980 At most 15 files can be specified for a databank

-12981 As the databank <%> has multiple files it is not possible to change a file
specific option without specifying a file name. Use the ALTER
DATABANK ... ALTER FILE ... statement instead.

Number Explanation

Number Explanation

-14001 Invalid sequence of SQL statements

-14002 SQL statement invalid because the user is not connected

-14003 CONNECT statement invalid because the user is already connected

-14004 System already closed down

-14005 Cannot perform DISCONNECT in a transaction

-14006 Login failure

-14007 The option for the databank cannot be changed since a backup of the
databank is active

-14008 The option for the databank cannot be changed since there are shadows
defined on the databank

-14009 Operation is not allowed when a transaction is active

-14010 Operation is not allowed in an atomic execution context

-14011 Transaction already started

-14012 Transaction handling required

-14013 No transaction started

-14014 Cannot perform write operations as transaction status is read-only

Mimer SQL Version 11.0 365
Programmer’s Manual

-14015 Commit or rollback statements are not allowed in an atomic execution
context

-14016 Select for update is not allowed for a read-only cursor

-14017 Mixing DDL and DML statements in a transaction is not allowed

-14018 Incremental backup not allowed in BACKUP transaction

-14019 Operation not allowed in BACKUP transaction

-14020 START BACKUP command required to perform an online backup

-14021 Cannot perform ENTER or LEAVE in a transaction

-14022 Cannot perform ENTER operation because program level is already active

-14023 No program level entered, cannot perform leave operation

-14024 Session statements are not allowed in a trigger

-14025 START LOAD command required to perform a load operation

-14026 The table name specified in the COMMIT/ROLLBACK LOAD statement
does not match the table name (<%>) specified in the START LOAD
statement

-14027 Invalid transaction state, held cursor requires same isolation level

-14028 The routine <%> tries to modify SQL data which is not allowed with the
current access mode

-14029 The routine <%> tries to read SQL data which is not allowed with the
current access mode

-14031 DESCRIBE statement does not identify a prepared statement

-14032 EXECUTE statement does not identify a prepared statement

-14033 PREPARE statement identifies a SELECT statement of an opened cursor

-14034 The cursor is not in a prepared state

-14035 The cursor identified in a FETCH or CLOSE statement is not open

-14036 The cursor cannot be used because its statement name does not identify a
prepared SELECT statement

-14037 The cursor identified in the UPDATE or DELETE statement is not open

-14038 UPDATE or DELETE CURRENT statement not allowed for a cursor of a
prepared SELECT statement

-14039 Cursor is not scrollable

-14041 The cursor identified in the UPDATE statement is not positioned on a row

-14042 The cursor identified in the DELETE statement is not positioned on a row

-14043 Routine signaled SQLSTATE

Number Explanation

366 Appendix B Return Codes
Native Mimer SQL Return Codes

-14044 Routine signaled a condition

-14045 Prepared statement not a cursor specification

-14046 The statement RESIGNAL was used outside a exception handler

-14047 Duplicate transaction identifier

-14048 Current user not owner of transaction

-14049 Already associated with transaction

-14050 The specified transaction identifier could not be found

-14051 Invalid distributed transaction state

-14052 It is not possible to mix local and distributed transactions

-14053 The transaction identifier is in use by other user

-14054 The requested operation cannot be performed in a distributed transaction

-14061 Cursor has been invalidated by a conflicting system administration
statement

-14101 Invalid statement identifier

-14201 Compilation did not yield an executable program

-14202 The cursor identified in an OPEN statement is already open, but not
declared as REOPENABLE

-14203 Statement position cannot be saved when temporary tables are used in the
query

-14210 Cursor for result set procedure may not be reopenable

-14211 WITH HOLD option is only available for SELECT statements

-14212 The external routine <%> was not found

-14213 Error when executing external routine <%>
Error code from routine: <%>

-14214 The number of parameters does not match the external routine

-14215 The data types of the parameters do not match the definition of the external
routine

-14216 Invalid databank option, valid options are READ ONLY, WORK,
TRANSACTION or LOG

-14217 The global variable <%> has not been assigned

-14218 The global variable <%> which is declared as <%> cannot implicitly be
converted to <%>

-14219 Cannot open external library <%> in file <%>, <%>

-14220 The external routine <%> was not found, <%>

Number Explanation

Mimer SQL Version 11.0 367
Programmer’s Manual

-14221 Error when executing external routine <%>, <%>

-14222 The version number of external library <%> is not compatible with the
database server. Please recompile the library.

-14223 Illegal format character for a parameter in external routine <%>

-14224 The initiation routine in external library <%> did not call init()

-14225 The format character for a parameter does not support the specified
database type

-14226 Memory allocation for stream failed

-14227 It is not possible to add more data to this stream since it has been assigned
to a routine parameter

-14301 SQLDA contains an invalid data address or indicator variable address

-14302 Invalid address of username or password

-14303 Invalid address

-14311 Illegal statement length given for SQL statement

-14312 Input character string too long

-14313 Like pattern string too long

-14314 Server name, username, password or connection name too long

-14315 Illegal byte length of floating point number

-14316 Unterminated C string, null byte not found

-14318 Username or password too long

-14321 Illegal host variable type

-14322 Illegal host variable type in like pattern string

-14323 Username and password must be fixed length character strings

-14324 Illegal indicator variable type

-14331 The number of provided host variables does not match the number of
parameters

-14332 Using clause required for dynamic parameters

-14333 Using clause required for result fields

-14401 Column cannot be updated because it is not identified in the UPDATE
clause of the SELECT statement of the cursor

-14402 The table identified in the UPDATE or DELETE statement is not the same
as that designated by the cursor

-14403 Cannot describe statement without naming information

-14404 Cannot use update where current for table <%> since the cursor is read-only

Number Explanation

368 Appendix B Return Codes
Native Mimer SQL Return Codes

-14405 Cannot use delete where current for table <%> since the cursor is read-only

-14406 Unexpected statement type encountered in an UPDATE or DELETE
statement

-14410 Update or delete where current is not allowed for tables located in a
databank with WORK option

-14501 Database connection is not open

-14601 Invalid cursor state

-14611 Using clause does not match dynamic parameters

-14612 Using clause or Into clause does not match target specifications

-14621 Cursor not found

-14622 Ambiguous cursor name

-14623 Invalid cursor name

-14624 Cursor already allocated for statement

-14631 Invalid SQL statement name

-14641 Invalid SQL descriptor name

-14642 Invalid descriptor index

-14643 Invalid descriptor count

-14651 Invalid condition number

-14652 The xa_info string passed to xa_open or xa_close has an improper syntax

-14653 Invalid flags argument passed to XA routine

-14654 Asynchronous operations are not supported by XA routines

-14700 No return statement was encountered when executing a function or method

-14701 The statement is not allowed in an atomic execution context

-14702 The same column has been updated to different values when executing a
trigger

-14703 An exception occurred during the execution of the trigger <%>

-14720 All possible values for the sequence <%> has been used, no more values
can be generated.

-14721 There is no current value for the sequence <%> because the next value
function has not been invoked

-14722 Sequence <%> locked by another user

-14723 Update of attributes for the sequence <%> failed

-14724 Not possible to allocate multiple sequence values

Number Explanation

Mimer SQL Version 11.0 369
Programmer’s Manual

Databank and Table Errors
These errors are associated with problems of physical access to databanks and tables.
Locking errors should not result from transaction conflicts, but generally indicate either
locking at the operating system level or malfunction of the internal Mimer SQL routines.
Many of the errors in this class are corrected by action taken at the operating system level.
If errors persist in spite of corrective action, contact your Mimer representative.

-14725 WITH HOLD cursors cannot be used with result set procedures

-14726 A realtime control structure (RTCS) could not be found

-14727 The databank containing the sequence is set to WORK mode, new values
cannot be generated.

-14728 The operation is not allowed as the databank is temporarily set to WORK
option

-14729 Table % has a UNIQUE constraint and cannot be updated while the
databank option is set to WORK

-14730 Table % is involved in a FOREIGN KEY constraint and cannot be updated
while the databank option is set to WORK

-14731 The primary key columns of table % cannot be updated while the databank
option is set to WORK

-14732 Bind is attempted within an active transaction

-14733 The parameter value for the function builtin.uuid_from_text is invalid. The
expected value is a string in the format HHHHHHHH-HHHH-HHHH-
HHHH-HHHHHHHHHHHH, where each H is a hexadecimal value
specified by using the symbols 0-9 and A-F.

-14734 The target area for the result of the method as_text for the distinct type
builtin.uuid is too short, minimum length is 36.

-14735 When converting to coordinate, location etc. the binary length must match
the underlying type

-14801 The type for an instance in a treat expression is not among the subtypes of
<%>

Number Explanation

Number Explanation

-16001 Table <%> locked by another user

-16002 Table <%> locked by another cursor

-16003 Table <%> in referential constraint definition locked by another user

-16004 Table <%> in referential constraint definition locked by another cursor

-16005 Log locked by another user

-16006 Backup unit log file locked

370 Appendix B Return Codes
Native Mimer SQL Return Codes

-16007 Databank <%> is read only, data modifications are not allowed

-16008 Sequence <%> is located in a read only databank, new values cannot be
generated

-16009 Sequence <%> is located in a databank which is offline, new values cannot
be generated

-16010 The table <%> cannot be recreated since no dictionary information has
been saved

-16011 The requested operation cannot be executed until previous change
operation for <%> has completed

-16101 No databank <%> found in dictionary

-16135 Record no longer exists

-16141 Syntax error in filename for databank <%>

-16142 Cannot open databank <%>, file <%> not found

-16143 File protection violation for databank <%>, file <%>

-16144 Cannot open databank <%>, file <%> locked by other user

-16145 Too many databanks open concurrently (direct access I/O limit)

-16146 File create error, disk full

-16147 File create error (quota exceeded) for databank <%>, file <%>

-16148 Device or network connection not ready, databank <%>, file <%>

-16149 Cannot open databank <%> in file <%>

-16150 Tried to access databank <%> on node which is inaccessible because
TRANSDB is OFFLINE

-16151 Too many databanks open concurrently

-16152 Tried to open a non-Mimer SQL databank

-16153 Data no longer available, storage device has been removed

-16154 Table control area exhausted

-16155 Incompatible version of databank <%>

-16156 Databank <%> belongs to another system databank

-16157 Tried to open a read-only databank with write access

-16159 Old version of the databank <%> cannot be accessed without using the
ALTER DATABANK .. RESTORE statement

-16160 Cannot set TRANSDB shadow OFFLINE on the same node as the master
TRANSDB

-16161 Databank <%> disk space exhausted

Number Explanation

Mimer SQL Version 11.0 371
Programmer’s Manual

-16162 Databank LOGDB disk space exhausted

-16163 Databank TRANSDB disk space exhausted

-16164 Databank SQLDB disk space exhausted

-16172 Databank <%> locked by another Mimer SQL user

-16182 Databank <%> corrupt

-16183 Bad parameter

-16184 I/O error

-16185 Internal databank identifier invalid

-16186 Internal table identifier invalid

-16187 Shadow <%> in file <%> has illegal sequence number

-16189 Corrupt bitmap page

-16190 Table root entry not found

-16191 Exclusive access to databank required for attempted operation

-16192 Load not allowed in databank with TRANS or LOG option

-16193 TRANSDB and/or LOGDB not open

-16194 Error occurred in transaction commit phase

-16195 Internal inconsistency detected

-16196 No end of table mark found for tableid

-16197 Shadow <%> is already OFFLINE

-16198 Shadow <%> is already ONLINE

-16199 Result of bitmap page I/O undefined

-16200 Result of index page I/O undefined

-16201 Result of root page I/O undefined

-16202 Result of data page I/O undefined

-16203 Corrupt index page

-16204 Corrupt root page

-16205 Corrupt data page

-16206 Write set corrupt

-16207 Table <%> has invalid record length

-16208 Unable to open databank <%>. SHADOW license required.

-16209 Unable to open databank <%>. NETIO license required.

Number Explanation

372 Appendix B Return Codes
Native Mimer SQL Return Codes

-16210 Cleanup control area exhausted

-16211 Not properly closed, dbcheck initiated

-16212 TRANSDB restart directory corrupt

-16213 Error when closing databank file. Please consult Mimer log file.

-16214 Blockdata DKBLK1 missing

-16215 Error accessing remote TRANSDB, node will not be accessed further

-16216 Blocksize not supported

-16217 Error when generating internal key

-16218 Operation not allowed. Configured number of users exceeded.

-16219 Too many Mimer databases started

-16220 Unable to retrieve limit on number of allowed users

-16221 Lost contact with peer

-16222 Record length from update before is invalid

-16224 Transaction state table entries exhausted

-16225 Transaction state identifier invalid

-16226 Invalid function code

-16227 Commit set corrupt

-16228 Restart set corrupt

-16229 Cancel requested

-16230 Transaction cache inconsistent

-16231 Shadow <%> is inaccessible due to incomplete CREATE SHADOW or
SET ONLINE operation

-16232 Database upgrade required

-16233 Operation not allowed. Licensed number of users exceeded.

-16234 Execution interrupted by scheduler

-16235 There are pending in-doubt transactions

-16237 Unable to load collation information for tableid = <%>

-16239 Databank <%> maximum size reached, unable to insert more data

-16240 The option for databank <%> is not supported

-16241 The allocated real-time control structures have been exhausted.

-16242 An attempt was made to bind a pointer to a compressed table

-16243 Disk full will be reached for databank <%>, unable to insert more data

Number Explanation

Mimer SQL Version 11.0 373
Programmer’s Manual

-16244 The page on which the real-time data value resides is currently updated
elsewhere

-16245 The page checksum is invalid when reading page

-16248 Databank <%> not available, probably removed storage device

-16249 Databank LOGDB maximum size reached, unable to handle more data

-16250 Databank TRANSDB maximum size reached, unable to handle more data

-16251 Databank SQLDB maximum size reached, unable to handle more data

-16252 Invalid database pointer type

-16253 Invalid database pointer policy

-16254 Incompatible database pointer type

-16255 The result set partially overlaps a previously bound multirow database
pointer

-16256 The column set does not match a previously bound multirow database
pointer

-16257 Incompatible database pointer policy

-16258 Cannot lock realtime pages in memory, bufferpool region exhausted

-16259 An attempt to delete a non-existing database pointer

-16262 An attempt was made to bind a pointer to a variable format table

-16263 Bufferpool memory exhausted for blocksize <%>

-16264 One of the files for databank <%> does not match the other files in
databank file set

-16265 Not all files in multi-file databank <%> are open yet

-16266 The file number for the multi-file databank <%> is incorrect

-16267 The attempted operation for the databank <%> is not supported as the
databank consists of several files

-16268 Missing a file for databank <%>, please add it with ALTER DATABANK
ADD FILENAME

-16269 Too many files for databank <%>, please drop extra file with ALTER
DATABANK DROP FILENAME

-16270 Two files use the same file number <%> for databank <%>

-16401 Routine cannot be dropped because it is in use

-16402 Routine cannot be used because it is being altered or dropped

Number Explanation

374 Appendix B Return Codes
Native Mimer SQL Return Codes

Miscellaneous Errors
These errors arise from miscellaneous problems that do not fall into the other classes. If
the corrective action is not indicated by the error description, contact your Mimer
representative for help.

Number Explanation

-18001 Blockdata BLKDS2 not included

-18002 Cannot log in, error in SYSDB initialization

-18003 No privilege to open log file

-18004 Databank LOGDB already opened by another Mimer SQL user. Could not
be opened exclusively to drop log records.

-18005 Unknown language

-18006 Language not properly installed

-18007 Unable to fetch message text

-18008 Restore in wrong sequence attempted

-18009 Mismatching version of Embedded SQL and Mimer SQL

-18010 Invalid log record found during restore operation

-18011 Mismatching version of Mimer SQL and utilities

-18012 The transformation of a TRANSDB shadow to master was interrupted
before completion. Please login to BSQL to complete the transformation.

-18013 Mimer SQL started from SYSDB shadow. Transform SYSDB shadow to
master with BSQL, or restart system from master SYSDB.

-18014 Alter shadow not allowed in SQL for system databanks. Use utility
program instead.

-18015 Open with hold is not possible when temporary tables are used for
evaluation of the query

-18016 Cursor could not be opened with hold as it is not prepared with hold

-18017 With hold functionality not supported

-18018 The network server version does not support scroll

-18019 Bad parameters passed to DBAPI4

-18020 Unknown information code = <%> used

-18021 Only SELECT, INSERT, UPDATE and DELETE operations (excluding
where current forms) may be compiled together in a single statement

-18022 Distributed transactions not supported by server

-18023 Requested DTC function not supported by server

-18024 Failed to enlist transaction in distributed transaction

Mimer SQL Version 11.0 375
Programmer’s Manual

-18025 Unable to retrieve transaction manager's whereabouts

-18026 Failed to import transaction identifier

-18027 Statement already active in other transaction

-18028 Cannot initiate a new PSM debugger session, because the number of
request threads is insufficient

-18029 Execution interrupted by debugger

-18031 A more recent version of BSQL is required to redefine system databanks

-18032 An older matching version of BSQL is required by the server to redefine
system databanks

-18041 Update of primary key columns for a table located in a databank, with
WORK option is not allowed

-18042 Primary key columns may not be updated by Level2 applications

-18043 The rowid column may not be updated

-18044 Inaccessible shadow found at LOAD operation

-18045 The table specified in the preceding START LOAD statement can only be
referenced using single value inserts while the LOAD operation is active

-18046 WITH HOLD cursors cannot be used in XA transactions

-18047 Update or delete where current cannot modify a row that was fetched
outside the current transaction

-18048 Cannot set databank option because a WITH HOLD cursor is open

-18049 Cannot set databank option because XA transaction are used

-18050 Cannot set databank option while LOAD operation is active

-18051 Cannot START LOAD because databank has temporary WORK option

-18052 Cannot use XA transactions when temporary WORK option is used

-18053 Connection rejected by server. The server security level requires the client
version to be 11.0 or later.

-18054 Cannot get exclusive access to external library <%>.

-18055 Cannot open external library <%>, because it is locked

-18057 Could not set up access to external library <%>. Failed to call the
initialization routine xlib_init in file <%>.

-18058 Symbol <%> not found in external library <%>, <%>

-18101 Operation not allowed. SHADOW license required

-18102 Operation not allowed. Mimer SQL license required

-18103 Operation not allowed. Mimer SQL Level2 license required

Number Explanation

376 Appendix B Return Codes
Native Mimer SQL Return Codes

-18107 Operation not allowed. Beta test version of Mimer requires BETA license.

-18108 Cannot find a valid Mimer SQL license key

-18109 Operation not allowed. XA, distributed transaction license required

-18110 Operation not allowed, 64 bit license required

-18111 Operation not allowed, immediate restart license required

-18112 Operation not allowed, in-memory server license required.

-18121 Operation not allowed. VAR specific Mimer license required

-18122 Authorization failure. Invalid attempt to connect

-18201 SYSDB cannot be backed up using CREATE BACKUP without an
ONLINE shadow

-18231 <%> records dropped from LOGDB

-18232 Shadow <%> is OFFLINE

-18233 Unable to access databank <%>, because it is OFFLINE

-18234 Error <%> occurred when trying to access shadow <%>

-18235 Error <%> occurred when trying to access databank <%>

-18236 Statistics updated for <%> tables

-18237 Databank <%> does not have LOG option

-18238 <%> records copied to incremental backup

-18239 Unable to CONNECT, because database is OFFLINE

-18240 Unable to CONNECT, because database is OFFLINE and one connection
already exists

-18241 Unable to CONNECT, because SYSDB is OFFLINE

-18242 Unable to CONNECT, because SYSDB is OFFLINE and one connection
already exists

-18243 Unable to access databank <%>, because database is OFFLINE

-18244 Could not get exclusive access to the database because one or more
connections already exists

-18245 Could not connect to database <%>, a system administrator is executing a
statement that requires exclusive access to the database

-18246 The bind-query contains multiple statements

-18247 The bind-query points to several columns

-18248 The bind-query points to several rows

-18250 The bind-query contains input parameters

Number Explanation

Mimer SQL Version 11.0 377
Programmer’s Manual

-18251 The bind-query includes a scroll cursor

-18252 The bind-query is not a SELECT statement

.18253 Table Information Package mismatch

-18254 An attempt was made to bind a pointer to a primary key

-18255 An attempt was made to bind a pointer to an indexed data element

-18257 The bind-query contains a join or subselect

-18258 An update elsewhere is not yet written to stable storage

-18259 The user does not have enough privilege to perform flush

-18260 Timeout when setting CURRENT COLLATION

-18261 No critical section objects available

-18500 Database <%> not found in SQLHOSTS file

-18501 Database <%> unknown on remote node <%>

-18502 Handshake message invalid, incompatible protocol <%>

-18503 Only remote databases are allowed, specify database which is not local

-18504 The network server version of database <%> is not compatible

-18505 Local memory pool in network server exhausted (SQLPOOL)

-18506 In the current version only one local (and several remote) databases can be
connected at a time

-18507 Unknown connection name <%> specified

-18508 Already connected to database <%>

-18509 Database name <%> invalid, too long or contains invalid characters

-18510 Connection name invalid, too long or contains invalid characters

-18512 Illegal reentrant call

-18513 Use another TCP/IP port number

-18514 Too deep address indirection

-18515 Cannot get value of thread-local variable

-18516 The network server version does not support Level2

-18517 MIMER_DATABASE cannot be read

-18518 Catalog version from beta test. See Release Notes, how to upgrade.

-18519 Erroneous contents in SQLHOSTS

-18520 Cannot locate the odbcini file

-18521 Error opening SQLHOSTS, filename syntax error

Number Explanation

378 Appendix B Return Codes
Native Mimer SQL Return Codes

-18522 Error opening SQLHOSTS, file not found

-18523 Error opening SQLHOSTS, file protection violation

-18524 Error opening SQLHOSTS, file locked

-18525 Error opening SQLHOSTS, too many opened files

-18526 Error opening SQLHOSTS, file create error, disk space exhausted

-18527 Error opening SQLHOSTS, other error (-7)

-18528 Error opening SQLHOSTS, other error (-8)

-18529 Error opening SQLHOSTS, other error (-9)

-18530 Error opening SQLHOSTS, illegal access options

-18531 Client/server communication must be encrypted, but client does not
support this

-18550 Invalid network package format

-18551 Unknown request code in network package (<%>)

-18552 Network package longer than expected

-18553 Internal data structures corrupt (DSNEE4)

-18554 The UTILITY program does not have client/server support

-18555 Client is using a deprecated function in the server (<%>)

-18594 Query timeout period expired

-18595 Network partner disconnected

-18601 Could not connect to database <%>, unknown node '<%>'

-18602 Could not connect to database <%>, unknown protocol '<%>'

-18603 Could not connect to database <%>, unknown interface '<%>'

-18604 Could not connect to database <%>, unknown service '<%>'

-18605 Could not connect to database <%>, chosen protocol not supported on
ALPHA/VMS '<%>'

-18606 Could not connect to database <%>, network type not supported '<%>'

-18607 Could not connect to database <%>, remote node is unreachable '<%>'

-18608 Bad parameter NETID=<%> passed to network package

-18609 Invalid parameter RECLEN=<%> passed to network package

-18610 Invalid parameter BUFFER=<%> passed to network package

-18611 Too many concurrent network connections

-18612 Connection refused '<%>'

Number Explanation

Mimer SQL Version 11.0 379
Programmer’s Manual

Internal Errors
These errors arise from malfunction in internal Mimer SQL routines. Contact your Mimer
representative for help.

-18613 Unexpected network event '<%>'

-18614 The underlying network protocol does not have enough capabilities '<%>'

-18615 Network service busy '<%>'

-18616 Local or remote system resources are insufficient '<%>'

-18617 Connection timed out '<%>'

-18618 Insufficient privileges for attempted network operation '<%>'

-18619 Unexpected network error '<%>'

-18620 Network operation would block (asynch mode)

-18621 Could not load network library

-18622 Required routines missing from network library

-18901 Database <%> not available on node <%>

-18902 Mimer logins are currently disabled, try again later

-18903 Access denied to Mimer multi-user system

-18904 Unable to attach to multi-user system, no response

-18905 Operation not allowed. Licensed number of users exceeded

-18906 Invalid database path

-18920 Machine dependent error-18920

-18921 Machine dependent error-18921

-18922 Machine dependent error-18922

-18923 Machine dependent error-18923

-18924 Machine dependent error-18924

-18925 Machine dependent error-18925

-18926 Machine dependent error-18926

-18927 Machine dependent error-18927

-18928 Machine dependent error-18928

-18929 Machine dependent error-18929

Number Explanation

Number Explanation

-19001 Program level list corrupt

380 Appendix B Return Codes
Native Mimer SQL Return Codes

-19002 No program level found

-19003 Statement list corrupt

-19004 Output parameter list corrupt

-19005 Table list corrupt

-19006 Unable to find log file, LOGDB corrupt

-19007 Inconsistency detected when trying to update dictionary

-19008 Unable to open SYSTEM base tables

-19009 Dictionary table SYSTEM.USERS corrupt

-19010 Unable to extract correct information from SYSTEM.DATABANKS

-19011 Unable to extract correct information from
SYSTEM.TABLE_CONSTRAINTS

-19012 Dictionary mismatch found for table with TABLE_SYSID = <%>

-19015 Sysid record in SYSTEM.OBJECTS not found

-19016 Function not supported <%>

-19017 Invalid MAE program

-19018 Invalid operation code PC=<%>

-19019 Pattern not compiled due to invalid MAE instruction sequence

-19020 Invalid function code passed to instruction <%>

-19021 No databank control block found for <%>

-19022 Bad function code passed to DSCDB3

-19023 Invalid pointer to naming structure

-19024 Severity message program corrupt

-19025 Invalid table descriptor

-19026 Invalid table descriptor, log status invalid

-19027 Base table must be opened before index tables

-19028 Table root entry not found

-19029 Unable to change position on write set because no mark is set

-19030 Invalid length for allocation of program space

-19031 Invalid table type

-19032 No table control block found

-19033 Cannot delete databank file outside transaction

-19034 Bad function code passed to DSCRD2

Number Explanation

Mimer SQL Version 11.0 381
Programmer’s Manual

-19035 Invalid index descriptor

-19036 Error detected when closing table, hash chain corrupt

-19037 Invalid internal table type encountered

-19038 Write set inconsistency encountered

-19039 Invalid internal statement identifier

-19040 Invalid internal system identifier

-19041 Invalid internal user identifier

-19042 The static statement cannot be compiled because it is already identified
with some other statement

-19043 The statement cannot be prepared because it is already identified with a
static statement

-19044 Transaction control block chain corrupt

-19045 Shadow <%> cannot be transformed because it is OFFLINE

-19046 Databank <%> is referenced but not opened

-19047 Table has not been opened with sufficient access to allow current operation

-19048 Databank <%>, no shadow is found in dictionary with sequence number =
<%>

-19049 The internal update operation has not been prepared with the old record

-19050 Catalog version not compatible with server

-19051 Compiled LIKE pattern corrupt

-19052 Could not store lookup path, inconsistency detected

-19053 Output descriptor overflow

-19054 Unable to initialize database system

-19055 Unable to generate an internal key

-19056 Inconsistent user identifier (not logged in)

-19057 Scroll program corrupt

-19058 Extended name not supported in static SQL

-19059 Invalid error message descriptor

-19061 Loss of significance for VARCHAR length

-19062 Positive overflow for VARCHAR length

-19063 Negative overflow for VARCHAR length

-19065 Bad parameter for VARCHAR length

Number Explanation

382 Appendix B Return Codes
Native Mimer SQL Return Codes

-19066 Illegal operand for VARCHAR length

-19067 Bad record number

-19068 No matching record

-19069 Corrupt cancel state

-19071 Unrecognized data types for conversion

-19072 Invalid read set record

-19073 Insufficient internal descriptor area

-19074 Internal inconsistency encountered in TCACHE

-19075 Invalid internal DDU identifier

-19076 Internal inconsistency encountered in table list

-19077 Internal inconsistency encountered in DU1

-19078 Invalid parameter encountered in MOS

-19079 Internal inconsistency encountered in DSETH3

-19080 Thread initialization failure

-19081 Hash table missing in system control block

-19082 Internal inconsistency encountered in DSGSH2

-19083 Internal inconsistency encountered in MCOMEM

-19084 Runtime assertion failed

-19085 Invalid descriptor encountered on server

-19086 Invalid statement status encountered on server

-19087 PSM debugger resources already allocated

-19088 PSM debugger resources already deallocated

-19089 Invalid parameter encountered in DDU

-19091 Invalid function code passed to routine

-19092 Invalid function code 2 passed to routine

-19093 Invalid function code 3 passed to routine

-19094 Failed to create login response message or validation

-19095 The version of a precompiled program is incompatible with server version

-19101 Not valid conversion of data types

-19102 Not supported data type conversion

-19103 Initialization failure for data type conversion

Number Explanation

Mimer SQL Version 11.0 383
Programmer’s Manual

-19111 STMs for called statements remaining after disconnect

-19112 Release of statements terminated due to error <%>

-19113 Nonexistent parameter specified

-19114 Specified collation not found

-19115 LOB identification not found in directory table

-19116 No LOB column in parameter list

-19117 LOB start position out of bounds

-19118 Client and server disagreed on LOB length

-19119 Internal truncation error encountered in Mimer client driver

-19122 Failed to load name information package for system id=<%>

-19123 Failed to load table information package for table id=<%>

-19124 Failed to load domain information package for domain id=<%>

-19125 Cannot commit transaction for WITH HOLD

-19126 WITH HOLD resource mismatch

-19127 Not allowed to use CURRENT_COLLATION

-19128 Large objects not supported by current server type

-19129 Internal inconsistency detected by SQL optimizer in <%>

-19130 Could not insert LOB value due to a LOB identification failure

-19131 Internal LOB length inconsistency

-19132 Invalid sequence of internal LOB operations

-19201 System error: <%>- Area outside MAE data storage

-19202 System error: <%>- Attempt to qqwsal() in closed area

-19203 System error: <%>- Cost value out of range

-19204 System error: <%>- Error converting into Mimer format

-19205 System error: <%>- Error from MDRCCI call

-19206 System error: <%>- Error when reading databank option

-19207 System error: <%>- Expression switch case not recognized

-19208 System error: <%>- Factor was left unused

-19209 System error: <%>- Failed to get a slave RST

-19210 System error: <%>- Generation stack underflow

-19211 System error: <%>- Group is not allocated

Number Explanation

384 Appendix B Return Codes
Native Mimer SQL Return Codes

-19212 System error: <%>- Host variable not defined

-19213 System error: <%>- Host variable number mismatch

-19214 System error: <%>- Illegal Set Func. mode switch case

-19215 System error: <%>- Illegal Status switch case <%>

-19216 System error: <%>- Index table not found

-19217 System error: <%>- Invalid base pointer

-19218 System error: <%>- Invalid object type

-19219 System error: <%>- Invalid pointer

-19220 System error: <%>- Main switch case not recognized

-19221 System error: <%>- Multiple offset assignment

-19222 System error: <%>- Multiple restriction groups

-19223 System error: <%>- No area opened

-19224 System error: <%>- Nonexistent member

-19225 System error: <%>- No Tbl_desc for SCO

-19226 System error: <%>- NOT stack overflow

-19227 System error: <%>- NOT stack underflow

-19228 System error: <%>- Offset outside MAE data storage

-19229 System error: <%>- qqcbix() with illegal operator

-19230 System error: <%>- qqcunx() with illegal operator

-19231 System error: <%>- Error from MDRCFC call

-19232 System error: <%>- qqrlst() with NULL list

-19233 System error: <%>- qqwlst() with NULL list

-19234 System error: <%>- Query result stack underflow

-19235 System error: <%>- Query stack underflow

-19236 System error: <%>- Rule matrix index out of range

-19237 System error: <%>- Scan kind not implemented

-19238 System error: <%>- Scan stack underflow

-19239 System error: <%>- Selectivity factor value out of range

-19240 System error: <%>- Semantic stack underflow

-19241 System error: <%>- Set range violation

-19242 System error: <%>- Set size incompatibility

Number Explanation

Mimer SQL Version 11.0 385
Programmer’s Manual

-19243 System error: <%>- Stack underflow

-19244 System error: <%>- Statement switch case not recognized

-19245 System error: <%>- Switch case not recognized

-19246 System error: <%>- Too complicated UNION query

-19247 System error: <%>- Too many nested subqueries

-19248 System error: <%>- Traversal stack underflow

-19249 System error: <%>- Unexpected EXPRESSION in HOST variables

-19250 System error: <%>- Unexpected expression operand

-19251 System error: <%>- Unexpected expression subtype

-19252 System error: <%>- Unexpected node class

-19253 System error: <%>- Unexpected SELECT ITEM

-19254 System error: <%>- Unexpected statement subclass

-19255 System error: <%>- Unexpected DD return code <%>

-19256 System error: <%>- Unknown Host Variable type

-19257 System error: <%>- Unknown statement type

-19258 System error: <%>- WS stack overflow

-19259 System error: <%>- X stack overflow

-19260 System error: <%>- X stack underflow

-19261 System error: <%>- Error logging is not enabled

-19262 System error: <%>- Source position line or column is negative

-19263 System error: <%>- Message insert string too long

-19264 System error: <%>- Error logging is already enabled

-19265 System error: <%>- MAE constant storage overflow

-19266 System error: <%>- Selectivity rule number out of range

-19267 System error: <%>- No entry for index id

-19268 System error: <%>- qqcfnx() with illegal operator

-19269 Unexpected duplicate row found in temporary table

-19270 System error: <%>- Scan queue underflow

-19271 System error: CPL - PSM depth overflow

-19280 System error: <%>- Error from MDRTDC call

-19290 Out of memory

Number Explanation

386 Appendix B Return Codes
Native Mimer SQL Return Codes

Communication Errors
When an application has received a communication error, the connection will become
unusable. The only valid operation on that connection will be DISCONNECT.
Error codes from the communication kernel layer (network routines):

-19291 Invalid attribute type

-19292 Error when trying to store procedure in dictionary

-19293 Error when trying to share program

-19300 <%> unhandled production

-19301 Internal inconsistency detected in PSM

-19302 The syntax in the view definition is not allowed when with check option is
used

-19303 Recursive or cycle temporary table operation failed unexpectedly

-19310 Internal error: Invalid stream type

-19311 Internal error: Invalid stream handle

-19312 Internal error: Stream handle is in use and cannot be dropped

-19901 Function not yet implemented

Number Explanation

Number Explanation

-21001 Already listening on service <%>

-21002 Error trying to ASSIGN channel for TCP/IP communication

-21003 Error when creating socket

-21004 Error when binding socket address for service <%>

-21005 Error when connecting to database <%>, could not get port number for
service <%>

-21006 Error when connecting to database <%>, unknown protocol <%>

-21007 Error when connecting to database <%>, unknown node <%>

-21008 Error when connecting to database <%> on <%> using <%> to service
<%>

-21009 Illegal channel id specified

-21010 Error when reading data from network channel

-21011 Error when writing data to network channel

-21012 Channel is not open

-21013 Channel is not accessible from this process

Mimer SQL Version 11.0 387
Programmer’s Manual

-21014 Error when creating mailbox

-21015 Error when declaring network object for service <%>

-21016 Unimplemented feature

-21017 Error when accepting new channel

-21018 Error when doing local listen for database <%> on path <%>

-21019 Too many channels used

-21020 Multiple read requests on channel

-21021 Multiple write requests on channel

-21022 Local write when not owning buffer

-21023 Cancel request illegal on channel

-21024 No available channel id number

-21025 Tried to open too many local servers

-21026 Database server for database <%> not running

-21027 Incompatible buffer versions

-21028 Failed to do a LOCAL connection to the server for database <%>

-21029 Illegal reentrant request on channel

-21030 Network request would block caller

-21031 Too large network I/O requested

-21032 Could not find DSINI4 in single-user library

-21033 Could not find DSHND4 in single-user library

-21034 Could not find DSGMD4 in single-user library

-21035 Could not find DSUMP4 in single-user library

-21036 The channel is closed

-21037 The specified network interface is not supported

-21038 Could not lock communication buffers in memory

-21039 Error trying to ASSIGN channel for DECNET communication

-21040 Could not map library for single-user mode

-21041 Could not initialize CK package

-21042 Error when performing initial communication with database server

-21043 Server rejected connection to database <%> on <%> using <%> to
service <%>

-21044 Server rejected named pipe connection to database <%>

Number Explanation

388 Appendix B Return Codes
Native Mimer SQL Return Codes

-21045 The address family for network protocol was unknown

-21046 Error when creating named pipe server objects

-21047 Error when setting up TCP server objects

-21048 Unexpected communication error

-21049 Error when reading/writing data to/from network channel

-21050 Error when closing communication with database server

-21051 All local communication slots are in use

-21052 Database server request failed

-21053 Database or network service not started Error when connecting to
database <%> on <%> using <%> to service <%>

-21054 Database server for database <%> not started

-21055 The Mimer network service on <%> for <%> does not currently accept
new connections. Try again later.

-21056 Local communication has been disabled for database server <%>

-21057 Named pipe communication has not been enabled for database server
<%>

-21058 TCP/IP communication has not been enabled for database server <%>

-21059 Library for single-user mode not self-contained

-21061 The data source name specified in connection string was not found in
system information

-21062 Invalid parameters found in connection string, DSN cannot be combined
with PROTOCOL, NODE, SERVICE, INTERFACE, or DIRECTORY

-21063 PROTOCOL is mandatory when any of NODE, SERVICE,
INTERFACE, or DIRECTORY is specified in connection string

-21064 When PROTOCOL is specified in connection string also a DATABASE
specification is required

-21065 DIRECTORY specification is required in connection string for specified
PROTOCOL: <%>

-21066 NODE (host name) specification in connection string is required for
specified PROTOCOL: <%>

-21067 When DRIVER is specified in connection string also a DATABASE
specification is required

-21071 Remote real time connections not supported

-21072 The started server does not have real time support

-21073 Bad parameter for real time request

Number Explanation

Mimer SQL Version 11.0 389
Programmer’s Manual

-21074 Error when allocating resources for real-time tasks

-21075 Internal error during flush

-21076 Cryptographic protocol failure, session is not safe and is terminated

-21077 Failed to allocate memory for cryptographic operation

-21078 Cryptographic key is exhausted, the session is terminated

-21079 Cryptographic engine is currently unavailable

-21080 A malformed network message was received

-21100 Command timed out

-21101 Error mapping MCS (Mimer Control Storage)

-21102 Error when doing system communication through the MCS

-21103 MCS communication area is busy. Try again later

-21104 Server for database <%> is already started

-21105 Illegal directory specified for the SYSDB file

-21106 Error in parameter file

-21107 Error when starting database server process

-21108 Error when looking up database name

-21109 Error when creating memory pool in database server

-21110 Could not allocate space from SQLPool

-21111 Error when initiating the ENQ/DEQ package

-21112 Error when attaching a thread to the ENQDEQ area

-21113 Error when initiating server I/O package

-21114 Error when setting default directory for database server I/O package

-21115 Could not start database server thread

-21116 Protocol error- received new request before completion of last request

-21117 Could not create proper execution environment

-21118 Database server not operational

-21119 Notification thread failed. Server can no longer respond to mimcontrol.

-21120 Illegal directory path

-21121 Could not create new directory

-21122 Channel closed by administrator

-21123 Invalid channel number specified

Number Explanation

390 Appendix B Return Codes
Native Mimer SQL Return Codes

-21124 Error when initiating request (rq) queue

-21125 Could not lock the bufferpool in memory

-21126 Database server halted. Failed to generate automatic database dumps.

-21127 Database server halted. Dump files from the failed database are placed
under <%>.

-21128 Error when stopping database server process

-21129 Error when deleting memory pool in database server

-21130 Error getting database server parameters

-21131 Must be superuser to perform this function

-21132 The environment variable MIMER_HOME must point to the Mimer
distribution

-21133 An illegal combination of command switches was specified

-21134 The database parameter must be specified

-21135 Permission denied

-21136 Bad network packet length. Channel was dropped.

-21137 Failed to load mimschema_database dynamic library

-21138 Cannot locate the SYSDB databank file

-21180 Error opening SQLHOSTS file

-21181 Error opening SQLHOSTS file - file name syntax error

-21182 Error opening SQLHOSTS file - file not found

-21183 Error opening SQLHOSTS file - file protection violation

-21184 Error opening SQLHOSTS file - file is locked

-21185 Error opening SQLHOSTS file - too many files are opened

-21186 Error opening SQLHOSTS file - file creation error (diskspace exhausted)

-21187 Error opening SQLHOSTS file - machine dependent code -7

-21188 Error opening SQLHOSTS file - machine dependent code -8

-21189 Error opening SQLHOSTS file - other error

-21190 Error opening SQLHOSTS file - illegal access option

-21191 Could not find a local definition for the specified database name

Number Explanation

Mimer SQL Version 11.0 391
Programmer’s Manual

Error codes used by the server when creating database dumps. These codes are never
returned to application programs:

Error codes reflecting problems in the layer that creates and interprets network packets:

Other file management error codes:

JDBC Errors
These errors arise when the Mimer JDBC Driver fails for some reason. The error codes
are in the range -22000 to -22999. When using Java, the error message is always included
in the exception that is thrown.
To get the complete and accurate list of error codes, execute the following command:

$ java com.mimer.jdbc.Driver -errors

Mimload Errors
The following error codes are used by the Mimload application.

Number Explanation

-21200 Error when creating dump file

-21201 Error when writing dump file

Number Explanation

-21300 Too large network buffer requested on client side

Number Explanation

-21400 Illegal file name

-21401 File not found

-21402 File protection violation

-21403 File was locked

-21404 The file could not be opened since a system resource was exhausted

-21405 The disk space is exhausted

-21406 The file is not open

-21407 Read not allowed on file

-21408 Write not allowed on file

-21410 Illegal argument

-21411 Illegal character

-21412 Memory allocation error

-21499 Unspecified error

Number Explanation

392 Appendix B Return Codes
Native Mimer SQL Return Codes

Mimer SQL C API Return Codes
The ‘Definition name’ in the below tables are C defines from the provided mimerrors.h
header file.

Status Codes

-23001 Unexpected DB error

-23003 Load/Unload is not allowed within transaction

-23004 Syntax error

-23005 Out of memory

-23006 Schema not found

-23007 Databank not found

-23008 Table not found

-23009 No results were created for statement

-23010 Statement has no parameters

-23011 Output parameters are not allowed

-23012 Could not open file

-23013 Could not read from file

-23014 Could not write to file

-23015 Could not close file

-23016 Syntax error in data descriptor

-23017 Could not open log file

-23018 Could not write to log file

-23019 Could not close log file

-23020 Too long field encountered

-23021 Statement failed, see next error

-23022 Length indicator for BLOB/CLOB data invalid

-23023 Invalid escape sequence encountered

Number Definition name Explanation

0 MIMER_SUCCESS Success.

100 MIMER_NO_DATA No data.

Mimer SQL Version 11.0 393
Programmer’s Manual

Error Codes
The Mimer API returns error codes in the range -24000 to -24999.

Number Definition name Explanation

-24001 MIMER_OUTOFMEMORY An attempt to allocate
heap memory failed

-24002 MIMER_SQL_NULL_VALUE A data retrieval function
returned the SQL NULL
value

-24003 MIMER_TRUNCATION_ERROR Characters were
truncated when setting
string or binary data

-24004 MIMER_ILLEGAL_CHARACTER An input string
contained illegal
characters

-24005 MIMER_STATEMENT_CANNOT_BE_PREPARED A statement that cannot
be prepared

-24006 MIMER_UNDEFINED_COMMUNICATION Communication feature
was not defined with a
call to
MimerSetComRoutines

-24007 MIMER_COULD_NOT_RELEASE Mimer API was unable
to release a resource

-24010 MIMER_POSITIVE_OVERFLOW Value was too large to
fit in destination

-24011 MIMER_NEGATIVE_OVERFLOW Value was too small to
fit in destination

-24012 MIMER_UNDEFINED_FLOAT_VALUE Floating point value was
either Not-A-Number or
Infinity

-24101 MIMER_SEQUENCE_ERROR An illegal sequence of
API calls was detected

-24102 MIMER_NONEXISTENT_COLUMN_PARAMETER An API call was made
referring to a column or
parameter that does not
exist

-24103 MIMER_UNSET_PARAMETER Incomplete set of input
parameters when
executing a statement or
opening a cursor

394 Appendix B Return Codes
Native Mimer SQL Return Codes

-24104 MIMER_CAST_VIOLATION An attempt was made to
obtain column or
parameter data of the
wrong type

-24105 MIMER_PARAMETER_NOT_OUTPUT An attempt was made to
get the value of an input
parameter

-24106 MIMER_PARAMETER_NOT_INPUT An attempt was made to
set the value of an
output parameter

-24107 MIMER_PARAMETER_INVALID A parameter to an API
call was invalid

-24108 MIMER_HANDLE_INVALID An attempt was made to
call an API routine with
an invalid handle

-24109 MIMER_TIMESTAMP_FORMAT_ERROR A conversion of a
TIMESTAMP from a
character string failed

-24110 MIMER_ALLOCATION_FAILURE_THREAD An attempt was made to
allocate more threads
than allowed

-24111 MIMER_WRONG_SERVER_TYPE An attempt was made to
establish a realtime
connection to a non-
realtime server

-24112 MIMER_NONEXISTENT_RECORD The bind query does not
point to a data element

-24113 MIMER_INCOMPATIBLE_POINTER_
ATTRIBUTES

The pointer type and
policy are incompatible

-24114 MIMER_INVALID_POINTER_TYPE The operation does not
match the database
pointer type

-24115 MIMER_UNSUPPORTED_AUTHENTICATION_
METHOD

Unsupported
authentication method
error

-24116 MIMER_NULL_VIOLATION Cannot assign the null
value to a non-nullable
parameter

-24117 MIMER_UUID_FORMAT_ERROR A conversion of an
UUID from a character
string failed

Number Definition name Explanation

Mimer SQL Version 11.0 395
Programmer’s Manual

Programming Dependent Errors

Databank And Table Errors

-24414 MIMER_MEMORY_MAP_ERROR Cannot map a shared
memory

-24415 MIMER_TLS_ERROR Error using Thread
Local Storage

-24416 MIMER_INVALID_CONTROL_BLOCK Invalid parameter

-24417 MIMER_INTERNAL_CLIENT_ERROR An internal error in the
client has occurred

Number Definition name Explanation

Number Definition name Explanation

-14726 MIMER_RTCS_NOT_FOUND A realtime control
structure (RTCS) could
not be found.

-14732 MIMER_INVALID_TRANSACTION_STATE Bind is attempted within
an active transaction.

Number Definition name Explanation

-11015 MIMER_TASKS_EXHAUSTED The allocated real-time tasks in the
server have been exhausted.

-16241 MIMER_RTCS_EXHAUSTED The allocated real-time control
structures have been exhausted.

-16242 MIMER_TABLE_COMPRESSED An attempt to bind a pointer to a
compressed table was made. Use
"ALTER TABLE nn SET
COMPRESS OFF;" to resolve this.

-16244 MIMER_PAGE_UPDATED The page on which the real-time
data value resides is currently
updated elsewhere.

-16252 MIMER_INVALID_RTTYPE Invalid database pointer type.

-16253 MIMER_INVALID_RTPOLICY Invalid database pointer policy.

-16254 MIMER_TYPE_MISMATCH The type (single/multicol/multirow)
of the database pointer is not
compatible with a previously
created database pointer.

-16255 MIMER_RESULT_SET_MISMATCH The result set (data records)
partially overlaps a previously
bound multirow database pointer.

396 Appendix B Return Codes
Native Mimer SQL Return Codes

Miscellaneous Errors

-16256 MIMER_COLUMN_SET_MISMATCH The column set does not match a
previously bound multirow
database pointer.

-16258 MIMER_COULD_NOT_LOCK_PAGE Could not lock real-time pages in
memory. The number of bufferpool
pages in the region need to be
increased.

-16259 MIMER_RTCS_INVALID An attempt was made to delete a
non-existing database pointer.

-16242 MIMER_TABLE_VARFORMAT An attempt to bind a pointer to a
variable format table was made.

Number Definition name Explanation

Number Definition name Explanation

-18246 MIMER_NOT_SINGLE_STATEMENT The bind query contains
multiple statements.

-18247 MIMER_NOT_SINGLE_COLUMN The bind query points to
several columns.

-18248 MIMER_NOT_SINGLE_ROW The bind query points to
several rows.

-18250 MIMER_INPUT_PARAMETER_FOUND The bind query contains
input parameters.

-18251 MIMER_SCROLL_USED The bind query includes
a scroll cursor.

-18252 MIMER_NOT_SELECT The bind query is not a
select statement.

-18253 MIMER_TIP_MISMATCH Table Information
Package mismatch.

-18254 MIMER_COLUMN_IS_PART_OF_KEY An attempt to bind a
pointer to a primary key
was made.

-18255 MIMER_COLUMN_IS_PART_OF_INDEX An attempt to bind a
pointer to an indexed
data element was made.

-18257 MIMER_NOT_SINGLE_TDA The bind query contains
a join or subquery.

-18258 MIMER_VOLATILE_DATA An update elsewhere is
not yet written to stable
storage.

Mimer SQL Version 11.0 397
Programmer’s Manual

Internal Errors

MimerPy Errors
The following error codes are used by the Mimer Python interface.

-18259 MIMER_NO_FLUSH_PRIVILEGE The user does not have
enough privilege to
perform flush.

-18261 MIMER_NO_CRITICAL_SECTION_OBJECTS The are no critical
section objects available.

Number Definition name Explanation

Number Definition name Explanation

-19086 MIMER_INVALID_STATEMENT_STATUS A statement is performed
in a wrong order, or using
a handle from a different
thread or process.

-21074 MIMER_ERROR_ALLOCATING_TASK Error when allocating
resources for real-time
tasks.

-21075 MIMER_INTERNAL_FLUSH_ERROR Internal error during
flush.

Number Explanation

-25000 Unsupported method

-25001 TPC is unsupported

-25010 Connection not open

-25011 Invalid number of parameters

-25012 Invalid number of parameters, key: <%> does not exist in dictionary

-25013 Invalid parameter format

-25014 Previous execute did not produce a result set

-25015 Cursor not open

-25016 Illegal scroll mode

-25020 Data conversion error

-25030 Out of memory

-25031 Login failure

-25101 The operation requires Mimer API version 11.0.5A or newer. You have
<%>.

398 Appendix B Return Codes
Native Mimer SQL Return Codes

-25102 The operation requires Mimer API version 11.0.5B or newer. You have
<%>.

Mimer SQL Version 11.0 399
Programmer’s Manual

Appendix C

Deprecated
Features

Some non-standard features in earlier versions of Mimer SQL are deprecated, but retained
for backward compatibility.
Where these features have equivalents in the standard implementation, only the standard
form is documented in the main body of this manual.
Use of the standard forms is strongly recommended.

INCLUDE SQLCA
The SQLCA communication area is no longer supported.
Applications should now use the SQLSTATE or SQLCODE variables and the GET
DIAGNOSTICS statement to get all the information previously obtained from SQLCA.
See Communicating with the Application Program on page 46 for a description of
SQLSTATE and GET DIAGNOSTICS.

SQLDA
The SQLDA area, which was used in earlier versions of Mimer SQL, has now been
replaced by a standardized SQL descriptor area. The SQLDA area was allocated and
maintained by constructions in the host language. The SQL descriptor area is allocated
and maintained by standardized ESQL statements.
Applications using SQLDA have to be modified to use SQL Descriptors instead.

400 Appendix C Deprecated Features
VARCHAR(size) C language struct

VARCHAR(size) C language struct
In earlier versions of Mimer SQL a VARCHAR structure was documented, which was used
in the C language for handling variable-length character strings.
This VARCHAR structure was defined as:

#define VARCHAR(x)
 struct {
 short len;
 char text[x];
 }

where the character string is stored in text, and the length of the text is stored in len.

SET TRANSACTION
Following the introduction of the SET TRANSACTION READ and SET TRANSACTION
ISOLATION LEVEL options, the SET TRANSACTION CHANGES options no longer apply.
The following options are supported for backward compatibility in version 11.0.x only:

DBERM4
The DBERM4 routine, which could be used to retrieve the internal Mimer SQL return code
and error message text for an exception, is now deprecated.
The GET DIAGNOSTICS statement should now be used to retrieve these exception
information items, see Run-time Errors on page 70.

Mimer SQL Version 11.0 401
Programmer’s Manual

Index
A
access

privileges 219
DELETE 219
INSERT 219
REFERENCES 219
SELECT 219
UPDATE 219

access rights
for cursors 53

accessing data 50
active connection 43
ADO.NET 2
AFTER 281
APIs

embedded SQL 7, 31, 33, 75, 97, 117
Application Server 235
arrays 46
AS_DECIMAL 292, 294
AS_DOUBLE 292, 294
AS_TEXT 292, 294, 297
ASCII, escaped function 27

B
BACKUP

privilege 218
BEFORE 281
BEGIN DECLARE SECTION 46
Block Fetching 54
builtin.gis_coordinate 301
builtin.gis_latitude 291
builtin.gis_location 297
builtin.gis_longitude 294

C
C (programming language)

preprocessor output 313
C/C++ 2

comments 308
data types 311

value assignments 312

host variables 309
declaring 309

line continuation 308
null terminated strings 309
quotation marks 308
special characters 308
statement delimiters 308
statement format 308
white-space 308

CALL statement 259
calling procedures 259
CHAR(), escaped function 27
COBOL 2

comments 315
data types 316
host variables 315
line continuation 314
preprocessor output 317
statement delimiters 314

COM+ 237
comments 35

in COBOL 315
in FORTRAN 318
in routines 260

COMMIT 226
compiler 38
connection name 42
connections

cursors 54
coordinate 301
CURDATE(), escaped function 28
current locale 48
current row 58
CURRENT_TIME(), escaped function 28
CURRENT_TIMESTAMP(), escaped
function 28
cursor-independent data manipulation 58
cursors 50, 58

access rights 53
and program idents 44
closing 54
declaring 51
evaluating SELECT statement 53

402 Index

extended dynamic 64
for join conditions 55
for UPDATE and DELETE 58
in dynamic SQL 68
in multiple connections 54
opening 53
position in result set 53, 58
positioning 53
resource allocation 54
stacking 56
transactions 232
updatable 59
updating and deleting with 58

CURTIME(), escaped function 28

D
data

errors 335
data types

C/C++ 311
in COBOL 316
in FORTRAN 320

DATABANK
privilege 218

databank
access errors 369

database
privileges 218

DATABASE(), escaped function 28
DAYNAME(), escaped function 28
deadlock 223
debugging 275
declaration of SQLSTATE 49
DECLARE SECTION 46
declaring

condition names 268
cursors 51
host variables 51
routine variables 250

DELETE 58
privileges 219

deprecated features 399
SET TRANSACTION CHANGES 400
SQLDA 399
VARCHAR(size) 400

DESCRIBE INPUT 66
diagnostics area 50
DIFFERENCE(), escaped function 28
disconnecting 43
distinct type 287
dormant cursors 54
DTC 235
dynamic SQL 64

cursors 68
descriptor area 63
example framework 68

executing statements 67
input variables 66
object form of statements 64
output variables 66
parameter markers 62
preparing statements 64
source form of statements 64
SQL statements 61
statement source form 64
statements 62, 65

ALLOCATE CURSOR 62
ALLOCATE DESCRIPTOR 62
CLOSE 62
DEALLOCATE DESCRIPTOR 62
DEALLOCATE PREPARE 62
DESCRIBE 62
EXECUTE 62
EXECUTE IMMEDIATE 62
FETCH 62
GET DESCRIPTOR 62
OPEN 62
PREPARE 62
SET DESCRIPTOR 62
submitting 62

E
Embedded SQL

ESQL 2
host languages 34
program structure 39
scope 33
statements 34

END DECLARE SECTION 46
ENTER 44
error codes 323, 329
error handling 69

in transactions 233
escape clause 27
ESQL 7, 31, 33, 75, 97, 117
exception conditions 69
exception handlers 271

continue 271
exit 271
undo 271

EXEC SQL 34
EXECUTE

on routine 274
privileges 218

F
FETCH 53, 67
FOR loop 257
FORTRAN 2

comments 318
host variables 319

Mimer SQL Version 11.0 403
Programmer’s Manual

line continuation 318
preprocessor output 320
statement delimiters 318
statement margins 318
statement numbers 318

functions 240
invoking 260
SQL statements 241

G
general exception handlers 269
GET DIAGNOSTICS 50

ROW_COUNT 262
GRANT OPTION 219
GROUP ident 218

H
holdable 58
holdable cursor 52, 58
host language

included code 35
host languages 291, 305, 307

C/C++ 291, 305, 307
COBOL 291, 305, 307
FORTRAN 291, 305, 307

host variables 46, 309
arrays 46
declaration 51
declarations 39
declaring 46
in COBOL 315
in cursor declarations 52
in FORTRAN 319
in SQL statements 46
names 35

I
IDENT

privilege 218
idents 217

GROUP 218
PROGRAM 217
USER 217

IEEE 312
implicit connection 42
included code

host language 35
indicator variables 47
INSERT 58

privileges 219
INSERT(), escaped function 28
INSIDE_RECTANGLE 298, 301
instance method 288
INSTEAD OF 281

INTERFACE 16
invoking functions 260
ITERATE 257, 259
iteration 257

LOOP statement 257
REPEAT statement 258
skip 259
WHILE statement 258

J
JDBC 2

driver 31
join retrievals

using cursors 55

L
latitude 291
LCASE(), escaped function 28
LEAVE 44
LEAVE RETAIN 44
LENGTH(), escaped function 28
limits 339
line continuation

in COBOL 314
in FORTRAN 318

locale 8, 48
LOG 224
LOG(), escaped function 28
longitude 294
LOOP 257
LOOP statement 257
LTRIM(), escaped function 28

M
MEMBER

privileges 218
Micro API 97
Micro C API 3
Mimer API 97
Mimer SQL 1

publications 3
Mimer SQL C API 2, 97
Mimer SQL Micro C API 97
MIMER_LOCALE 9, 49
mimer_rowid 284
MimerAddBatch 121
MimerBeginSession 122
MimerBeginSession8 123
MimerBeginSessionC 124
MimerBeginStatement 125
MimerBeginStatement8 127
MimerBeginStatementC 129
MimerBeginTransaction 131
MimerCloseCursor 132

404 Index

MimerColumnCount 133
MimerColumnName 134
MimerColumnName8 135
MimerColumnNameC 136
MimerColumnType 137
MimerCurrentRow 138
MimerEndSession 139
MimerEndStatement 140
MimerEndTransaction 141
MimerExecute 142
MimerExecuteStatement 143
MimerExecuteStatement8 144
MimerExecuteStatementC 145
MimerFetch 146
MimerFetchScroll 147
MimerFetchSkip 149
MimerGetBinary 150
MimerGetBlobData 152
MimerGetBoolean 153
MimerGetDouble 154
MimerGetFloat 155
MimerGetInt32 156
MimerGetInt64 157
MimerGetLob 158
MimerGetNclobData 160
MimerGetNclobData8 162
MimerGetNclobDataC 164
MimerGetStatistics 166
MimerGetString 168
MimerGetString8 170
MimerGetStringC 172
MimerGetUUID 174
MimerIsBinary 107
MimerIsBlob 107
MimerIsBoolean 107
MimerIsClob 107
MimerIsDouble 107
MimerIsFloat 107
MimerIsInt32 107
MimerIsInt64 107
MimerIsNull 175
MimerIsString 107
MimerNext 176
MimerOpenCursor 177
MimerParameterCount 178
MimerParameterMode 179
MimerParameterName8 181
MimerParameterNameC 182
MimerParameterType 183
MimerRowSize 184
MimerSetArraySize 185
MimerSetBinary 186
MimerSetBlobData 188
MimerSetDouble 190
MimerSetFloat 192
MimerSetInt32 194
MimerSetInt64 196

MimerSetLob 197
MimerSetNclobData 199
MimerSetNclobData8 200
MimerSetNclobDataC 201
MimerSetNull 202
MimerSetString 203
MimerSetString8 205
MimerSetStringC 207
MimerSetStringLen 209
MimerSetStringLen8 211
MimerSetStringLenC 213
MimerSetUUID 215
minus sign

in COBOL variable names 315
Module SQL 2, 75
modules 253
MONTHNAME(), escaped function 29
MSDTC 237
MSQL 2, 75
MTS 235
multiple connections 43

N
native escape clause 27
NEW 289
new table 279
NODE 16
NOW(), escaped function 29
NULL 47

O
object

privileges 218
EXECUTE 218
MEMBER 218
TABLE 218
USAGE 218

OCC 221
ODBC 2

connecting 13
declarations 12
disconnecting 18
driver 7
error handling 18
executing 22
file data source 15
initializing 13
interaction 15
operating systems 12
prepared execution 22
stored procedure 23
transaction processing 19

ODBC escape clause 27
old table 279
OPEN 67

Mimer SQL Version 11.0 405
Programmer’s Manual

optimistic concurrency control 221

P
parameter markers 62

in SELECT statements 68
parameter overloading 239, 245
Parts explosion 56
persistent stored modules - See stored
procedures
PI(), escaped function 29
platforms 1
preprocessing 35

WHENEVER statements 71
preprocessor output

in C 313
in COBOL 317
in FORTRAN 320

privileges
access 219
ALTER 219
COMMENT 219
DROP 219
GRANT OPTION 219
system 218

BACKUP 218
DATABANK 218
IDENT 218
SCHEMA 218
SHADOW 218

procedures 242
invoking 259
returning result sets 264
SQL statements 242

program construction errors 364
PROGRAM ident 217
PROGRAM idents 44
program structure 39
PROTOCOL 16
PSM - See stored procedures
PSM Debugger 275

choosing a routine 277
executing a routine 277
input parameters 277
logging in 276
requirements 275
setting breakpoints 277
starting 276
viewing source code 277
watching variables and input 277

R
RDBMS 1
READ ONLY 224
read-only cursors 52, 59
REFERENCES

privileges 219
REPEAT 258
REPEAT statement 258
RESIGNAL statement 268
resignaling exceptions in routines 268
result set procedure CALL 50
result set procedures 264
retrieving

multiple tables 55
single rows 55

retrieving data 53
RETURN statement 265
ROLLBACK 226
routines 239

access clause 247
access rights 274
ATOMIC compound SQL Statement

249
comments in 260
compound SQL statement 248
declaring

exception handlers 269
variables 250

deterministic clause 247
IF statement 254
invoking 260
LEAVE statement 248
managing exception conditions 267
parameters 245
restrictions 260
scope in 248
SQL constructs

IF 254
SET 254

SQL constructs in 254
using drop and revoke 275
write operations 261

row trigger 279
ROW_COUNT 262
run-time errors 70

S
SCHEMA

privilege 218
SCROLL 52
scrollable cursor 52
SELECT

privileges 219
SELECT INTO 55
SELECT statement 50
semantic errors 70
SERVICE 16
SET statement 254
SET TRANSACTION 225

ISOLATION LEVEL
options 227

406 Index

READ ONLY 227
READ WRITE 227

SHADOW
privilege 218

SIGNAL statement 267
signaling exceptions in routines 267
singleton 55
SINGLETON SELECT 62
SPACE(), escaped function 29
specific exception handlers 270
specific name 240
SQL

compiler 38
constructs in routines 254
descriptor area 50
dynamic 64
statement identifier 34
statements 33

errors 340
using host variables 46

SQL descriptor area 63
COUNT field 63
structure 63

SQL_DESC_DISPLAY_SIZE_64 10
SQL_DESC_LENGTH_64 10
SQL_DESC_OCTET_LENGTH_64 10
SQL_DESC_OCTET_LENGTH_PTR_64
11
sql.h 8
sqlcode

list of sqlcode values 329
SQLDriverConnect 16
sqlext.h 8
SQLSTATE 49, 70, 323

class 49
fields 49
list of SQLSTATE return codes 323
subclass 49

sqltypes.h 8
sqlucode.h 8
stacking cursors 56
statement

delimiters
in COBOL 314
in FORTRAN 318

margins
in FORTRAN 318

numbers
in FORTRAN 318

statement trigger 279
statements

preparing 64
static method 288
STATISTICS

privilege 218
stored procedures 239

access rights and routines 274

CASE statement 255
comments 260
declaring condition names 268
functions 240
invoking procedures and functions 259
ITERATE 257
modules 253
ODBC 23
procedures 242
result set procedures 264
routines 239
using cursors 262

restrictions 263
subprogram names 35
subroutine names 35
syntax errors 69, 88
system

privileges 218
system failure 225

T
TABLE

privileges 218
table access errors 369
tables

entering data 58
TIMESTAMPADD(), escaped function 29
TIMESTAMPDIFF(), escaped function 29
TOP_LEVEL_COUNT 64
TRANSACTION 224
transactions 221

COMMIT 226
consistency 227
control statements 225
cursors 232
designing 222

loops 222
diagnostics size 228
disk crash 225
ending 226
error handling 233
interrupted 225
ISOLATION LEVEL 227
locking 223
logging 224

LOG 224
NULL 224
TRANS 224

ODBC 19
optimistic concurrency control 221
optimizing 227
READ ONLY 227
READ WRITE 227
ROLLBACK 226
starting 225

explicit 226

Mimer SQL Version 11.0 407
Programmer’s Manual

implicit 226
tree structure

traversing 56
triggers 279, 287

action 284
comments 286
creating 280
dropping 286
event 284
recursion 285
revoking 286
time 281

AFTER 281
altered rows 285

BEFORE 281
INSTEAD OF 281

type precedence 246
types 320

U
UCASE(), escaped function 29
UPDATE 58

privileges 219
UPDATE CURRENT 58
USAGE

privileges 218
USER ident 217
USER(), escaped function 29
user-defined type 287
uuid 305

V
variables

declaring 250
host 39

W
warnings 330
WHENEVER 70

in transactions 233
WHILE 258
WHILE statement 258
white-space 314, 318
WORK 224

X
XA 235

408 Index

Mimer SQL

User’s Manual

Version 11.0

Mimer SQL, User’s Manual, Version 11.0, December 2024
© Copyright Mimer Information Technology AB.

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.

Mimer SQL Web Sites:
https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Mimer SQL Version 11.0 i
User’s Manual

Contents
Chapter 1 Introduction ... 1

About this Manual ..1
Prerequisites.. 2
Related Mimer SQL Publications.. 2
Suggestions for Further Reading.. 2
Acronyms, Terms and Trademarks .. 3

Chapter 2 Basic Concepts of Mimer SQL... 5
Tables..5

Base Tables and Views.. 6
Primary Keys and Indexes ..8

WORD_SEARCH Index Algorithm ... 9
Data Integrity ..9

Domains ... 9
Unique Constraints and Primary Keys ... 10
Foreign Keys – Referential Integrity ... 10
Check Conditions.. 11
Check Options in View Definitions.. 11

Sequences ..12
Synonyms...13
Databanks...13

System Databanks.. 13
User Databanks .. 13

Shadows ...14
Mimer SQL Character Sets..14
Collations and Linguistic Sorting...14
Stored Procedures...15

Routines – Functions and Procedures... 15
Modules.. 15
Triggers .. 16

Idents ..16
USER Idents.. 16
PROGRAM Idents... 16

ii Contents

GROUP Idents.. 17
Schemas..17
Access Rights and Privileges ...17

System Privileges... 18
Object Privileges .. 18
Access Privileges ... 18
About Privileges.. 18

The Data Dictionary..19
Mimer SQL Statements ..19

Data Definition Statements ... 19
Access Control Statements... 20
Data Manipulation Statements ... 20
Connection Statements ... 20
Transaction Control Statements... 20
Database Administration Statements .. 21

Chapter 3 Retrieving Data.. 23
Simple Retrieval ...23

Examples of Simple Retrieval... 23
Result Order..24

Quick Select.. 25
Table Names ...25
Setting Column Labels ..25
Eliminating Duplicate Values ..26
Selecting Specific Rows ..27

Comparison Conditions and WHERE.. 27
Pattern Conditions.. 29
More about Searching for Character Strings .. 30
Set Conditions .. 31

Retrieving Computed Values ..34
Evaluating Boolean Expressions.. 34
Labels and Computed Values .. 35
Constant Values ... 35
Padding Concatenated Strings... 36

Using Scalar Functions ...37
Examples of Scalar Functions .. 37

Using the CASE Expression..39
Case Expression Examples.. 40

Using the CAST Specification...41
Datetime Arithmetic and Functions..42

About Intervals.. 43
Extracting Values ... 44
DAYOFWEEK... 44

Mimer SQL Version 11.0 iii
User’s Manual

Using Set Functions ..45
About Set Functions ... 45
Example of Set Functions.. 46
More Set Functions Examples .. 46

Grouped Set Functions – the GROUP BY Clause...47
Restrictions When Using GROUP BY.. 47
Null Values... 48

Selecting Groups – the HAVING Clause ..48
Ordering the Result Table ...49

Ordering by More than One Column .. 50
Ordering by Set Function... 50
Ordering by a Computed Value .. 51

Retrieving Data From More Than One Table ...51
The Join Condition.. 51
Simple Joins .. 52
Outer Joins... 54
Nested Selects .. 56
Correlation Names.. 58
Retrieving Data Using EXISTS and NOT EXISTS ... 60
Retrieval with ALL, ANY, SOME... 62
Union, Except and Intersect Queries.. 63

Handling Null Values ...67
Searching for null .. 67
Null values in ALL, ANY, IN and EXISTS Queries ... 69

Conceptual Description of the Selection Process ..70
Query Used.. 70
Selection Process ... 71

Chapter 4 Collations... 75
Character Sets and Collations..75
Using Collations...76

Character Strings .. 76
CREATE/ALTER TABLE ... 76
CREATE DOMAIN and CREATE TYPE.. 76
CREATE INDEX.. 77
Collation Precedence ... 77
Altering Collations on Columns... 77
Dropping a Collation ... 77
Finding Out the Default Collation For a Column... 78

Using Collations – Examples ..78
Comparison Operators... 78
ORDER BY .. 79
GROUP BY.. 80
Scalar String Functions.. 80
Concatenation Operator... 81
IN and BETWEEN... 81
UNION, EXCEPT and INTERSECT... 82

iv Contents

DISTINCT.. 83

Chapter 5 Working With Data .. 85
Access Privileges ... 85

Inserting Data ...85
Inserting Explicit Values .. 86
Inserting Results of Expressions.. 87
Inserting with a Subquery.. 87
Inserting Sequence Values... 88
Inserting Null Values.. 88

Updating Tables ...88
Deleting Rows from Tables ...89
Calling Procedures...89

Examples of Calling Procedures .. 89
Updatable Views...90

Chapter 6 Managing Transactions.. 91
Transaction Principles...91

Transaction Phases ... 91
Logging Transactions..92

Logging Options ... 92
Handling Transactions...93

SQL Statement Restrictions in Transactions.. 93
Optimizing Transactions.. 94
Consistency Within a Transaction.. 94
Default Transaction Options ... 94

Chapter 7 Creating a Database ... 95
Creating Idents and Schemas ...95

Ident Names.. 96
Passwords... 96
Schemas.. 96
Creating Idents and Schemas, Examples... 96

Creating Databanks..97
Create Databank Statement ... 97

Creating Tables ..98
Create Table Statement .. 98
Column Definitions... 100
The Primary Key Constraint.. 100
Unique Constraints... 100
Foreign Keys – Referential Constraints .. 100
Check Constraints.. 102

Creating Sequences...103
Examples of Sequences.. 103

Mimer SQL Version 11.0 v
User’s Manual

Creating Domains ..103
Create Domain Statement ... 104
Domains with a Default Value ... 104
Domains with a Check Clause .. 104

Creating Functions, Procedures, Triggers and Modules105
Creating Views ...107

Creating a View... 107
Check Option... 107

Creating Secondary Indexes...108
Examples of Secondary Index .. 109
Sorting Indexes ... 109

Creating Synonyms ...109
Synonym Examples.. 110

Commenting Objects ...110
Comment Example ... 110

Altering Databanks, Tables and Idents ..111
Altering a Databank .. 111
Altering Tables .. 111
Altering Idents.. 113
Objects Which May Not Be Altered .. 113

Dropping Objects from the Database...113
Dropping Databanks and Tables .. 114
Dropping Sequences.. 114
Dropping Domains .. 114
Dropping Idents... 115
Dropping Functions, Modules, Procedures and Triggers .. 115

Chapter 8 Defining Privileges.. 117
Granting and Revoking Privileges .. 117

Ident Structure ...118
SYSADM Privileges.. 118
About System Utilities .. 118
Recommendations for Ident Structure ... 118

Granting Privileges ..119
Granting System Privileges ... 119
Examples ... 119
Granting Object Privileges... 120
Granting Access Privileges.. 120

Revoking Privileges...121
Revoking System Privileges.. 122
Revoking Object Privileges.. 122
Revoking Access Privileges .. 122
Recursive Effects of Revoking Privileges .. 123

Chapter 9 Mimer BSQL... 125
Other SQL Tools ... 125

vi Contents

Running BSQL..125
Running BSQL From a Script ... 126
Running BSQL.. 127

BSQL Commands...130
CLOSE... 132
DESCRIBE.. 133
EXIT ... 142
GET DIAGNOSTICS.. 142
LIST.. 143
LOG.. 146
READ INPUT .. 147
READLOG... 147
SET ECHO.. 151
SET EXECUTE... 152
SET EXPLAIN... 152
SET HEADER... 153
SET LINECOUNT... 154
SET LINESPACE ... 154
SET LINEWIDTH.. 155
SET LOG... 155
SET MAX_BINARY_LENGTH.. 155
SET MAX_CHARACTER_LENGTH.. 156
SET MESSAGE.. 156
SET OUTPUT... 156
SET PAGELENGTH .. 157
SET PAGEWIDTH ... 157
SET SILENCE .. 157
SET STATISTICS .. 158
SHOW SETTINGS... 158
TRANSACTIONS ... 159
WHENEVER ... 160

Variables in BSQL ..160
Writing Host Variables in SQL.. 161
Scope of Host Variables.. 161
Using Host Variables ... 161

BSQL and Multiple Connections...162
Changing Connections .. 162
Disconnecting ... 162

Transaction Handling in Mimer BSQL..163
LOBs in BSQL...164
Errors in BSQL ...164

Semantic Errors.. 164
Syntax Errors .. 165

Error Messages ..166

Appendix A Mimer SQL Explain.. 169
Join... 171
Temporary Tables .. 174
Subqueries .. 175

Mimer SQL Version 11.0 vii
User’s Manual

Union .. 178

Appendix B The Example Environment.. 179
The EXLOAD program ...180

Syntax... 180
Command-line Arguments ... 181
Exit Codes.. 182

The MIMER_STORE Schema...182
Databanks.. 182
Domains ... 182
Sequences... 182
Tables... 182
PSM Routines.. 186

Procedures ...188
Views...188
Triggers...189
Idents ..189
The MIMER_STORE_MUSIC Schema...190

Tables... 190
Views .. 190
PSM Routines.. 191
Triggers .. 192
Idents.. 192

The MIMER_STORE_BOOK Schema..192
Tables... 192
PSM Routines.. 193
Views .. 194
Triggers .. 194
Idents.. 194

The MIMER_STORE Schema Revisited..194
PSM Routines.. 194

The MIMER_STORE_WEB Schema ..195
Tables... 195
PSM Routines.. 195
Triggers .. 196
Idents.. 196

Synonyms...196

Appendix C Deprecated Features ... 197
BSQL Commands...197

LOAD.. 197
UNLOAD .. 197

 Index ... 199

viii Contents

Mimer SQL Version 11.0 1
User’s Manual

Chapter 1

Introduction
Mimer SQL is an advanced database management system developed by Mimer
Information Technology AB.
Mimer SQL offers a uniquely scalable and portable solution, including multi-core
support. The product is available on a wide range of platforms from small embedded and
handheld devices running for example Android or Linux, to workgroup and enterprise
servers running Linux, Windows, macOS and OpenVMS. This makes Mimer SQL
ideally suited for open environments where interoperability, portability and small
footprint are important.
The database management language Mimer SQL (Structured Query Language) is
compatible in all essential features with the current SQL standard, see the Mimer SQL
Reference Manual, Chapter 3, Introduction to SQL Standards, for details.

About this Manual
This manual is intended primarily for users who have little or no experience of SQL
(database query language). It provides an introduction to the concepts and usage of Mimer
SQL, including how to create and how to manipulate the contents of a database.
Most examples in this manual are based on the example database, MIMER_STORE, that
is described in Appendix B The Example Environment.
To access the example database, you can use:
• DbVisualizer, available in the Mimer SQL program group.
• Mimer BSQL, available in the Mimer SQL program group.
• Any ODBC-based SQL tool.
• Any JDBC-based SQL tool.
Mimer BSQL is a command line oriented tool for executing SQL statements, wither
interactively or in scripts. This manual includes a detailed description of the facilities
provided in Mimer BSQL.
Refer to the Mimer SQL Reference Manual, Chapter 12, SQL Statements for a complete
syntax description of the SQL statements supported in Mimer SQL.
The use of Mimer SQL together with application programming interfaces such as
ADO.NET, JDBC, ODBC and embedded SQL (ESQL), is described in Mimer SQL
Programmer’s Manual.

2 Chapter 1 Introduction
About this Manual

Prerequisites
There are no prerequisites for users of this manual. However, it is to the user's advantage
to be familiar with the principles of the relational database model when working with
SQL.

Related Mimer SQL Publications
• Mimer SQL Reference Manual

Contains a complete description of the syntax and usage of all statements in
Mimer SQL and is a necessary complement to this manual.

• Mimer SQL Programmer's Manual
Contains a description of how Mimer SQL can be used within the context of
application programs, written in conventional programming languages.

• Mimer SQL System Management Handbook
Describes system administration functions, including export/import,
backup/restore, databank shadowing and the statistics functionality. The
information in this manual is used primarily by the system administrator, and is not
required by application program developers. The SQL statements which are part of
the System Management API are described in the Mimer SQL Reference Manual.

• Mimer SQL platform-specific documents
Contain platform-specific information. A set of one or more documents is provided,
where required, for each platform on which Mimer SQL is supplied.

• Mimer SQL Release Notes
Contain general and platform-specific information relating to the Mimer SQL
release for which they are supplied.

Suggestions for Further Reading
We can recommend the many works of C. J. Date. His insight into the potential and
limitations of SQL, coupled with his pedagogical talents, makes his books invaluable
sources of study material in the field of SQL theory and usage.
In particular, we can mention: A Guide to the SQL Standard (Fourth Edition, 1997).
ISBN: 0-201-96426-0. This work contains much constructive criticism and discussion of
the SQL standard, including SQL99.
Technical discussions on a wide range of SQL issues can be found in SQL for Smarties
(Expanded 2nd edition, 1999, ISBN: 1558605762), by Joe Celko.

SQL Standards
Official documentation of the accepted SQL standards may be found in:
ISO/IEC 9075:2016(E) Information technology - Database languages - SQL. This
document contains the standard referred to as SQL-2016.

Mimer SQL Version 11.0 3
User’s Manual

Acronyms, Terms and Trademarks

All other trademarks are the property of their respective holders.

IEC International Electrotechnical Commission

ISO International Standards Organization

SQL Structured Query Language

PSM Persistent Stored Modules (i.e. Stored Procedures)

4 Chapter 1 Introduction
About this Manual

Mimer SQL Version 11.0 5
User’s Manual

Chapter 2

Basic Concepts of
Mimer SQL

This chapter provides a general introduction to the basic concepts of Mimer SQL
databases and Mimer SQL objects.
Mimer SQL is a relational database system. This means that the information in the
database is presented to the user in the form of tables. The tables represent a logical
description of the contents of the database which is independent of, and insulates the user
from, the physical storage format of the data.
The Mimer SQL database includes the data dictionary which is a set of tables describing
the organization of the database and is used primarily by the database management
system itself.
The database, although located on a single physical platform, may be accessed from many
distinct platforms, even at remote geographical locations, linked over a network through
client/server support.
Commands are available for managing the connections to different databases, so the
actual database being accessed may change during the course of an SQL session.
At any one time, however, the database may be regarded as one single organized
collection of information.

Tables
Data in a relational database is logically organized in tables, which consist of horizontal
rows and vertical columns.
Columns are identified by a column-name. Each row in a table contains data pertaining
to a specific entry in the database. Each field, defined by the intersection of a row and a
column, contains a single item of data.

6 Chapter 2 Basic Concepts of Mimer SQL
Tables

For example, a table containing information about currencies may have columns for the
currency code, name and exchange rate:

CREATE TABLE currencies (
 code CHARACTER(3) PRIMARY KEY,
 currency CHARACTER(32) NOT NULL,
 exchange_rate DECIMAL(12, 4));

CURRENCIES

Each row in a table must have the same set of data items (one for each column in the
table), but not all the items need to be filled in.
A column can have a default value defined (either as part of the column specification
itself or by using a domain with a default value) and this is stored if an explicit value has
not been specified.
If no default value has been defined for a column, the null value is stored when no data
value is supplied (the way the null value is displayed depends on the application – in
Mimer BSQL the minus sign is used).
A relational database is built up of several inter-dependent tables which can be joined
together. Tables are joined by using related values that appear in one or more columns in
each of the tables. Part of the flexibility of a relational database structure is the ability to
add more tables to an existing database. A new table can relate to an existing database
structure by having columns with data that relates to the data in columns of the existing
tables. No alterations to the existing data structure are required.
All the fields in any one column contain the same data type with the same maximum
length. See the Mimer SQL Reference Manual, Chapter 6, Data Types in SQL Statements,
for a detailed description of data types supported by Mimer SQL.

Base Tables and Views
The logical representation of data in a Mimer SQL database is stored in tables (this is what
the user sees, as distinct from the physical storage format which is transparent to the user).
The tables which store the data are referred to as base tables. Users can directly examine
data in the base tables.
In addition, data may be presented using views, which are created from specific parts of
one or more base tables or views. To the user, views may look the same as tables, but
operations on views are actually performed on the underlying base tables.
Access privileges on views and their underlying base tables are completely independent
of each other, so views provide a mechanism for setting up specific access to tables.

CODE CURRENCY EXCHANGE_RATE

AED UAE Dirhams 3.1030

AFA Afghanis 4092.0000

ALL Leke 122.3000

AMD Armenian Drams -

ANG Netherlands Antillian Guilders 1.4890

AOA Kwanza -

… … …

Mimer SQL Version 11.0 7
User’s Manual

The essential difference between a table and a view is underlined by the action of the
DROP command, which removes objects from the database. If a table is dropped, all data
in the table is lost from the database and can only be recovered by redefining the table and
re-entering the data. If a view is dropped, however, the table or tables on which the view
is defined remain in the database, and no data is lost.
Data may, however, become inaccessible to a user who was allowed to access the view
but who is not permitted to access the underlying base table(s).
Note: Since views are logical representations of tables, all operations requested on a

view are actually performed on the underlying base table, so care must be
taken when granting access privileges on views.
Such privileges may include the right to insert, update and delete information.
As an example, deleting a row from a view will remove the entire row from the
underlying base table and this may include table columns the user of the view
had no privilege to access.

Restriction Views
Views may be created to simplify presentation of data to the user by including only some
of the base table columns in the view or only by including selected rows from the base
table. Views of this kind are called restriction views.
For example, a view may be created on the COUNTRIES table to include only the
COUNTRY and CURRENCY_CODE columns:

CREATE TABLE countries (
 code CHARACTER(2) PRIMARY KEY,
 country VARCHAR(48) NOT NULL,
 currency_code CHARACTER(3) NOT NULL);

CREATE VIEW countries_view
 AS SELECT country, currency_code
 FROM countries;

COUNTRIES_VIEW

Similarly, a view may be created to include only the rows in COUNTRIES where US
dollars are used (CURRENCY_CODE = 'USD'):

CREATE VIEW usd_countries_view
 AS SELECT country
 FROM countries
 WHERE currency_code = 'USD';

COUNTRY CURRENCY_CODE

Andorra EUR

United Arab Emirates AED

Afghanistan AFA

Antigua and Barbuda XCD

Anguilla XCD

Albania ALL

Armenia AMD

… …

8 Chapter 2 Basic Concepts of Mimer SQL
Primary Keys and Indexes

Join Views
Views may also be created to combine information from several tables – join views.
Join views can be used to present data in more natural or useful combinations than the
base tables themselves provide (the optimal design of the base tables will have been
governed by rules of relational database modeling).
Join views may also contain restriction conditions.
For example, the join view below presents the countries that use some kind of dollars. The
CURRENCY_CODE in COUNTRIES_VIEW is linked with the CODE column in the
CURRENCIES table, and a restriction of CURRENCY includes 'dollar' is applied:

CREATE VIEW dollar_countries
 AS SELECT country, currency
 FROM countries_view JOIN currencies
 ON countries_view.currency_code = currencies.code
 WHERE lower(currency) like '%dollar%';

dollar_countries

Primary Keys and Indexes
Rows in a base table are uniquely identified by the value of the primary key defined for
the table. The primary key for a table is composed of the values of one or more columns.
Primary keys are automatically indexed to facilitate effective information retrieval. The
primary key index is the most effective access path for the table.
Table columns that are in the primary key, a unique constraint or used in a foreign key
reference are automatically indexed (in the order in which they are defined in the key).
Therefore, explicitly creating an index on these columns will not improve performance at
all.
Other columns or combinations of columns may be defined as a secondary index to
improve performance in data retrieval. Secondary indexes are defined on a table after it
has been created (using the CREATE INDEX statement).
An example of when a secondary index may be useful is when a search is regularly
performed on a non-keyed column in a table with many rows, defining an index on the
column may speed up the search. The search result is not affected by the index but the
speed of the search is optimized.
It should be noted, however, that indexes create an overhead for update, delete and insert
operations because the index must also be updated.
An index will be used if the internal query optimization process determines it will
improve the efficiency of a search.

country currency

American Samoa US Dollars

Anguilla East Caribbean Dollars

Antigua and Barbuda East Caribbean Dollars

Australia Australian Dollars

Bahamas Bahamian Dollars

… …

Mimer SQL Version 11.0 9
User’s Manual

An index can be used in select statements as an ordinary table, but explicit write
operations on indexes are not allowed.
SQL queries are automatically optimized when they are internally prepared for execution.
The optimization process determines the most effective way to execute each query, which
may or may not involve using an applicable index.

WORD_SEARCH Index Algorithm
The WORD_SEARCH index algorithm improves performance for “begins word” searches
and “match word” searches, when using the builtin.begins_word() and
builtin.match_word() functions.

create table documents (id integer primary key, title varchar(50),
content nvarchar(500) collate english_1);

create index dcont_ws on documents (content for word_search);
select * from documents where builtin.word_match(content, 'Mimer');

Data Integrity
A vital aspect of a Mimer SQL database is data integrity. Data integrity means that the
data in the database is complete and consistent both at its creation and at all times during
use.
Mimer SQL has built-in facilities that ensure the data integrity in the database:
• Domains
• Unique constraints and primary keys
• Foreign keys (also referred to as referential integrity)
• Check constraints in table definitions
• Check options in view definitions
• Default values
• Triggers
• Transactions
These features should be used whenever possible to protect the integrity of the database,
guaranteeing that incorrect or inconsistent data is not entered into it. By applying data
integrity constraints through the database management system, the responsibility of
ensuring the data integrity of the database is moved from the users of the database to the
database designer.

Domains
Each column in a table holds data of a single data type and length, specified when the
column is created or altered. The data type may be specified explicitly (e.g.
CHARACTER(20) or INTEGER) or through the use of domains.
A domain definition consists of a data type, optional check conditions and an optional
default value. Data which falls outside the constraints defined by the check conditions
will not be accepted in a column which is defined as belonging to the domain.
A column belonging to a domain for which a default value is defined (unless there is an
explicit default value for the column) will automatically receive that value if row data is
entered without a value being explicitly specified for the column.

10 Chapter 2 Basic Concepts of Mimer SQL
Data Integrity

Unique Constraints and Primary Keys
Rows in a base table are uniquely identified by the value of the primary key defined for
the table. The primary key for a table is composed of the values of one or more columns.
A table cannot contain two rows with the same primary key value. If the primary key
contains more than one column, the key value is the combined value of all the columns in
the key. Individual columns in the key may contain duplicate values as long as the whole
key value is unique.
Apart from a primary key constraint its also possible to add one or more unique
constraints. The primary key constraint and the unique constraint are similar, but treat
NULLs in different ways. However, the definition of the primary key is also a definition
of the most effective access path for the table.

Foreign Keys – Referential Integrity
A foreign key is one or more columns in a table defined as cross-referencing the primary
key or a unique key of table. Data entered into the foreign key must either exist in the key
that it cross-references or be null. This maintains referential integrity in the database,
ensuring that a table can only contain data that already exists in the selected key of the
referenced table.
As a consequence of this, a key value that is cross-referenced by a foreign key of another
table must not be removed from the table to which it belongs by an update or delete
operation.
The DELETE and UPDATE rules defined for the referential constraint provide a mechanism
for adjusting the values in a foreign key in a way that may permit a cross-referenced key
value to effectively be removed.
Note: The referential integrity constraints are effectively checked at the end of an

INSERT, DELETE or UPDATE statement, or at COMMIT depending on whether
the constraint is declared as IMMEDIATE or DEFERRED.

The following example illustrates the column CURRENCY_CODE in the table COUNTRIES
as a foreign key referencing the primary key of the table CURRENCIES.

CREATE TABLE countries (
 code CHARACTER(2) PRIMARY KEY,
 country VARCHAR(48) NOT NULL,
 currency_code CHARACTER(3) NOT NULL,
 FOREIGN KEY (currency_code) REFERENCES currencies(code));

COUNTRIES

CODE COUNTRY CURRENCY_CODE

AD Andorra EUR

AE United Arab Emirates AED

AF Afghanistan AFA

… … …

Mimer SQL Version 11.0 11
User’s Manual

CURRENCIES

In this example, the referential constraint means there cannot be a currency in the
COUNTRIES table that does not exist, and a currency cannot be deleted if it is assigned to
a country.
Foreign key relationships are defined when a table is created using the CREATE TABLE
statement and can be added to an existing table by using the ALTER TABLE statement.
The cross-referenced table must exist prior to the declaration of foreign keys on that table,
unless the cross-referenced and referencing tables are the same.
The exception to this rule is when foreign key relationships are defined for tables in a
CREATE SCHEMA statement. Object references in a CREATE SCHEMA statement are not
verified until the end of the statement, when all the objects have been created. Therefore,
it is possible to reference a table that will not be created until later in the CREATE SCHEMA
statement.

Check Conditions
Check conditions may be specified in table and domain definitions to make sure that the
values in a column conform to certain conditions.
Check conditions are discussed in detail in Check Constraints on page 102.

Check Options in View Definitions
You can maintain view integrity by including a check option in the view definition. This
causes data entered through the view to be checked against the view definition. If the data
conflicts with the conditions in the view definition, it is rejected.
For example, the restriction view USD_COUNTRIES is created with the following SQL
statement:

CREATE VIEW usd_countries
 AS SELECT code, country, currency_code
 FROM countries
 WHERE currency_code = 'USD'
 WITH CHECK OPTION;

This means that the view USD_COUNTRIES contains CODE, COUNTRY and
CURRENCY_CODE columns from the COUNTRIES table on the condition that the value in
the CURRENCY_CODE column is USD.
Any attempt to change contents of the CURRENCY_CODE column in the view or to insert
data in the view where CURRENCY_CODE does not contain USD is rejected.
If check option is not used, a user could update a row in the view that is not returned by
the view.

CODE CURRENCY EXCHANGE_RATE

AED UAE Dirhams 3.1030

AFA Afghanis 4092.0000

ALL Leke 122.3000

… … …

12 Chapter 2 Basic Concepts of Mimer SQL
Sequences

Sequences
A sequence is a database object that provides a series of integer values.
A sequence has an initial value, an increment value, a minimum value and a maximum
value defined when it is created, either implicitly or explicitly (by using the CREATE
SEQUENCE statement, see Mimer SQL Reference Manual, Chapter 12, CREATE
SEQUENCE).
A sequence can be defined with CYCLE or NO CYCLE option. A sequence with CYCLE
option may re-use values when the maximum value has been reached. A sequence with
NO CYCLE option never generates the same value twice.
A sequence definition may contain a data type which determines the limits for which
values that can be generated by using the sequence. The allowed data types are
SMALLINT, INTEGER and BIGINT.
A sequence generates a series of values by starting at the initial value and proceeding in
increment steps. If all values in a sequence with cycle option has been exhausted, the
sequence will start over again with the min value if the increment is positive, and with the
max value if the increment is negative.
It is possible to generate the next value in the value series of a sequence by using the
NEXT VALUE FOR sequence-name construct. This is used for the first time after the
sequence has been created to establish the initial value defined for the sequence.
Subsequent uses will add the increment step value to the value of the sequence and the
result will be established as the current value of the sequence.
It is possible to get the value of a sequence by using the CURRENT VALUE FOR
sequence_name construct. This construct cannot be used until the initial value has been
established for the sequence (i.e. using it immediately after the sequence has been created
will raise an error). For each new database connection, NEXT VALUE must be used before
CURRENT VALUE can be used.
When the current value of a sequence with NO CYCLE option is equal to the last value in
the series it defines, NEXT VALUE OF sequence-name will raise an error and the value of
the sequence will remain unaltered.
If the sequence has CYCLE option, NEXT VALUE FOR sequence-name will always
succeed.
The value of CURRENT VALUE FOR sequence-name and NEXT VALUE FOR sequence-
name can be used where a value-expression would normally be used. The value may also
be used after the DEFAULT clause in the CREATE DOMAIN, CREATE TABLE and ALTER
TABLE statements.
An ident must hold USAGE privilege on the sequence in order to use it.
If a sequence is dropped, with the CASCADE option in effect, all object referencing the
sequence will also be dropped.

Examples:
A sequence with CYCLE option with start value 1, increment 3 and maximum 10 will
generate the following series of values: 1, 4, 7, 10, 1, 4, 7, 10, 1, 4...
A sequence with NO CYCLE option, start value 1, increment 3, minvalue 1 and maxvalue
10 will generate the following series of values: 1, 4, 7, 10.

Mimer SQL Version 11.0 13
User’s Manual

Note: It is possible that not every value in the series defined by the sequence will be
generated. If a server failure occurs it is possible that some of the values in the
series might be skipped.

Synonyms
A synonym is an alternative name for a table, view or another synonym. Synonyms can
be created or dropped at any time.
A synonym cannot be created for a function, procedure or a module.
Using synonyms can be a convenient way to address tables that are contained in another
schema.
For example, if a view called customer_details is contained in the schema called
mimer_store, the full name of the view is mimer_store.customer_details.
This view may be referenced from the schema called mimer_store_book by its fully
qualified name as given above.
Alternatively, a synonym may be created for the view in schema mimer_store_book,
e.g. cust_details. Then the name cust_details can simply be used to refer to the
view mimer_store.customer_details.
Note: The name cust_details is contained in schema mimer_store_book and

can only be used in that context.

Databanks
A databank is the physical file where a tables and sequences are stored. A Mimer SQL
database may include any number of databanks. There are two types of databanks -
system databanks and user databanks.

System Databanks
System databanks contain system information used by the database manager. These
databanks are defined when the system is created.
The system databanks are:
• SYSDB containing the data dictionary tables
• TRANSDB used for transaction handling
• LOGDB used for transaction logging
• SQLDB used in transaction handling and for temporary storage of internal work

tables.

User Databanks
User databanks contain the user tables and sequences. These databanks are defined by the
user(s) responsible for setting up the database. See the Mimer SQL Reference Manual,
Chapter 4, Specifying the Location of User Databanks, for details concerning path names.
The division of tables between different user databanks is a physical file storage issue and
does not affect the way the database contents are presented to the user. Except in special
situations (such as when creating tables), databanks are completely invisible to the user.

14 Chapter 2 Basic Concepts of Mimer SQL
Shadows

Note: In Mimer SQL, backup and restore can be performed on a per-databank basis
rather than on the entire database file base, see the Mimer SQL System
Management Handbook, Chapter 5, Backing-up and Restoring Data for more
information.

Shadows
Mimer SQL Shadowing can be used to create and maintain one or more copies of a
databank on different disks. Shadowing provides extra protection from the consequences
of disk crashes, etc.
Read more in the Mimer SQL System Management Handbook, Chapter 10, Mimer SQL
Shadowing.

Mimer SQL Character Sets
For character data, Mimer SQL uses the character set ISO 8859-1, also known as the
Latin1 character set. By default, character data is sorted in the numerical order of its code
according to the ISO8BIT collation.
For national character data, Mimer SQL uses the Unicode character set, which is a
universal character set, see https://www.unicode.org for more information. National character
data is sorted according to the UCS_BASIC collation. UCS_BASIC is a collation in which
the ordering is determined entirely by the Unicode scalar values of the characters in the
strings being sorted.
See the Mimer SQL Reference Manual, Appendix B, Character Sets for more
information.

Collations and Linguistic Sorting
As stated in the previous section, character and national character data is sorted according
to specific collations.
A collation, also known as a collating sequence, is a database object containing a set of
rules that determines how character strings are compared, searched and alphabetically
sorted. The rules in the collation determine whether one character string is less than, equal
to or greater than another. A collation also determines how case-sensitivity and accents
are handled.
You can specify a different collation for ordering characters when you create or alter a
table or create a domain.
If you have specified a collation for a column, the collation is used implicitly in SQL
statements.
You only need to explicitly use a collate clause in SQL statements if you want to override
the default collation or the collation you specified when creating or altering the column
or creating the domain.
For more information, see Chapter 4, Collations.
Since Unicode is a universal character set the Unicode sorting order can be employed on
any arbitrary character set that is a subset of Unicode.

http://www.unicode.org

Mimer SQL Version 11.0 15
User’s Manual

The default Unicode sorting order is provided in https://www.unicode.org/reports/tr10/allkeys.txt
(Unicode 3.1.1 mapping). This table (the Default Unicode Collation Element Table)
provides a mapping from characters to collation elements for all the explicitly weighted
characters.

Stored Procedures
In Mimer SQL you can define functions and procedures, collectively known as stored
procedures.
Mimer SQL stored procedures enable you to define and use powerful functionality
through the creation and execution of routines. By using stored procedures, you can move
application logic from the client to the server, thereby reducing network traffic. This will
also allow the logic to be shared between different applications.
Stored procedures are stored in the data dictionary and you can invoke them when needed.
For a complete and detailed discussion of stored procedures, see Mimer SQL Reference
Manual, Chapter 8, Functions and the Mimer SQL Programmer’s Manual, Chapter 11,
Mimer SQL Stored Procedures.
Stored procedures execute their statements using the user context of the creator of the
stored procedure, independent of the actual current user.

Routines – Functions and Procedures
The term routine is a collective term for functions and procedures. Functions are
distinguished from procedures in that they return a single value and the parameters of a
function are used for input only. A function is invoked by using it where a value
expression would normally be used.
Mimer SQL supports standard procedures and also result set procedures, which are
procedures capable of returning the row value(s) of a result set.
Standard procedures are invoked directly by using the CALL statement and can pass
values back to the calling environment through the procedure parameters.
A result set procedure is invoked by using the CALL statement, and the result set values
are presented in the same way as for a SELECT statement.
In Embedded SQL, ODBC and JDBC, result set procedures are invoked by declaring a
cursor which includes the procedure call specification and by then using the FETCH
statement to execute the procedure and return the row(s) of the result set.
The creator of a routine must hold the appropriate access rights on any database objects
referenced from within the routine. These access rights must be held for the life of the
routine.
Routine names, like those of other private objects in the database, are qualified with the
name of the schema to which they belong.

Modules
A module is simply a collection of routines. All the routines in a module are created when
the module is created and belong to the same schema.
If a module is dropped, all the routines contained in the module are dropped.

https://www.unicode.org/reports/tr10/allkeys.txt

16 Chapter 2 Basic Concepts of Mimer SQL
Idents

Under certain circumstances a routine may be dropped because of the cascade effect of
dropping some other database object. If such a routine is contained in a module, it is
implicitly removed from the module and dropped. The other routines contained in the
module remain unaffected.
In general, care should be taken when using DROP or REVOKE in connection with routines,
modules or objects referenced from within routines because the cascade effects can often
affect many other objects. See Dropping Objects from the Database on page 113 and
Recursive Effects of Revoking Privileges on page 123 for details.

Triggers
A trigger defines a number of procedural SQL statements that are executed whenever a
specified data manipulation statement is executed on the table or view on which the
trigger has been created.
The trigger can be set up to execute AFTER, BEFORE or INSTEAD OF the data
manipulation statement. Trigger execution can also be made conditional on a search
condition specified as part of the trigger.
Triggers are described in detail in the Mimer SQL Programmer’s Manual, Chapter 12,
Triggers.

Idents
An ident is an authorization-id used to identify users, programs and groups. There are
three types of idents in a Mimer SQL database: USER, PROGRAM and GROUP idents.

USER Idents
USER idents identify individual users who can connect to a Mimer SQL database. USER
idents are generally associated with specific physical individuals who are authorized to
use the system.
A USER’s access to the database objects is restricted by the specific privileges granted to
the ident.
A USER ident is usually protected by a password. For a USER ident it is also possible to
add one or several OS_USER logins which allows the user currently logged in to the
operating system to access the Mimer SQL database without providing a password.
For example: if there is a USER ident ALBERT defined in Mimer SQL that has an OS_USER
login ALBERT, then the operating system user ALBERT may start Mimer BSQL (for
example) and connect directly to Mimer SQL simply by pressing <return> at the
Username: prompt.
However, if the USER ident ALBERT defined in Mimer SQL has an OS_USER login
HERBERT, then the operating system user HERBERT may start Mimer BSQL and connect
directly to Mimer SQL by entering HERBERT at the Username: prompt and simply
pressing <return> at the PASSWORD: prompt.

PROGRAM Idents
PROGRAM idents can be used for effective administration of access rights and
authorization control.

Mimer SQL Version 11.0 17
User’s Manual

PROGRAM idents do not strictly connect to Mimer SQL, but they may be entered by an
ident by using the ENTER statement. (The ENTER statement may only be used by an ident
who is already connected to a Mimer SQL database.)
An ident is granted the privilege to enter a PROGRAM ident. A PROGRAM ident is set up to
have certain privileges and these apply after the ENTER statement has been used.
PROGRAM idents are generally associated with specific functions within the system, rather
than with physical individuals.
When a PROGRAM ident is entered, any privileges granted to that ident become current and
privileges belonging to the previous ident (i.e. the ident issuing the ENTER statement) are
suspended.
PROGRAM idents are disconnected with the LEAVE statement.

GROUP Idents
GROUP idents are collective identities used to define groups of user and/or program idents.
Any privileges granted to or revoked from a GROUP ident automatically apply to all
members of the group. Any ident can be a member of as many groups as required, and a
group can include any number of members.
GROUP idents provide a facility for organizing the privilege structure in the database
system. All idents are automatically members of the group PUBLIC. When a privilege is
granted to PUBLIC, all users receive the privilege.

Schemas
A schema defines a local environment within which private database objects can be
created. The ident creating the schema has the right to create objects in it and to drop
objects from it.
When a USER or PROGRAM ident is created, a schema with the same name usually is
created and the created ident becomes the creator of the schema. This happens by default
unless WITHOUT SCHEMA is specified in the CREATE IDENT statement. A user without a
schema is not allowed to create any database objects at all.
When a private database object is created, the name for it can be specified in a fully
qualified form which identifies the schema in which it is to be created. The names of
objects must be unique within the schema to which they belong, according to the rules for
the particular object-type.
If an unqualified name is specified for a private database object, a schema name
equivalent to the name of the connected ident is assumed.

Access Rights and Privileges
Privileges control how users may access database objects and the operations they can
perform in the database.
USER and PROGRAM idents are protected by a password, which must be given together
with the correct ident name in order for a user to gain access to the database or to enter a
PROGRAM ident. Passwords are stored in encrypted form in the data dictionary and cannot
be read by any ident, including the system administrator. An ident’s password may only
be changed by the ident or by the creator of the ident.

18 Chapter 2 Basic Concepts of Mimer SQL
Access Rights and Privileges

A set of privileges define the operations each ident is permitted to perform. There are
three classes of privileges in a Mimer SQL database: system, object and access.

System Privileges
System privileges, which control the right to perform backup and restore operations, the
right to execute the UPDATE STATISTICS statement as well as the right to create new
databanks, idents, schemas and to manage shadows.
System privileges are granted to the system administrator when the system is installed and
may be granted by the administrator to other idents in the database. As a general rule,
system privileges should be granted to a restricted group of users.
Note: An ident who is given the privilege to create new idents is also able to create

new schemas.

Object Privileges
Object privileges, which control membership in GROUP idents, the right to invoke
functions and procedures, the right to enter PROGRAM idents, the right to create new tables
in a specified databank and the right to use a domain or sequence.
The creator of an object is automatically granted full privileges on that object.
Thus the creator of:
• a group is automatically a member of the group
• a function or procedure may execute it
• a pre-compiled statement may execute it
• a PROGRAM ident may enter it
• a schema may create objects in and drop objects from it
• a databank may create tables and sequences in the databank
• a table or view holds all privileges on it
• a domain may use it
• a sequence may use that sequence.
The creator of an object generally has the right to grant any of these privileges to other
users, in the case of views, functions and procedures this actually depends on the creator’s
privileges on objects referenced from within.

Access Privileges
Access privileges, which define access to the contents of the database, i.e. the rights to
retrieve data from tables or views, delete data, insert new rows, update data and to refer
to table columns as foreign key references.

About Privileges
Granted privileges can be regarded as instances of grantor/privilege stored for an ident.
An ident will hold more than one instance of a privilege if different grantors grant it.

Mimer SQL Version 11.0 19
User’s Manual

A privilege will be held as long as at least one instance of that privilege is stored for the
ident. All privileges may be granted with the WITH GRANT OPTION which means that
the receiver has, in turn, the right to grant the privilege to other idents. An ident will hold
a privilege with the WITH GRANT OPTION as long as at least one of the instances stored
for the ident was granted with this option.
If the same grantor grants a privilege to an ident more than once, this will not result in
more than one instance of the privilege being recorded for the ident. If a particular grantor
grants a privilege without WITH GRANT OPTION and subsequently grants the privilege
again with WITH GRANT OPTION, then WITH GRANT OPTION will be added to the
existing instance of the privilege.
Each instance of a privilege held by an ident is revoked separately by the appropriate
grantor. It is possible to revoke WITH GRANT OPTION without revoking the associated
privilege completely. Revoking Privileges on page 121 describes revoking privileges in
more detail.

The Data Dictionary
The data dictionary contains information on all the database objects (e.g. tables, views
and idents) stored in a Mimer SQL database and how they relate to one another, and
access rights and privileges.
The data dictionary views (INFORMATION_SCHEMA) are described in Mimer SQL
Reference Manual, Appendix 13, Data Dictionary Views.

Mimer SQL Statements
Mimer SQL is a language made up of a number of different statements, which may be
divided into the following basic categories:
• Data definition statements
• Access Control Statements
• Data manipulation statements
• Connection statements
• Transaction control statements
• Database administration statements
The SQL statements are described in detail in subsequent chapters of this manual and in
the Mimer SQL Reference Manual, Chapter 12, SQL Statements.
In addition, there is a set of commands specific to the BSQL environment, for managing
output formatting and so on, see Chapter 9, Mimer BSQL.
Note: In Mimer BSQL, statements are terminated by a semicolon (;). This is not part

of the SQL statement syntax, but is included in the examples in this manual.

Data Definition Statements
Data definition statements are used to maintain objects in a database. For example:
• CREATE, creates objects
• ALTER, modifies objects

20 Chapter 2 Basic Concepts of Mimer SQL
Mimer SQL Statements

• DROP, drops objects
• COMMENT, documents objects.

Access Control Statements
Access Control Statements are used to manage privileges. For example:
• GRANT grants privileges
• REVOKE revokes privileges.

Data Manipulation Statements
Data manipulation statements are used to examine and change data in the database. For
example:
• SELECT retrieves data
• INSERT adds new rows to tables
• UPDATE changes data in existing rows
• DELETE deletes data
• CALL executes procedures
• SET value assignment.

Connection Statements
Connection statements are used to connect and disconnect user and program idents to or
from the database. For example:
• CONNECT connects a user ident to the database
• DISCONNECT disconnects a user ident from the database
• SET CONNECTION changes the active database connection
• ENTER enters a PROGRAM ident
• LEAVE leaves a PROGRAM ident.

Transaction Control Statements
Transaction control statements are used to control when database transactions begin and
end, and when updates take effect. For example:
• SET TRANSACTION sets transaction options for subsequent transactions
• SET SESSION sets the default transaction options for the session
• START starts a transaction build-up
• COMMIT commits the current transaction
• ROLLBACK abandons the current transaction.

Mimer SQL Version 11.0 21
User’s Manual

Database Administration Statements
Database administration statements are used to manage backup/restore operations and the
statistical information used to optimize queries. For example:
• CREATE BACKUP creates a backup copy of a databank, with an optional

incremental backup. Incremental backups may also be taken on their own with the
statement CREATE INCREMENTAL BACKUP

• ALTER DATABANK, the RESTORE variant of this statement recovers a databank
from incremental backup information

• SET DATABASE sets the database ONLINE or OFFLINE
• SET DATABANK sets a databank ONLINE or OFFLINE
• SET SHADOW sets one or more shadows ONLINE or OFFLINE
• UPDATE STATISTICS updates the statistical information used for query

optimization. DELETE STATISTICS deletes the statistical information.

22 Chapter 2 Basic Concepts of Mimer SQL
Mimer SQL Statements

Mimer SQL Version 11.0 23
User’s Manual

Chapter 3

Retrieving Data
This chapter describes how to retrieve information from a Mimer SQL database. In a
relational database, information retrieved from one or more source tables is returned in
the form of a result table, also called a result set.
The statement used to retrieve information is SELECT.
The examples in this chapter are based on the example database included with the
Mimer SQL distribution, see Appendix B The Example Environment.

Simple Retrieval
The simplest retrievals fetch information from one table.
The general form of the simple SELECT statement is:

SELECT column-list FROM table_name WHERE condition;

The column-list specifies which columns to select, and the WHERE condition determines
which rows to select. If no WHERE condition is specified, all rows are retrieved from the
source table or view.

Examples of Simple Retrieval

Find the format identifiers and their meaning:
SELECT format_id, format
FROM formats;

Returns:

FORMAT_ID FORMAT

1 Audio CD

2 Cassette

3 DVD Audio

4 Vinyl

5 Audio Cassette

6 Audio CD

7 Hardcover

8 Paperback

24 Chapter 3 Retrieving Data
Result Order

Find the name and code for all countries that use Australian dollars (AUD).
SELECT country, code
FROM countries
WHERE currency_code = 'AUD';

Returns:

How to formulate selection conditions is described in detail in Selecting Specific Rows on
page 27.

Result Order
The columns in the result table are ordered as they are written in the SELECT statement,
irrespective of the ordering in the source table. For example:

SELECT format, format_id
FROM formats;

Returns:

9 DVD Video

10 Video

COUNTRY CODE

Australia AU

Cocos (Keeling) Islands CC

Christmas Island CX

Heard and McDonald Islands HM

Kiribati KI

Norfolk Island NF

Nauru NR

Tuvalu TV

FORMAT_ID FORMAT

FORMAT FORMAT_ID

Audio CD 1

Cassette 2

DVD Audio 3

Vinyl 4

Audio Cassette 5

Audio CD 6

Hardcover 7

Paperback 8

DVD Video 9

Video 10

Mimer SQL Version 11.0 25
User’s Manual

Quick Select
A shorthand form for selecting all columns from a table is:

SELECT * FROM table_name ...

In this case, the columns in the result table are ordered as they are defined in the source
table.

Table Names
A table name in a SELECT statement may be qualified by the name of the schema to which
the table belongs in the form schema.table.
Unqualified table names are implicitly qualified by the ident name of the current user.
The table name must be written in its qualified form if the name of the schema to which
the table belongs differs from the name of the current user.

For example:
SELECT *
FROM mimer_store.formats;

Returns:

Setting Column Labels
Columns in the result table normally have the same name as the corresponding columns
in the source table.
By using an AS clause after the column name in the SELECT statement, the column in the
result table can be given an alternative name.
AS clauses can be used for as many columns as required. A label may be up to 128
characters long, and follows the same syntax rules as column names, see the Mimer SQL
Reference Manual, Chapter 6, SQL Identifiers.

FORMAT_ID FORMAT CATEGORY_ID DISPLAY_ORDER

1 Audio CD 1 20

2 Cassette 1 30

3 DVD Audio 1 10

4 Vinyl 1 40

5 Audio Cassette 2 40

6 Audio CD 2 30

7 Hardcover 2 10

8 Paperback 2 20

9 DVD Video 3 10

10 Video 3 20

26 Chapter 3 Retrieving Data
Eliminating Duplicate Values

For example:
SELECT format AS format_name, category_id
FROM formats;

Returns:

Labels are particularly useful in queries that retrieve computed values, where the result
table column is otherwise unnamed, see Retrieving Computed Values on page 34.

Eliminating Duplicate Values
The simple SELECT statement retrieves all rows which fulfill the selection conditions.
The result may contain duplicate values.

For example:
SELECT category_id
FROM formats;

Returns:

FORMAT_NAME CATEGORY_ID

Audio CD 1

Cassette 1

DVD Audio 1

Vinyl 1

Audio Cassette 2

Audio CD 2

Hardcover 2

Paperback 2

DVD Video 3

Video 3

CATEGORY_ID

1

1

1

1

2

2

2

2

3

3

Mimer SQL Version 11.0 27
User’s Manual

By adding the keyword DISTINCT before the column list you can eliminate all duplicate
rows from the result table.
The keyword DISTINCT may only be used once in a simple SELECT statement.

For example:
SELECT DISTINCT category_id
FROM formats;

Returns:

DISTINCT also eliminates duplicate rows containing null values, although technically
null is not regarded as equal to null, see Handling Null Values on page 67.
If the selected columns include the whole primary key in the source table, the keyword
DISTINCT is unnecessary, since all rows in the result table will be unique. Remember
however that a view may contain duplicate rows, so that selecting all columns does not
always guarantee that the result does not contain duplicate rows.

Selecting Specific Rows
Rows are selected in the SELECT statement according to the search condition in the
WHERE clause. This condition relates column value(s) to expressions.

Comparison Conditions and WHERE
Comparison operators that may be used in the WHERE clause are:

Comparisons can be combined in the search condition using the logical operators AND and
OR, and reversed using NOT.
Each comparison must be expressed in full; for example

WHERE price >= 10.00 AND price <= 20.00

may not be expressed as
WHERE price >= 10.00 AND <= 20.00

CATEGORY_ID

1

2

3

Operator Explanation

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

28 Chapter 3 Retrieving Data
Selecting Specific Rows

Comparing Character Strings
Character strings are compared character by character from left to right.
If strings are of different lengths, the shorter is conceptually padded to the right with
blanks before the comparison is made (i.e. character difference takes precedence over
length difference).
The default collation for characters is an extended Latin1 character set as defined by
ISO 8859-1, see the Mimer SQL Reference Manual, Appendix B, Character Sets for the
exact sequence. Default collation for Unicode characters (national character data) is the
UCS_BASIC collation.
For more information on collations, see the Mimer SQL User’s Manual, Chapter 4,
Collations.

Retrieve the European Article Number (EAN), price and number in stock for all
available items costing 100 euros and more:

SELECT ean_code, price, stock
FROM items
WHERE status = 'A'
AND price >= 100.00;

Returns:

Comparing Temporal Data
When stating conditions on temporal data in tables, datetime and interval literals can be
specified. There are also the CURRENT_DATE, LOCALTIME, LOCALTIMESTAMP and
BUILTIN.UTC_TIMESTAMP functionality which read the server clock and return that
value.
If there is more than one occurrence of these pseudo literals in a statement the clock is
only read once.

List the EAN and price for any items released on September 5, 1994:
SELECT ean_code, price
FROM items
WHERE release_date = DATE'1994-09-05';

Returns:

EAN_CODE PRICE STOCK

790051157548 115.98 14

790051155506 279.98 16

790051595920 227.98 10

EAN_CODE PRICE

9780001006041 7.00

Mimer SQL Version 11.0 29
User’s Manual

Retrieve the EAN and price for any items with a release date in the future:
SELECT ean_code, price
FROM items
WHERE release_date > CURRENT_DATE;

Returns:

For an example of interval literals, see Datetime Arithmetic and Functions on page 42.

Pattern Conditions
LIKE is used to search for character strings that match a specified pattern.
Patterns in the LIKE condition are written with wildcard characters (also called meta-
characters):

(Wildcards only have significance in LIKE predicates.)

Find all currencies whose names include the string “Islands”:
SELECT currency
FROM currencies
WHERE currency LIKE '%Islands%';

Returns:

EAN_CODE PRICE

7298976754871 13.98

7464376662256 15.98

9781990789861 13.99

9781993789639 6.99

Pattern Explanation

_ (underscore) stands for any single character

% stands for any sequence of zero or more characters

CURRENCY

Falkland Islands Pounds

Cayman Islands Dollars

Solomon Islands Dollars

30 Chapter 3 Retrieving Data
Selecting Specific Rows

Find all formats whose names do not contain the string “Audio”:
SELECT format
FROM formats
WHERE format NOT LIKE '%Audio%';

Returns:

Remember that character strings in SQL statements are always written within single
quotation marks (' ').
A LIKE predicate where the pattern string does not contain any wildcard characters is
essentially equivalent to a basic predicate using the '=' operator, except that comparison
strings in an '='comparison are conceptually padded with blanks whereas those in the
LIKE comparison are not.

For example:
'Dollars ' = 'Dollars' is true
'Dollars ' LIKE 'Dollars ' is true
'Dollars ' LIKE 'Dollars%' is true

but
'Dollars ' LIKE 'Dollars' is false

The LIKE predicate may include an ESCAPE clause defining a character which is used to
‘escape’ wildcard characters. A wildcard character immediately following an escape
character is taken at face value. See the Mimer SQL Reference Manual, Chapter 9, The
LIKE Predicate, for more details.

More about Searching for Character Strings
Some other examples of searching for character strings are:

FORMAT

Cassette

Vinyl

Hardcover

Paperback

DVD Video

Video

LIKE '%P%' matches any string that contains an upper-case ‘P’.

LIKE '%P%' COLLATE english_1 matches any string that contains an upper or lower
case ‘P’.

LIKE '_abc' matches any four letter character string ending with
lower-case ‘abc’.

LIKE '%A\%' ESCAPE '\' matches any string ending with ‘A%’.

LIKE 'D_d_' matches any four letter string with D and d in the first
and third positions respectively. Examples of possible
values: Dude, Dads.

Mimer SQL Version 11.0 31
User’s Manual

Set Conditions

IN and NOT IN
The operator IN finds the values that are contained in a set of values. The set is given as
a comma-separated list enclosed in parentheses.
NOT IN finds values which are not contained in the specified set.

Which currencies are represented by the codes “SEK” or “GBP”?
SELECT currency
FROM currencies
WHERE code IN ('SEK', 'GBP');

Returns:

List all the formats other than those for identifiers 1, 5 and 7:
SELECT format, format_id
FROM formats
WHERE format_id NOT IN (1, 5, 7);

Returns:

Note: NOT IN is undefined if the subquery’s result contains a null value. E.g.
SELECT * FROM tab WHERE 1 NOT IN (3, <null>, 4) will return an
empty result set.

CURRENCY

Pounds Sterling

Swedish Kronor

FORMAT FORMAT_ID

Cassette 2

DVD Audio 3

Vinyl 4

Audio CD 6

Paperback 8

DVD Video 9

Video 10

32 Chapter 3 Retrieving Data
Selecting Specific Rows

BETWEEN and NOT BETWEEN
The operators BETWEEN and NOT BETWEEN are used to find values that are within or
outside an interval. The interval includes the limits specified in the BETWEEN condition.

Find the EAN and release date for EANs outside the “Bookland” range (e.g. 978 pre-
fix) that were released during January 1998:

SELECT ean_code, release_date
FROM items
WHERE ean_code NOT BETWEEN 9780000000000 AND 9789999999999
AND release_date BETWEEN DATE'1998-01-01' AND DATE'1998-01-31';

Returns:

BETWEEN may also be used for character comparisons.

For example:
SELECT code, country
FROM countries
WHERE country BETWEEN 'South Africa' AND 'Suriname';

Returns:

EAN_CODE RELEASE_DATE

90431587720 1998-01-05

93624662426 1998-01-13

45778040629 1998-01-20

CODE CURRENCY

ES Spain

LK Sri Lanka

SD Sudan

SR Suriname

ZA South Africa

Mimer SQL Version 11.0 33
User’s Manual

Find which currencies have an exchange rate in the range of 1 to 2:
SELECT currency
FROM currencies
WHERE exchange_rate BETWEEN 1.00 AND 2.00;

Returns:

BETWEEN SYMMETRIC
BETWEEN has the SYMMETRIC option which is used to verify the interval’s lower and
upper limits in both directions. This is especially useful when writing queries where the
BETWEEN limit values are not defined until run-time, or where the limits are column or
function references.

BETWEEN SYMMETRIC example with host variables:
SELECT code, country
FROM countries
WHERE country BETWEEN SYMMETRIC :country1 AND :country2;
country1: Suriname
country2: South Africa

Returns:

Without SYMMETRIC specified, this query would have returned an empty result set.

BETWEEN SYMMETRIC example with columns as arguments:
SELECT *
FROM table1 JOIN table2
ON table1.col1 BETWEEN SYMMETRIC table2.col1 AND table2.col2;

CURRENCY

Netherlands Antillian Guilders

Australian Dollars

Aruban Guilders

Convertible Marka

Barbados Dollars

Leva

…

CODE CURRENCY

ES Spain

LK Sri Lanka

SD Sudan

SR Suriname

ZA South Africa

34 Chapter 3 Retrieving Data
Retrieving Computed Values

Retrieving Computed Values
You can retrieve computed values by using arithmetic, string and boolean operators in the
SELECT clause of the statement.
When retrieving computed values, parentheses can be used to force the operation priority.
Without parentheses, the normal precedence rules apply. See Mimer SQL Reference
Manual, Chapter 7, Operator Precedence, for information regarding operator
precedence.
The following computational operators may be used:

See the Mimer SQL Reference Manual, Chapter 6, SQL Syntax Elements, for information
regarding the type and precision of the result of an arithmetic expression.

Show the exchange rate for the US Dollar if there was a -10% change:
SELECT exchange_rate, exchange_rate * 0.90
FROM currencies
WHERE code = 'USD';

Returns:

Evaluating Boolean Expressions
Boolean expressions return a truth value (TRUE or FALSE), depending on the result of one
or more boolean expressions.

Specify when the exchange rate is less than 1 or the currency code is “ALL”:
SELECT currency,

exchange_rate < 1.0 or code = 'ALL'
FROM currencies;

Returns:

Operator Explanation

+ addition

- subtraction

* multiplication

/ division

|| string concatenation

EXCHANGE_RATE

0.8711 0.783990

currency

UAE Dirhams FALSE

Afghanis FALSE

Leke TRUE

Mimer SQL Version 11.0 35
User’s Manual

Labels and Computed Values
The computed column is unnamed by default in the result table. A label may be used to
provide a name.

For example:
SELECT exchange_rate, exchange_rate * 0.90 AS new_exchange_rate
FROM currencies
WHERE code = 'USD';

Returns:

Constant Values
A column may also be computed as a constant value, which adds an extra column to the
result table.

For example:
SELECT exchange_rate, '10% reduction:',

exchange_rate * 0.90 AS new_exchange_rate
FROM currencies
WHERE code = 'USD';

Returns:

You may also retrieve a value computed using the values in two or more columns,
providing that the data types are compatible.

Retrieve the currencies prefixed with the word “Currency:”:
SELECT 'Currency: ' || currency
FROM currencies
WHERE code LIKE 'A%';

Armenian Drams -

Netherlands Antillian Guilders FALSE

Kwanza -

Argentine Pesos TRUE

Australian Dollars FALSE

… …

currency

EXCHANGE_RATE NEW_EXCHANGE_RATE

0.8711 0.783990

EXCHANGE_RATE NEW_EXCHANGE_RATE

0.8711 10% reduction: 0.783990

36 Chapter 3 Retrieving Data
Retrieving Computed Values

Returns:

Padding Concatenated Strings
For string concatenation, column values are padded with trailing blanks to the length of
the column definition, if the column data type is fixed-length (CHARACTER or NATIONAL
CHARACTER).

For example:
SELECT currency || 'Currency'
FROM currencies
WHERE code LIKE 'A%';

Returns:

(If the column data type is variable length, i.e. VARCHAR or NCHAR VARYING, no blank
padding is performed.)

Currency: UAE Dirhams

Currency: Afghanis

Currency: Leke

Currency: Armenian Drams

Currency: Netherlands Antillian Guilders

Currency: Kwanza

…

UAE Dirhams Currency

Afghanis Currency

Leke Currency

Armenian Drams Currency

Netherlands Antillian Guilders Currency

Kwanza Currency

…

Mimer SQL Version 11.0 37
User’s Manual

Using Scalar Functions
Scalar functions operate on expressions or on a single value received from a SELECT
statement.
Some of the scalar functions available are:

The complete list of scalar functions can be found in the Mimer SQL Reference Manual,
Chapter 8, Scalar Functions.

Examples of Scalar Functions
The following are examples that illustrate how the scalar functions may be used:

List all currencies that contain the letters “AU” in upper or lower case:
SELECT currency
FROM currencies
WHERE LOWER(currency) LIKE '%au%';

Returns:

Note: Alternatively, a case insensitive collation can be used to get the same result.
SELECT currency
FROM currencies
WHERE currency COLLATE english_1 LIKE '%au%';

Scalar function Description

CHAR_LENGTH returns the length of a string.

EXTRACT returns a single field from a DATETIME or INTERVAL value.

LOWER converts all upper case letters in a character string to lower case.

POSITION returns the starting position of the first occurrence of a specified
string expression, starting from the left, in the given character
string.

SOUNDEX returns a character string containing six digits which represents
an encoding of the sound of the given character string.

SUBSTRING extracts a substring from a given string, according to specified
start position and length of the substring.

TRIM removes leading and/or trailing instances of a specified character
from a string.

UPPER converts all lower case letters in a character string to upper case.

CURRENCY

Australian Dollars

Mauritius Rupees

Saudi Riyals

38 Chapter 3 Retrieving Data
Using Scalar Functions

Find the position of the first space character in the formats column:
SELECT format, POSITION(' ' IN format)
FROM formats;

Returns:

Append the word “Currency” to the currencies (without trailing spaces):
SELECT TRIM(TRAILING FROM currency) || ' Currency'
FROM currencies
WHERE code LIKE 'A%';

Returns:

Remove both leading and trailing spaces from the currencies and convert to upper-
case; and get the significant length (in characters):

SELECT UPPER(TRIM(currency)), CHAR_LENGTH(TRIM(currency))
FROM currencies;

Returns:

FORMAT

Audio CD 6

Cassette 0

DVD Audio 4

Vinyl 0

Audio Cassette 6

Audio CD 6

Hardcover 0

Paperback 0

DVD Video 4

Video 0

UAE Dirhams Currency

Afghanis Currency

Leke Currency

Armenian Drams Currency

Netherlands Antillian Guilders Currency

Kwanza Currency

…

UAE DIRHAMS 11

AFGHANIS 8

Mimer SQL Version 11.0 39
User’s Manual

Find the country that sounds the same as “ASTRALYA”:
SELECT country
FROM countries
WHERE SOUNDEX(country) = SOUNDEX('astralya');

Returns:

Extract the first 5 characters from each format:
SELECT SUBSTRING(format FROM 1 FOR 5)
FROM formats;

Returns:

Using the CASE Expression
With a CASE expression, it is possible to specify a conditional value. Depending on the
result of one or more conditional expressions, the CASE expression can return different
values.
The rules for CASE expressions are fully described in the Mimer SQL Reference Manual,
Chapter 9, CASE Expression.

LEKE 4

ARMENIAN DRAMS 14

NETHERLANDS
ANTILLIAN GUILDERS

30

KWANZA 6

... ...

COUNTRY

Australia

FORMAT

Audio

Casse

DVD A

Vinyl

Audio

Audio

Hardc

Paper

DVD V

Video

40 Chapter 3 Retrieving Data
Using the CASE Expression

Case Expression Examples
The following select statements presents two examples of how CASE expressions can be
used.

Simple Case Expression

Give a textual description to the DISPLAY_ORDER column and display them in the
numeric order:

SELECT category_id,
 CASE display_order
 WHEN 10 THEN 'FIRST'
 WHEN 20 THEN 'SECOND'
 WHEN 30 THEN 'THIRD'
 WHEN 40 THEN 'FOURTH'
 ELSE 'UNKNOWN'
 END,
 format
FROM formats
ORDER BY category_id, display_order, format;

Returns:

This form of a case expression is known as a simple case expression, in which an operand
is compared to a list of values.
If there is a match in one of the when clauses, the result is the value to the right of the then
clause.
If none of these matches, the value in the else clause is returned.
If there is no else clause in a case expression and no when clause matches, a null value is
returned.

CATEGORY_ID FORMAT

1 FIRST DVD Audio

1 SECOND Audio CD

1 THIRD Cassette

1 FOURTH Vinyl

2 FIRST Hardcover

2 SECOND Paperback

2 THIRD Audio CD

2 FOURTH Audio Cassette

3 FIRST DVD Video

3 SECOND Video

Mimer SQL Version 11.0 41
User’s Manual

Case Expression
The other form of the case expression can be seen in the following example.

Display the word “UNKNOWN” if the EXCHANGE_RATE value is undefined (i.e.
null); and display the word “PARITY” if the rate is 1 to 1; otherwise do not display
anything:

SELECT currency,
 CASE
 WHEN exchange_rate IS NULL THEN 'UNKNOWN'
 WHEN exchange_rate = 1.0 THEN 'PARITY'
 ELSE ''
 END
FROM currencies
WHERE code LIKE 'A%';

Returns:

In this form it is possible that more than one of the when clauses evaluates to true, in
which case the value in the first (from left) of the matching clauses is returned.

Using the CAST Specification
The CAST specification explicitly converts data of one data type to another data type.
Conversion between data types is allowed if the rules for assignment to the target data
type are not violated. See the Mimer SQL Reference Manual, Chapter 9, CAST
Specification for more information.

Show the exchange rate for the US Dollar with a -10% change, force the result to
four decimal places:

SELECT CAST(exchange_rate * 0.90 AS DECIMAL(12, 4))
FROM currencies
WHERE code = 'USD';

Returns:

CURRENCY

UAE Dirhams

Afghanis

Leke

Armenian Drams UNKNOWN

Netherlands Antillian Guilders

Kwanza UNKNOWN

… …

0.7839

42 Chapter 3 Retrieving Data
Datetime Arithmetic and Functions

Retrieve the EAN, price and release date for any items released in 1987. Convert the
release date (DATE'YYYY-MM-DD') to character with the format MM/DD/YY:

SELECT ean_code, price,
 SUBSTRING(CAST(release_date AS CHAR(26)) FROM 11 FOR 2)
 || '/' ||
 SUBSTRING(CAST(release_date AS CHAR(26)) FROM 14 FOR 2)
 || '/' ||
 SUBSTRING(CAST(release_date AS CHAR(26)) FROM 8 FOR 2) AS date
FROM items
WHERE EXTRACT(YEAR FROM release_date) = 1987;

Returns:

Datetime Arithmetic and Functions
It is possible to use datetime and interval values in expressions to calculate new datetime
and interval values.
Valid operations are:
• addition or subtraction between an interval value and a datetime value
• subtracting a datetime from another datetime value
• adding or subtracting two interval values
• multiplying or dividing an interval by a numerical value
The first of these operations yields a datetime value while the others result in an interval
value.

Retrieve the EAN, price and the number of days to the release date for any items
with a release date in the future:

SELECT ean_code, price,
 (release_date - CURRENT_DATE) DAY(3) AS days
FROM items
WHERE release_date > CURRENT_DATE;

Returns:

When taking the difference between two datetime values it is necessary to specify the type
of the resulting interval.

EAN_CODE PRICE DATE

9780006167242 4.99 04/30/87

9780002315432 15.99 06/15/87

EAN_CODE PRICE DAYS

7298976754871 13.98 5

7464376662256 15.98 12

9781990789861 13.99 8

9781993789639 6.99 4

Mimer SQL Version 11.0 43
User’s Manual

It is also possible to specify the precision of the interval as shown in the above example;
the default precision for day is 2.

Retrieve the EAN, price and the release date for any items with a release date in the
next 100 hours:

SELECT ean_code, price, release_date
FROM items
WHERE CAST(release_date AS TIMESTAMP)
 BETWEEN LOCALTIMESTAMP
 AND LOCALTIMESTAMP + INTERVAL '100' HOUR(3);

Returns:

About Intervals
SQL distinguishes between YEAR-MONTH (long) intervals and DAY-TIME (short)
intervals.
YEAR-MONTH intervals are: YEAR, MONTH and YEAR TO MONTH.
DAY-TIME intervals are: DAY, HOUR, MINUTE, SECOND, HOUR TO MINUTE,
HOUR TO SECOND, MINUTE TO SECOND, DAY TO HOUR, DAY TO MINUTE and
DAY TO SECOND.
Long intervals may only be compared to other long intervals, and short intervals may only
be compared to other short intervals, i.e. short and long intervals are not comparable.

EAN_CODE PRICE RELEASE_DATE

9781993789639 6.99 2002-03-15

44 Chapter 3 Retrieving Data
Datetime Arithmetic and Functions

Extracting Values
It is possible to extract part of a datetime value with the EXTRACT function. The function
returns a numeric value.

Extract the month and year for any items with a release date in the next 4 days:
SELECT CASE EXTRACT(MONTH FROM release_date)
 WHEN 1 THEN 'January'
 WHEN 2 THEN 'February'
 WHEN 3 THEN 'March'
 WHEN 4 THEN 'April'
 WHEN 5 THEN 'May'
 WHEN 6 THEN 'June'
 WHEN 7 THEN 'July'
 WHEN 8 THEN 'August'
 WHEN 9 THEN 'September'
 WHEN 10 THEN 'October'
 WHEN 11 THEN 'November'
 WHEN 12 THEN 'December'
 END
 || ' ' ||
 CAST(EXTRACT(YEAR FROM release_date) AS CHAR(4))
FROM items
WHERE release_date BETWEEN CURRENT_DATE
 AND CURRENT_DATE + INTERVAL '4' DAY;

Returns:

DAYOFWEEK
Another useful function is DAYOFWEEK which returns the day number within a week.
Monday has the value 1 and Sunday has the value 7.

Find the release day for any items with a release date in the next 4 days:
SELECT CASE DAYOFWEEK(release_date)
 WHEN 1 THEN 'Monday'
 WHEN 2 THEN 'Tuesday'
 WHEN 3 THEN 'Wednesday'
 WHEN 4 THEN 'Thursday'
 WHEN 5 THEN 'Friday'
 WHEN 6 THEN 'Saturday'
 WHEN 7 THEN 'Sunday'
 END
FROM items
WHERE release_date BETWEEN CURRENT_DATE
 AND CURRENT_DATE + INTERVAL '4' DAY;

Result:

March 2002

Friday

Mimer SQL Version 11.0 45
User’s Manual

Using Set Functions
The functions listed below can be used in the column list of the SELECT statement to
retrieve the result of the function on a specified column.

About Set Functions
Set functions in SELECT statements are applied to data in the result table, not in the source
table.
Set functions return a single value for the whole table unless a GROUP BY clause is
specified, see Grouped Set Functions – the GROUP BY Clause on page 47.
For all set functions, null values are eliminated from the column before the function is
applied. The special form COUNT(*) counts the number of rows including null values.
The keywords ALL and DISTINCT may be used to qualify set functions. ALL gives a result
based on all values including duplicates. DISTINCT eliminates duplicates before
applying the function. If neither keyword is specified, duplicates are not removed.
Note: Set functions may not be used together with direct column references in the

SELECT list (unless the SELECT statement includes a GROUP BY clause, see
Grouped Set Functions – the GROUP BY Clause on page 47).

Set function Explanation

AVG average of values (numerical columns only)

COUNT number of rows

MAX largest value

MIN smallest value

SUM sum of values (numerical columns only)

46 Chapter 3 Retrieving Data
Using Set Functions

Example of Set Functions
The set functions are illustrated with results from the following table:
Note: A hyphen - indicates null.

COUNT(SAMPLE)8
COUNT(*)10
COUNT(DISTINCT SAMPLE)5
SUM(SAMPLE)22.0
SUM(ALL SAMPLE)22.0
SUM(DISTINCT SAMPLE)15.0
AVG(SAMPLE)2.75000000000
AVG(ALL SAMPLE)2.75000000000
AVG(DISTINCT SAMPLE)3.00000000000
MAX(SAMPLE)5.0
MIN(SAMPLE)1.0

Note: AVG(column) is equivalent to SUM(column)/COUNT(column). However,
the expression SUM(column)/COUNT(*) will give a different answer if the
column includes null values.
Thus, for the table above:
SUM(SAMPLE)/COUNT(SAMPLE) 2.75000000000 (22/8)
SUM(SAMPLE)/COUNT(*) 2.20000000000 (22/10)

More Set Functions Examples
Some further examples of set functions applied to the example database are given below.

How many rows are there in the CURRENCIES table?
SELECT COUNT(*)
FROM currencies;

How many currencies have a defined exchange rate (i.e. EXCHANGE_RATE is not
null)?

SELECT COUNT(exchange_rate)
FROM currencies;

SAMPLE

1.0

2.0

2.0

2.0

3.0

3.0

4.0

5.0

-

-

Mimer SQL Version 11.0 47
User’s Manual

What is the average exchange rate?
SELECT AVG(exchange_rate)
FROM currencies;

Decimal Calculation
The AVG function returns an integer if the operand is an integer, and a decimal if the
operand is decimal. To force decimal calculation of averages from an integer column, cast
the column operand as decimal:

SELECT AVG(CAST(column AS DECIMAL)) ...

Grouped Set Functions – the GROUP BY Clause
Normally, set functions return a single value, calculated from the set of all values in the
column or expression.
If the SELECT statement includes a GROUP BY clause, set functions will be applied to
groups of values. Columns used for GROUP BY do not have to be included in the SELECT
list.

Find the number of rows in each category within the FORMATS table:
SELECT category_id, COUNT(*)
FROM formats
GROUP BY category_id;

Returns:

Restrictions When Using GROUP BY
Using a GROUP BY clause places some restrictions on the SELECT statement.
Only constants, columns listed in the GROUP BY clause, and columns used as arguments
to set functions may be included in the SELECT list.
A derived table can be used to overcome this restriction.

Find the number of released items, grouped by year, month and format:
select y, m, format, count(*)
from
(
 select extract(year from release_date) as y,
 extract(month from release_date) as m,
 format
 from product_details
) dt
group by y, m, format;

CATEGORY_ID

1 4

2 4

3 2

48 Chapter 3 Retrieving Data
Selecting Groups – the HAVING Clause

Null Values
For grouping purposes, null values are regarded as equivalent. Thus for the example table:

The following statement:
SELECT sample, COUNT(*) as number
 ...
GROUP BY sample;

Returns:

Selecting Groups – the HAVING Clause
The HAVING clause restricts the selection of groups in the same way that a WHERE clause
restricts the selection of rows. However, in contrast to the WHERE clause, a HAVING clause
may use a set function on the left-hand side of a comparison.
The HAVING clause is most often used together with a GROUP BY clause, but may also be
used to impose selection conditions on a column derived from a set function.

SAMPLE

1.0

2.0

2.0

2.0

3.0

3.0

4.0

5.0

-

-

SAMPLE NUMBER

1.0 1

2.0 3

3.0 2

4.0 1

5.0 1

- 2

Mimer SQL Version 11.0 49
User’s Manual

Find the currency codes that are used by more than one country:
SELECT currency_code, COUNT(currency_code)
FROM countries
GROUP BY currency_code
HAVING COUNT(currency_code) > 1;

Returns:

Ordering the Result Table
Strictly, the order of rows in a result table is undefined unless an ORDER BY clause is
included in the SELECT statement.
Ascending or descending order may be specified; ascending order is the default.
Note: A SELECT statement without an ORDER BY clause may appear to give an

ordered result in Mimer SQL, but you should include an ORDER BY clause if
the ordering is important. Without the ORDER BY clause, a change in the
database contents or updated Mimer SQL version can otherwise change the
order.

Example
SELECT *
FROM formats
ORDER BY format DESC;

Returns:

CURRENCY_CODE

AUD 8

CHF 2

DKK 3

EUR 23

IDR 2

… …

FORMAT_ID FORMAT CATEGORY_ID DISPLAY_ORDER

4 Vinyl 1 40

10 Video 3 20

8 Paperback 2 20

7 Hardcover 2 10

9 DVD Video 3 10

3 DVD Audio 1 10

2 Cassette 1 30

1 Audio CD 1 20

6 Audio CD 2 30

5 Audio Cassette 2 40

50 Chapter 3 Retrieving Data
Ordering the Result Table

Ordering by More than One Column
More than one column may be specified in the ORDER BY clause.

Example
SELECT *
FROM formats
ORDER BY category_id, display_order;

Returns:

Ordering by Set Function
To order a result table by a set function, the column in the result table is given a label and
the label is used in the ORDER BY clause.

Example
SELECT category_id, MAX(display_order) AS maximum_value
FROM formats
GROUP BY category_id
ORDER BY maximum_value;

Returns:

FORMAT_ID FORMAT CATEGORY_ID DISPLAY_ORDER

3 DVD Audio 1 10

1 Audio CD 1 20

2 Cassette 1 30

4 Vinyl 1 40

7 Hardcover 2 10

8 Paperback 2 20

6 Audio CD 2 30

5 Audio Cassette 2 40

9 DVD Video 3 10

10 Video 3 20

CATEGORY_ID MAXIMUM_VALUE

3 20

1 40

2 40

Mimer SQL Version 11.0 51
User’s Manual

Ordering by a Computed Value
To order a result table by a computed value, place the computation in the ORDER BY
clause.

Example
SELECT product
FROM products JOIN items ON products.product_id = items.product_id
WHERE format_id = 2
ORDER BY stock * price;

Returns:

Retrieving Data From More Than One Table
The examples presented up to now in this chapter have illustrated the essential features of
simple SELECT statements with data retrieval from single tables. However, much of the
power of SQL lies in the ability to perform joins through a single statement, i.e. to select
data from two or more tables, using the search condition to link the tables in a meaningful
way.

The Join Condition
In retrieving data from more than one table, the search condition or join condition
specifies the way the tables are to be linked. For example:

List the product name in addition to the EAN and price:
SELECT product, ean_code, price
FROM items

JOIN products ON items.product_id = products.product_id;

The join condition here is ITEMS.PRODUCT_ID = PRODUCTS.PRODUCT_ID, which
relates the product identifier in table ITEMS (where codes are listed) to the product
identifier in table PRODUCTS (where names are listed).

PRODUCT

The Wild, the Innocent and the E Street Shuffle

Greatest Hits

On How Life Is

Snowed In

Christmas Portrait

Falling into You

LaTouché IV: Traditional Cajun Dancin' Music

Atlanta Homecoming

Born in the U.S.A.

52 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

Returns:

Conceptually, the join first establishes a table containing all combinations of the rows in
PRODUCTS with the rows in ITEMS, then selects those rows in which the two
PRODUCT_ID values are equal. See Conceptual Description of the Selection Process on
page 70 for a fuller description of the conceptual SELECT process.
This does not necessarily represent the order in which the operations are actually
performed; the order of evaluation of a complex SELECT statement is determined by the
SQL optimizer, regardless of the order in which the component clauses are written.

Cross Products
Without the join condition, the result is a cross product of the columns in the tables in
question, containing all possible combinations of the selected columns, for example:

SELECT product, ean_code, price
FROM items CROSS JOIN products;

Returns:

It is easy to see that a carelessly formulated join query can produce a very large result
table. Two tables of 100 rows each, for instance, give a cross product with 10,000 rows;
three tables of 100 rows each give a cross product with 1,000,000 rows!
The risk of generating large (erroneous) result tables is particularly high in interactive
SQL (e.g. when using Mimer BSQL), where queries are so easily written and submitted.

Simple Joins
In simple joins, all tables used in the join are listed in the FROM clause of the SELECT
statement. This is in distinction to nested joins, where the search condition for one
SELECT is expressed in terms of another SELECT, see Nested Selects on page 56.

Example
SELECT product, ean_code, price
FROM items

JOIN products ON items.product_id = products.product_id;

PRODUCT EAN_CODE PRICE

100 Anos 77774238724 9.98

12 Golden Country Greats 75596190923 17.98

12 Super Exitos 724385487521 9.98

1492: Conquest of Paradise 75678243226 17.98

… … …

PRODUCT EAN_CODE PRICE

'Murder In The Cathedral' 77774238724 9.98

'Murder In The Cathedral' 75596190923 17.98

'Murder In The Cathedral' 724385487521 9.98

'Murder In The Cathedral' 75678243226 17.98

… … …

Mimer SQL Version 11.0 53
User’s Manual

SELECT *
The form SELECT * may be used in a join query, but since this selects all columns in the
result set, at least one column is often duplicated (a join condition column).

Example
SELECT *
FROM items

JOIN products ON items.product_id = products.product_id;

Returns:
Columns from ITEMS:

Columns from PRODUCTS:

Columns in the join query that are uniquely identified by the column name may be
specified by name alone. Columns that have the same name in the joined tables must be
qualified by their respective table names.
The same query as above, but only three columns are returned:

SELECT product, ean_code, price
FROM items

JOIN products ON items.product_id = products.product_id;

Nesting Join Clauses
It is possible to nest join-clauses, for example:

List the category in addition to the EAN and price for any items released in Decem-
ber 1996:

SELECT ean_code, price, category
FROM items

JOIN formats ON items.format_id = formats.format_id
JOIN categories ON categories.category_id = formats.category_id

WHERE release_date BETWEEN date'1996-12-01' AND date'1996-12-30';

Result:

Complex Search Conditions and Joins
A join query can join any number of tables using complex search conditions to select the
relevant information from each table.

ITEM_ID PRODUCT_ID FORMAT_ID RELEASE_DATE STATUS PRICE

STOCK REORDER_LEVEL EAN_CODE PRODUCER_ID IMAGE_ID

PRODUCT PRODUCT_ID PRODUCT_SEARCH

EAN_CODE PRICE CATEGORY

 9780006498957 7.99 Books

724385487521 9.98 Music

731453076723 29.98 Music

53308951925 11.98 Music

54 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

List the product for any items with a release date in the future along with the item
price in both Swedish and Danish crowns (SEK and DKK respectively):

SELECT product,
 CAST(price * exchange_rate AS DECIMAL(12,2)) AS cost,
 currency
FROM items
JOIN products ON products.product_id = items.product_id
CROSS JOIN currencies
WHERE release_date > CURRENT_DATE
AND currencies.code IN ('SEK', 'DKK')

ORDER BY product, currency;

Result:

In formulating a search condition for a join query, it can help to write out the columns that
would appear in a complete cross-product of the tables. The search condition is then
formulated as though the query was a simple SELECT from the cross-product table.

Outer Joins
The joins in the previous sections were all inner joins. In an inner join between two tables,
only rows that fulfill the join condition are present in the result.
An outer join, on the contrary, contains non-matching rows as well. The outer join has
two options, LEFT and RIGHT.

Left Outer Join

Example
SELECT ean_code, release_date, producer
FROM items
LEFT OUTER JOIN producers

ON items.producer_id = producers.producer_id
WHERE ean_code >= 800000000000
ORDER BY ean_code;

Result:

PRODUCT COST CURRENCY

Greatest Hits 99.42 Danish Kronor

Greatest Hits 125.61 Swedish Kronor

Pieces Of Fish 113.64 Danish Kronor

Pieces Of Fish 143.58 Swedish Kronor

The Future Foretold 49.71 Danish Kronor

The Future Foretold 62.80 Swedish Kronor

The Sql Quiz Book 99.49 Danish Kronor

The Sql Quiz Book 125.70 Swedish Kronor

EAN_CODE RELEASE_DATE PRODUCER

800488327626 1998-08-11 Giants Of Jazz (Ita)

 801061007720 2000-10-31 Warp Records

Mimer SQL Version 11.0 55
User’s Manual

In the example above all rows from the table to the left in the join clause, i.e. ITEMS, are
present in the result; non-matching rows from the PRODUCERS table are filled with null
values in the result.
Observe the difference in result for the next statement and the previous one.

SELECT ean_code, release_date, producer
FROM items
LEFT OUTER JOIN producers

ON items.producer_id = producers.producer_id
AND ean_code >= 800000000000

ORDER BY ean_code;

Result:

The reason is that conditions in the where clause are applied to the result of the join-clause
and not to the joined tables as is the case with the conditions in the on-clause.

Right Outer Join
A right outer join will take all records from the table to the right in the join-clause.

Nesting Outer Joins
As with inner joins, it is possible to nest join-clauses. Nested joins can be of different
types, i.e. both inner and outer joins.

4988002364947 1999-09-28 -

4988011353147 1998-06-30 -

5013145800423 2000-03-14 Mint / Cherry Red

5013929112322 1999-10-12 Cherry Red

5014438710221 1994-12-27 Receiver Records

5019317001728 1994-12-15 Receiver Records

7157761806273 1996-01-18 Status Records

… … …

EAN_CODE RELEASE_DATE PRODUCER

8811038120 1991-08-27 -

8811042127 1991-10-22 -

8811061326 1992-05-19 -

8811067021 1992-12-22 -

… … …

800488327626 1998-08-11 Giants Of Jazz (Ita)

 801061007720 2000-10-31 Warp Records

4988002364947 1999-09-28 -

4988011353147 1998-06-30 -

5013145800423 2000-03-14 Mint / Cherry Red

… … …

EAN_CODE RELEASE_DATE PRODUCER

56 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

The result of nested outer joins can be somewhat unexpected though, as it is the result of
the first join-clause that is the left table in the next join, not the right table in the first join-
clause.

Example
SELECT *
FROM tableA

LEFT JOIN tableB ON tableA.id = tableB.id
LEFT JOIN tableC ON tableA.id = tableC.id

This query does first perform tableA LEFT JOIN tableB. The result is then used as
left table when performing LEFT JOIN tableC.
To make this query clearer, parentheses can be added as:

SELECT *
FROM (tableA LEFT JOIN tableB ON tableA.id = tableB.id)
LEFT JOIN tableC ON tableA.id = tableC.id

Nested Selects
A form of SELECT, called a subquery, can be used in the search condition of a SELECT
statement to form a nested query.
The main SELECT statement is then referred to as the outer select.
For example:

Select the products that have a release date in the future.
SELECT product
FROM products
WHERE product_id IN (SELECT product_id

FROM items
WHERE release_date > CURRENT_DATE);

Result:

To see how this works, evaluate the subquery first:
SELECT product_id
FROM items
WHERE release_date > CURRENT_DATE;

Result:

PRODUCT

Greatest Hits

Pieces Of Fish

The Future Foretold

The Sql Quiz Book

PRODUCT_ID

30206

30618

Mimer SQL Version 11.0 57
User’s Manual

Then use the result of the subquery in the search condition of the outer select:
SELECT product
FROM products
WHERE product_id IN (30206, 30618, 31082, 31083);

Result:

Using Subqueries
A subquery can be used in a search condition wherever the result of the subquery can
provide the correct form of the data for the search condition.
Thus a subquery used with ‘=’ must give a single value as a result.
A subquery used with IN, ALL or ANY must give a set of single values, see Retrieval with
ALL, ANY, SOME on page 62.
A subquery used with EXISTS may give any result, see Retrieving Data Using EXISTS
and NOT EXISTS on page 60.

Examples:
WHERE column = (subquery)
WHERE column IN (subquery)
WHERE column = ALL (subquery)
WHERE column = ANY (subquery)
WHERE EXISTS (subquery)

The UNION, EXCEPT and INTERSECT operators can be used to combine two or more
subqueries in more complex statements, see Union, Except and Intersect Queries on
page 63.

Nested Queries
Many nested queries can equally well be written as simple joins. For example:

Select the products that have a release date in the future.
SELECT product
FROM products
WHERE product_id IN (SELECT product_id

FROM items
WHERE release_date > CURRENT_DATE);

31082

31083

PRODUCT

Greatest Hits

Pieces Of Fish

The Future Foretold

The Sql Quiz Book

PRODUCT_ID

58 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

or alternatively
SELECT DISTINCT product
FROM products
JOIN items

ON products.product_id = items.product_id
WHERE items.release_date > CURRENT_DATE;

Both these queries give exactly the same result. In most cases, the choice of which form
to use is a matter of personal preference. Choose the form which you can understand most
easily; the clearest formulation is least likely to cause problems.

Subqueries in Queries
Queries may contain any number of subqueries, for example:

List the producers (manufacturers) which have items that are more expensive than
any of the items produced by Sony.

SELECT producer
FROM producers
WHERE producer_id IN

(SELECT producer_id
FROM items
WHERE price >

(SELECT MAX(price)
FROM items
WHERE producer_id =

(SELECT producer_id
FROM producers
WHERE producer = 'SONY')));

Note the balanced parentheses for the nested levels.
It is particularly important at this level of complication to think carefully through the
query to make sure that it is correctly formulated.
Often, writing some of the levels as simple joins can simplify the structure. The previous
example may also be written:

SELECT DISTINCT producer
FROM producers
JOIN items

 ON producers.producer_id = items.producer_id
WHERE price > (SELECT MAX(price)

FROM items
JOIN producers

ON items.producer_id = producers.producer_id
WHERE producer = 'SONY');

Correlation Names
A correlation name is a temporary name given to a table to represent a logical copy of the
table within a query.
There are three uses for correlation names:
• simplifying complex queries
• joining a table to itself
• outer references in subqueries

Mimer SQL Version 11.0 59
User’s Manual

Simplifying Complex Queries Using Correlation Names
Using short correlation names into complicated queries can make the query easier to write
and understand, particularly when qualified table names are used:

SELECT mimer_store_music.artists.artist,
 mimer_store.product_details.*
FROM mimer_store.product_details
JOIN mimer_store_music.titles

ON mimer_store.product_details.item_id =
mimer_store_music.titles.item_id

JOIN mimer_store_music.artists
ON mimer_store_music.artists.artist_id =

mimer_store_music.titles.artist_id
ORDER BY mimer_store_music.artists.artist;

may be rewritten
SELECT art.artist, pdt.*
FROM mimer_store.product_details AS pdt
JOIN mimer_store_music.titles AS ttl

ON pdt.item_id = ttl.item_id
JOIN mimer_store_music.artists AS art

ON art.artist_id = ttl.artist_id
ORDER BY art.artist;

The keyword AS in the FROM clause may be omitted, but is recommended for clarity.

About Correlation Names
Correlation names are local to the query in which they are defined.
When a correlation name is introduced for a table name, all references to the table in the
same query must use the correlation name.
The following expression is not accepted:

 ...
 FROM mimer_store.product_details AS pdt,
 mimer_store_music.titles AS ttl,
 ...
 WHERE ttl.item_id = mimer_store.product_details.item_id

Joining a Table with Itself Using a Correlation Name
Joining a table with itself allows you to compare information in a table with other
information in the same table. This can be done with a correlation name.

Select all currencies with the same exchange rate:
SELECT c.currency, c.code, c.exchange_rate
FROM currencies AS c
JOIN currencies AS copy

ON c.exchange_rate = copy.exchange_rate
AND c.currency <> copy.currency;

Result:

CURRENCY CODE EXCHANGE_RATE

Croatian Kuna HRK 7.0820

Gourdes HTQ 7.0820

Iraqi Dina IQD 1551.0000

Uganda Shillings UGX 1551.0000

60 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

Here, the table CURRENCIES is joined to a logical copy of itself called COPY.
The first search condition finds pairs of currencies with the same exchange rate, and the
second eliminates 'pairs' with the same currency name. Without the second condition in
the search criteria, all currencies would be selected!
Without correlation names, this kind of query cannot be formulated. The following query
would select all the currencies from the table:

SELECT currency, code, exchange_rate
FROM currencies
WHERE currencies.exchange_rate = currencies.exchange_rate;

Outer References in Subqueries Using Correlation Names
In some constructions using subqueries, a subquery at a lower level may refer to a value
in a table addressed at a higher level. This kind of reference is called an outer reference.

SELECT currency
FROM currencies
WHERE EXISTS (SELECT *

FROM countries
WHERE currency_code = currencies.code);

This kind of query processes the subquery for every row in the outer select, and the outer
reference represents the value in the current outer select row. In descriptive terms, the
query says 'For each row in CURRENCIES, select the CURRENCY column if there are rows
in COUNTRIES containing the current CODE value'.
If the qualifying name in an outer reference is not unambiguous in the context of the
subquery, a correlation name must be defined in the outer select.
A correlation name may always be used for clarity, as in the following example:

SELECT currency
FROM currencies AS c
WHERE EXISTS (SELECT *

FROM countries
WHERE currency_code = c.code);

Retrieving Data Using EXISTS and NOT EXISTS
EXISTS is used to check for the existence of some row or rows which satisfy a specified
condition. EXISTS differs from the other operators in that it does not compare specific
values; instead, it tests whether a set of values is empty or not. The set of values is
specified as a subquery.
The subquery following the EXISTS clause most often uses of ‘SELECT *’ as opposed
to ‘SELECT column-list’ since EXISTS only searches to see if the set of values
addressed by the subquery is empty or not - a specified column is seldom relevant in the
subquery.
EXISTS (subquery) is true if the result set of the subquery is not empty
NOT EXISTS (subquery) is true if the result set of the subquery is empty
SELECT statements with EXISTS almost always include an outer reference linking the
subquery to the outer select.

Mimer SQL Version 11.0 61
User’s Manual

Examples of EXISTS

Find all currencies that are used in the COUNTRIES table:
SELECT currency
FROM currencies AS c
WHERE EXISTS (SELECT *

FROM countries
WHERE currency_code = c.code);

Without the outer reference, the select becomes a conditional ‘all-or-nothing’ statement:
perform the outer select if the subquery result is not empty, otherwise select nothing.

List all products where the producer (manufacturer) is not known:
SELECT product
FROM products AS p
WHERE EXISTS (SELECT *

FROM items
WHERE producer_id IS NULL
AND product_id = p.product_id);

Examples of NOT EXISTS
The next example illustrates NOT EXISTS:

List all products where the producer (manufacturer) is not known:
SELECT product
FROM products
WHERE NOT EXISTS (SELECT *

FROM items
JOIN producers ON items.producer_id = producers.producer_id
WHERE product_id = products.product_id);

Result:

Negated EXISTS
Negated EXISTS clauses must be handled with care. There are two semantic ‘opposites’
to EXISTS, with very different meanings:

WHERE EXISTS (SELECT *
FROM artists
WHERE artist = 'Enigma')

is true if at least one artist is called Enigma.
WHERE NOT EXISTS (SELECT *

FROM artists
WHERE artist = 'Enigma')

is true if no artist is called Enigma.

PRODUCT

Invictus

Middle Of Nowhere

62 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

But
WHERE EXISTS (SELECT *

FROM artists
WHERE artist <> 'Enigma')

is true if at least one artist is not called Enigma.
WHERE NOT EXISTS (SELECT *

FROM artists
WHERE artist <> 'Enigma')

is true if no artist is not called Enigma, that is if every artist is called Enigma.

Retrieval with ALL, ANY, SOME
Subqueries that return a set of values may be used in the quantified predicates ALL, ANY
or SOME. Thus

WHERE PRICE < ALL (subquery)

selects rows where the price is less than every value returned by the subquery
WHERE PRICE < ANY (subquery)

selects rows where the price is less than at least one of the values returned by the subquery

Select countries that have an exchange rate of less than one:
SELECT country
FROM countries
WHERE currency_code <> ALL (SELECT code

FROM currencies
WHERE exchange_rate >= 1.0);

If the result of the subquery is an empty set, ALL evaluates to true, while ANY or SOME
evaluates to false.
An alternative to using ALL, ANY or SOME in a value comparison against a general
subquery, is to use EXISTS or NOT EXISTS to see if values are returned by a subquery
which only selects for specific values. For example:

Select countries where the associated currency code contains the letter 'E' as the
middle character in the code:

SELECT country
FROM countries
WHERE currency_code = ANY (SELECT code

FROM currencies
WHERE code LIKE '_E_');

is equivalent to:
SELECT country
FROM countries AS c
WHERE EXISTS (SELECT *

FROM currencies
WHERE code LIKE '_E_'
AND code = c.currency_code);

Mimer SQL Version 11.0 63
User’s Manual

Union, Except and Intersect Queries
The UNION, EXCEPT and INTERSECT operators combine the results of two select clauses.
UNION first merges the result tables specified by the separate selects and then eliminates
duplicate rows from the merged set. (UNION ALL does not eliminate duplicate rows.)
EXCEPT takes the distinct rows from the first select and returns the rows that do not appear
in the second select. (EXCEPT ALL does not eliminate duplicate rows.)
INTERSECT takes the results of two selects and returns only rows that appear in both
selects, after removing duplicate rows from the final result set. (INTERSECT ALL does
not eliminate duplicate rows.)
Columns which are merged by UNION, EXCEPT and INTERSECT must have compatible
data types (numerical with numerical, character with character, etc).
Subqueries addressing more than one result column are merged column by column in the
order of selection. The number of columns addressed in each subquery must be the same.
The column names in the result of a UNION, EXCEPT or INTERSECT are taken from the
names in the first subquery. Use labels in the first subquery to assign different column
names to the result table.
In UNION, EXCEPT and INTERSECT queries, you may need to add an empty column so
that columns not represented in both queries in the statement are retained in the result set.
This is done by casting a null value to a matching data type.

Example
SELECT ean_code, release_date, producer
FROM items
INNER JOIN producers

ON items.producer_id = producers.producer_id
UNION ALL
SELECT ean_code, release_date, CAST(NULL AS char)
FROM items
WHERE NOT EXISTS

(SELECT * FROM producers
WHERE items.producer_id = producers.producer_id)

64 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

UNION Examples

Select the different codes for currencies and countries that start with the letter 'D':
SELECT code
FROM currencies
WHERE code LIKE 'D%'
UNION
SELECT currency_code
FROM countries
WHERE country LIKE 'D%';

The result is obtained by merging the results of the two selects and eliminating duplicates:
SELECT code SELECT currency_code
FROM currencies FROM currencies
WHERE code LIKE 'D%; WHERE country LIKE 'D%';

and the UNION gives the result table:

To retain duplicates in the result table, use UNION ALL in place of UNION, see the
Mimer SQL Reference Manual, Chapter 7, UNION or UNION ALL, for details.

Merge the codes and names of currencies where the code begins with 'D' with the
codes and names of the countries where the country begins with 'D':

SELECT code, currency AS currency_or_country
FROM currencies
WHERE code LIKE 'D%'
UNION
SELECT currency_code, country
FROM countries
WHERE country LIKE 'D%'
ORDER BY code;

CODE CURRENCY_CODE

DJF DJF

DKK DKK

DOP XCD

DZD DOP

CODE

DJF

DKK

DOP

DZD

XCD

Mimer SQL Version 11.0 65
User’s Manual

Result:

Find the lowest and highest exchange_rates:
Unions can be used to combine information from the same table.

SELECT 'Highest', MAX(exchange_rate) AS rate
FROM currencies
UNION ALL
SELECT 'Lowest', MIN(exchange_rate)
FROM currencies
ORDER BY rate;

Result:

CODE CURRENCY_OR_COUNTRY

DJF Djibouti

DJF Djibouti Francs

DKK Danish Kronor

DKK Denmark

DOP Dominican Pesos

DOP Dominican Republic

DZD Algerian Dinars

XCD Dominica

RATE

Lowest 0.2644

Highest 1035000.0000

66 Chapter 3 Retrieving Data
Retrieving Data From More Than One Table

EXCEPT Example

Select the codes from currencies, except those that also are found in countries,
starting with the letter 'D':

SELECT code
FROM currencies
WHERE code LIKE 'D%'
EXCEPT
SELECT currency_code
FROM countries
WHERE country LIKE 'D%';

The result is obtained by taking the first result and then remove the rows also found in the
second select, and finally eliminating duplicates:

SELECT code SELECT currency_code
FROM currencies FROM currencies
WHERE code LIKE 'D%; WHERE country LIKE 'D%';

and the EXCEPT gives the result table:

To retain duplicates in the result table, use EXCEPT ALL in place of EXCEPT, see the
Mimer SQL Reference Manual, Chapter 7, EXCEPT or EXCEPT ALL, for details.

CODE CURRENCY_CODE

DJF DJF

DKK DKK

DOP XCD

DZD DOP

CODE

DZD

Mimer SQL Version 11.0 67
User’s Manual

INTERSECT Example

Select the codes from currencies and countries that exist in both tables, starting
with the letter 'D':

SELECT code
FROM currencies
WHERE code LIKE 'D%'
INTERSECT
SELECT currency_code
FROM countries
WHERE country LIKE 'D%';

The result is obtained by taking the rows that are included in the first result and also in
the second select, and finally eliminating duplicates:

SELECT code SELECT currency_code
FROM currencies FROM currencies
WHERE code LIKE 'D%; WHERE country LIKE 'D%';

and the INTERSECT gives the result table:

To retain duplicates in the result table, use INTERSECT ALL in place of INTERSECT, see
the Mimer SQL Reference Manual, Chapter 7, INTERSECT or INTERSECT ALL, for
details.

Handling Null Values
Null values require special handling in SQL queries. Null represents an unknown value,
and strictly speaking null is never equal to null. (Null values are however treated as equal
for the purposes of GROUP BY, DISTINCT and UNION, EXCEPT and INTERSECT).

Searching for null
The condition for selecting null values is

WHERE column IS NULL

The negated form (WHERE column IS NOT NULL) selects values which are not null (i.e.
values which are known).

CODE CURRENCY_CODE

DJF DJF

DKK DKK

DOP XCD

DZD DOP

CODE

DFJ

DKK

DOP

68 Chapter 3 Retrieving Data
Handling Null Values

List all currencies, and their codes, where the exchange rate is not known:
SELECT currency, code
FROM currencies
WHERE exchange_rate IS NULL;

Result:

List all EAN codes where the producer is not known:
SELECT ean_code
FROM items
WHERE producer_id IS NULL;

Result:

List all EAN codes issued to Llewellyn Publications, where the release date is not
known:

SELECT ean_code
FROM items
WHERE release_date IS NULL
AND PRODUCER_ID IN (SELECT producer_id

FROM producers
WHERE producer = 'Llewellyn Publications');

Result:

CURRENCY CODE

Armenian Drams AMD

Kwanza AOA

Brunei Dollars BND

Francs Congolais CDF

Saint Helena Pounds SHP

Somali Shillings SOS

Somoni TJS

EAN_CODE

4988002364947

4988011353147

EAN_CODE

9780875428697

9780875428949

9780875428260

9780875428680

9780875427386

Mimer SQL Version 11.0 69
User’s Manual

Null values in ALL, ANY, IN and EXISTS Queries
Null values should be treated cautiously, particularly in ALL, ANY, IN and EXISTS
queries.
The result of a comparison involving null is unknown, which is generally treated as false.
This can lead to unexpected results.
For example, neither of the following conditions are true:

<null> IN (...,null,...)
<null> NOT IN (...,null,...)

The first result is almost intuitive: since null is not equal to null, null is not a member of
a set containing null.
But if null is not a member of a set containing null, the second result is intuitively true.
In fact, neither result is true or false: both are unknown. If null values are involved on
either side of the comparison, IN and NOT IN are not complementary. Similar arguments
apply to queries containing ALL or ANY, for example:

SELECT currency, code
FROM currencies
WHERE exchange_rate > ALL (SELECT exchange_rate

FROM currencies
WHERE currency LIKE 'D%');

Result:

This query works as long as there are no null values returned by the subquery. But
perform the subquery against a range of currencies that contain a null value in the
exchange rate, and the query results in an empty set:

SELECT currency, code
FROM currencies
WHERE exchange_rate > ALL (SELECT exchange_rate

FROM currencies
WHERE currency LIKE 'A%');

Moreover, the reverse query, currencies that have a lower exchange rate, also results in
an empty set. A justification for this is that as long as an exchange rate is unknown, it is
impossible to say whether other currency rates are greater or less.

Using Exists
It is always possible to rephrase a query using ALL, ANY or IN in terms of one using
EXISTS (with an outer reference between the selection and the EXISTS condition). This
is to be recommended if the null indicator is to be permitted in the comparison sets, since
null handling is then written out explicitly in the query.
Distinctions between queries involving null comparisons are subtle and are easily
overlooked.

CURRENCY CODE

Belarussian Rubles BYR

Maticais MZM

Lei ROL

Turkish Liras TRL

70 Chapter 3 Retrieving Data
Conceptual Description of the Selection Process

It is essential that the aim of a query is stringently defined before the query is formulated
in SQL, and that the possible effects of null values in the search condition are considered.
There are many real-life examples where the presence of null has resulted in unforeseen
and sometimes misleading data retrievals. It is advisable to define all columns in the
database tables as NOT NULL except those where unknown values have a specific
meaning. In this way the risks of confusion with null handling are minimized.

Conceptual Description of the Selection Process
This section presents a conceptual step-by-step analysis of the evaluation of a SELECT
statement.
It is intended as an aid in formulating complex SELECT statements, and can also help you
in understanding details of the statement syntax.
Note: The description here is purely conceptual. It does not represent the actual

sequence of events performed by the database manager. In particular, the
computer resource requirements implied by the intermediate result set defined
in a FROM clause do not necessarily reflect actual requirements.

Query Used
The query used in the analysis is:

List those producers and the average price for the goods that they manufacture
where they make more than 10 items. Sort the result by the average price, with the
largest first:

SELECT producer, AVG(price) AS average
FROM producers AS p
JOIN items AS i

 ON p.producer_id = i.producer_id
GROUP BY p.producer
HAVING COUNT(*) > 10
ORDER BY average DESC, producer

Result:

PRODUCER AVERAGE

BBC Audio (Spoken Word) 37.742727272727

MCA 27.798181818181

RCA 19.580000000000

Elektra/Asylum 18.265714285714

Warner Brothers 17.137894736842

Capitol 16.646666666666

Atlantic 14.798181818181

Sony 14.091111111111

… …

Mimer SQL Version 11.0 71
User’s Manual

Selection Process
Step 1 Subqueries at the lowest nesting level are evaluated first.

The first step in evaluating a select is to resolve subqueries from the lowest level
up, and conceptually replace the subquery with the result set. The example here
does not use a nested select.
When all subqueries are resolved, a, possibly complicated, single-level SELECT
statement remains.

Step 2 The FROM clause defines an intermediate result set.
Tables addressed in the FROM clause are combined to form an intermediate
result set which is the full cross product of the tables.
The cross product is a table with one column for each column in each of the
table, and one row for every combination of rows from the different tables.
The columns in the result set are identified by the qualified column names from
the table from which they are derived.
FROM producers AS p JOIN items AS i

The FROM clause in the example produces an intermediate result set which is the
full cross product of the PRODUCERS table and the ITEMS table.

Step 3 The ON clause selects rows from the intermediate set.
The ON clause selects rows from the full cross product result set that meet the
JOIN criteria specified.
ON p.producer_id = i.producer_id

In this example the ON clause selects only those result set rows where the value
in the PRODUCER_ID column from the PRODUCERS table is equal to that in the
PRODUCER_ID column from the ITEMS table.

The GROUP BY clause groups the remaining result set:
GROUP BY p.producer

PRODUCER PRICE

404 Music Group 16.98

4AD Records 11.98

7-N Music 16.98

A&M Records 11.98

A&M Records 22.98

A&M Records 10.98

A&M Records 18.98

A&M Records 18.98

… …

72 Chapter 3 Retrieving Data
Conceptual Description of the Selection Process

Step 4 The HAVING clause selects groups:
HAVING COUNT(*) > 10

Step 5 The SELECT list selects columns, evaluates any expressions in the
SELECT list, and reduces groups to single rows if set functions are used:
SELECT producer, AVG(price) AS average

Step 6 The results of subqueries joined by UNION, EXCEPT and INTERSECT are
merged.
This example does not include a UNION, EXCEPT or INTERSECT.

Step 7 The final result is sorted according to the ORDER BY clause:
ORDER BY average DESC, producer;

PRODUCER PRICE

Atlantic 17.98

Atlantic 11.98

Atlantic 11.98

Atlantic 9.98

Atlantic 11.98

Atlantic 17.98

Atlantic 11.98

Atlantic 11.98

… …

PRODUCER AVERAGE

Atlantic 14.798181818181

BBC Audio (Spoken Word) 37.742727272727

Capitol 16.646666666666

Collins 7.529814814814

Elektra/Asylum 18.265714285714

Geffen Records 12.480000000000

HarperCollins 6.722187500000

Marshall Editions 9.842222222222

… …

PRODUCER AVERAGE

BBC Audio (Spoken Word) 37.742727272727

MCA 27.798181818181

RCA 19.580000000000

Elektra/Asylum 18.265714285714

Warner Brothers 17.137894736842

Mimer SQL Version 11.0 73
User’s Manual

Capitol 16.646666666666

Atlantic 14.798181818181

Sony 14.091111111111

… …

PRODUCER AVERAGE

74 Chapter 3 Retrieving Data
Conceptual Description of the Selection Process

Mimer SQL Version 11.0 75
User’s Manual

Chapter 4

Collations
Sorting and searching non-English text can cause a number of problems, a frequent one
being how to handle accented letters, for example á, à and â.
The rules for sorting vary because the various natural languages sort words differently.
There are occasions where the accented form of a letter is treated as a distinct letter for
the purpose of comparison. For example, in Swedish, Å is a separate letter that is sorted
after Z. In some languages, it is common to sort uppercase before lowercase, in other
languages this is reversed; sometimes it is just a matter of personal preference.
A collation, also known as a collating sequence, is a database object containing a set of
rules that determines how character strings are compared, searched and alphabetically
sorted. The rules in the collation determine whether one character string is less than, equal
to or greater than another. A collation also determines how case-sensitivity and accents
are handled.
In Mimer SQL, a collation belongs to a schema. In this release, the pre-defined collations
included belong to INFORMATION_SCHEMA.
When a collation is used, Mimer SQL first checks to see if it belongs to the ident's
schema. If Mimer SQL does not find it there, it checks for it in INFORMATION_SCHEMA.

Character Sets and Collations
For character data, Mimer SQL uses the character set ISO 8859-1, also known as the
Latin1 character set. By default, character data is sorted in the numerical order of their
codes according to the ISO8BIT collation.
For national character data, Mimer SQL uses the Unicode character set. By default
national character data is sorted according to the UCS_BASIC collation.
It is not possible to add, drop or modify a character set.
Every character set has one default collation.

Character Set Default Collation Data Types

ISO 8859-1 ISO8BIT CHARACTER
CHARACTER VARYING
CLOB

UNICODE UCS_BASIC NCHAR
NCHAR VARYING
NCLOB

76 Chapter 4 Collations
Using Collations

If you want to sort characters in a different way than the default, you can specify a
collation at the column level when creating or altering a table or creating a domain. You
can also override a collation by using a COLLATE clause in an SQL statement.

Using Collations
You can specify a collation for ordering characters when you create or alter a table or
create a domain.
If you have specified a collation for a column, the collation is used implicitly in SQL
statements.
You only need to explicitly use a collate clause in SQL statements if you want to override
the default collation or the collation you specified when creating or altering the table or
creating the domain.

Character Strings
SQL only permits compatible character strings to be compared. That is, you can compare
character strings only if the source and target strings belong to the same collation or can
be coerced into having the same collation.
A character string that is defined with a named collation can only be compared or
assigned to a character string that is either defined with the same named collation or is
defined without a collation.
In the case where one of the strings is not associated with a named collation then it will
be implicitly coerced to the same collation as the other string.

String Comparison Examples
The following three comparisons are all legal (and equivalent):

job_title = 'developer' COLLATE english_1

job_title COLLATE english_1 = 'developer'

job_title COLLATE english_1 = 'developer' COLLATE english_1

But –
job_title COLLATE english_1 = 'developer' COLLATE swedish_1

is illegal because different collations are specified.

CREATE/ALTER TABLE
When creating or altering a table, you can specify a collation in the column-definition, for
example:

CREATE TABLE employees (surname CHAR(20) COLLATE swedish_1
 ...

CREATE DOMAIN and CREATE TYPE
When creating a domain you can specify a collation for the character and national
character string data types, for example:

CREATE DOMAIN name_type AS VARCHAR(48) COLLATE english_1;
CREATE TYPE car_models AS VARCHAR(48) COLLATE english_1;

Mimer SQL Version 11.0 77
User’s Manual

All properties of a domain apply to the column when the domain/type is used in a CREATE
TABLE or ALTER TABLE statement.

CREATE INDEX
To improve performance when retrieving data, you can create more than one index for a
column using different collations, for example:

CREATE INDEX cnt_eng_ind ON countries (country COLLATE english_3);
CREATE INDEX cnt_swe_ind ON countries (country COLLATE swedish_3);

Which index that will be used depends on the situation. For example:
SELECT * FROM countries ORDER BY country COLLATE english_3;

will use the cnt_eng_ind index.
And

SELECT * FROM countries ORDER BY country COLLATE swedish_3;

will use the cnt_swe_ind index.

Collation Precedence
A collation specified in the column-definition will take precedence over a domain
collation.
Continuing with the example above, the domain collation was set to english_1, but in
the following example the column country is set to swedish_1, which takes
precedence over the domain setting:
 CREATE TABLE countries (
 code CHARACTER(2),
 country name_type COLLATE swedish_1,
 ...

Altering Collations on Columns
You can change the collation specified for a column by using the ALTER TABLE
statement, for example:

ALTER TABLE countries ALTER COLUMN country CHAR(20) COLLATE english_1;

To return to the default (ISO8BIT) sorting order, you would enter:
ALTER TABLE countries ALTER COLUMN country CHAR(20) COLLATE ISO8BIT;

By altering a collation, for example to the default ISO8BIT collation, you can remove any
dependencies associated with the collation. This makes it possible to drop the collation –
see the next section.

Dropping a Collation
You can drop a collation only if there are no dependencies, for example:

DROP COLLATION collation_name RESTRICT;

78 Chapter 4 Collations
Using Collations – Examples

Finding Out the Default Collation For a Column
You can find out which collation a column uses by reviewing the
INFORMATION_SCHEMA.COLUMNS view, for example:

SELECT *
FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'table1'
AND column_name = 'col1';

For more information, see the Mimer SQL Reference Manual, Chapter 13,
INFORMATION_SCHEMA dictionary views.

Using Collations – Examples
The following sections contain examples of how to use collations and what effects
collations can have on a result set.
The examples are based on the following (rather simple) table, table1:

colswe uses the swedish_1 collation, coleng uses the english_1 collation and col1
uses the Mimer SQL default ISO8BIT collation.

Comparison Operators
You can qualify the comparison operators (=, <>, <, <=, …) with a COLLATE clause. For
example:

SELECT col1
FROM table1
WHERE col1 > 'm';

would give the following result:

colswe coleng col1

A A A

a a a

W W W

å å å

v v v

col1

å

v

Mimer SQL Version 11.0 79
User’s Manual

However, explicitly using the COLLATE clause and the english_1 collation:
SELECT col1
FROM table1
WHERE col1 > 'm' COLLATE english_1;

would give the following result:

Similarly, explicitly using the COLLATE clause and the swedish_1 collation:
SELECT col1
FROM table1
WHERE col1 > 'm' COLLATE swedish_1;

would give the following result:

ORDER BY
You can use a COLLATE clause together with an ORDER BY clause to sort result sets. In
most cases a level 3 collation is suitable for order by purposes. For example:

SELECT *
FROM table1
ORDER BY col1 COLLATE swedish_3;

retrieves the data and sorts it on col1 according to the swedish_3 collation:

Similarly, the following statement:
SELECT *
FROM table1
ORDER BY col1 COLLATE english_3;

retrieves the data and sorts it according to the english_3 collation:

col1

W

v

col1

W

å

v

colswe coleng col1

a a a

A A A

v v v

W W W

å å å

colswe coleng col1

a a a

A A A

80 Chapter 4 Collations
Using Collations – Examples

Note: Where a collation defines a number of characters with the same sort-order
value, the retrieval order within the sort-order value is not defined.

GROUP BY
Depending on the collation associated with a column, you might get differing results
when using GROUP BY.
For example, the statement:

SELECT col1, COUNT(*)
FROM table1
GROUP BY col1 COLLATE swedish_1;

gives the following result:

According to the swedish_1 collation, two instances of the character ‘a’ were found and
one instance of ‘å’ which is considered a separate character in the Swedish language.
Similarly, using the english_1 collation in the statement:

SELECT col1, COUNT(*)
FROM table1
GROUP BY col1 COLLATE english_1;

gives the following result:

According to the english_1 collation, three instances of the character ‘a’ were found,
as the character ‘å’ has the same sort-order value as ‘A’ and ‘a’.

Scalar String Functions
You can use the COLLATE clause with the scalar string functions SUBSTRING and TRIM.
Character strings that are derived from a single string, for example, those returned from
the TRIM and SUBSTRING functions, inherit the collation from the source string.

å å å

v v v

W W W

colswe coleng col1

col1

A 2

W 2

å 1

col1

A 3

v 1

W 1

Mimer SQL Version 11.0 81
User’s Manual

TRIM and COLLATE
You should be aware of the consequences when you use a TRIM function on a column that
has a collation.
For example, referring to table1, see Using Collations – Examples on page 78, the
following statement:

SELECT TRIM('v' FROM colswe)
FROM table1;

would trim both ‘W’ and ‘v’ from the result set as the characters ‘W’ and ‘v’ have the same
sort-order value in a Swedish case-insensitive collation.
Similarly, the following statement:

SELECT TRIM('a' FROM col1)
FROM table1;

would trim ‘A’, ‘a’ and ‘å’ from the result set as the characters ‘A’, ‘a’ and ‘å’ have the
same sort-order value in an English case-insensitive collation.

Concatenation Operator
Suppose you want to concatenate columns, colswe and col1, for example:

SELECT colswe || coleng
FROM table1;

Because the columns use different collations the result set will have the default collation
ISO8BIT.
However, if you want apply a collation to the result set, you can add a COLLATE clause.
for example:

SELECT (colswe || coleng) COLLATE swedish_1
FROM table1;

IN and BETWEEN
A collation will affect the results of a query that uses IN or BETWEEN.
For example, the following statement:

SELECT *
FROM table1
WHERE coleng BETWEEN 'a' and 'B';

returns:

colswe coleng col1

A A A

a a a

å å å

82 Chapter 4 Collations
Using Collations – Examples

But, the statement:
SELECT *
FROM table1
WHERE colswe BETWEEN 'a' and 'B';

returns

UNION, EXCEPT and INTERSECT
When performing a UNION (or EXCEPT or INTERSECT), you must know what collations
are involved in order to ensure that you get the result you want.
For example, the following statement:

SELECT colswe
FROM table1

UNION

SELECT coleng
FROM table1;

raises an error because the UNION operator can’t understand which duplicate rows to
remove or not.
To perform the UNION according to the swedish_1 collation, you would explicitly use a
COLLATE clause, for example:

SELECT colswe COLLATE swedish_1
FROM table1

UNION

SELECT coleng
FROM table1;

which would return:

colswe coleng col1

A A A

a a a

colswe

A

W

å

Mimer SQL Version 11.0 83
User’s Manual

Similarly, for a UNION result according to the english_1 collation, you would enter:
SELECT colswe COLLATE english_1
FROM table1

UNION

SELECT coleng
FROM table1;

which would return:

DISTINCT
When you use DISTINCT, you must consider the consequences of which collation is
associated with a column.
In the following example:

SELECT DISTINCT col1
FROM table1;

All entries in col1 are considered DISTINCT as it uses the Mimer SQL default collation
ISO8BIT:

However, in this next statement:
SELECT DISTINCT colswe
FROM table1;

colswe uses the swedish_1 collation. ‘å’ and ‘A’ are considered to be distinct, but ‘v’
and ‘W’ are not:

colswe

A

v

W

col1

A

W

a

v

å

colswe

A

W

å

84 Chapter 4 Collations
Using Collations – Examples

Similarly, in this example:
SELECT DISTINCT coleng
FROM table1;

coleng uses the english_1 collation, ‘v’ and ‘W’ are considered to be distinct, but ‘å’
and ‘A’ are not:

coleng

A

v

W

Mimer SQL Version 11.0 85
User’s Manual

Chapter 5

Working With Data
This chapter deals with manipulating the data in tables with the statements:
• INSERT for inserting new rows into tables
• UPDATE for updating rows
• DELETE for deleting rows from tables
• CALL for manipulating data by executing procedures.

Access Privileges
You must have the appropriate access privileges on the relevant table(s) in order to use
INSERT, UPDATE or DELETE.
In addition, the table itself must be updatable. All base tables are updatable, but some
views are not, see Updatable Views on page 90.
In order to make a CALL you must have EXECUTE privilege on the procedure.

Inserting Data
The INSERT statement is used to insert new rows into existing tables.
Values to be inserted may be specified explicitly, as constants or expressions, or in the
form of a subquery, see below.
The data to be inserted must be of a type compatible with the corresponding column
definition.
If the length of the inserted data differs from that of the column definition, the data is
handled as follows:

Data Explanation

Character strings If the inserted data is longer than the column definition, an error
is reported and the INSERT operation fails (trailing spaces are
truncated without error).
If the inserted data is shorter than the column definition, it is
padded to the right with spaces to the required length when
inserted into a fixed-length character column. The inserted data
is not padded when inserted into a VARCHAR or NCHAR VARYING
column.

86 Chapter 5 Working With Data
Inserting Data

Inserting Explicit Values
The explicit INSERT statement has the general form:

INSERT INTO table [(column-list)]
 VALUES (value-list);

Values in the value-list are inserted into columns in the column-list in the order specified.
The order of columns in the column-list need not be the same as the order in the table
definition. Any columns in the table definition which are not included in the column-list
are assigned null values, or the column default value if one is defined.
An explicit INSERT statement can only insert a single row.

Decimal values Decimal values which are longer than the column definition are
truncated (not rounded) from the right to meet the column
definition. Thus 12.3456 is inserted into DECIMAL(6,3) as
12.345.
Decimal values which are shorter than the column definition are
padded to the right of the decimal point with zeros. Thus 12.3
is inserted into DECIMAL(6,3) as 12.300.

Integer values If the inserted data has more digits than the column definition or
is outside the range of the definition, an error is reported and the
INSERT operation fails.

Floating point
values

Floating point values are converted to decimal by truncating the
fractional part of the value as required by the scale of the decimal
target. An error occurs if the scale of the target cannot
accommodate the integral part of the value.

Datetime values Date values are converted to timestamp by setting the hour,
minute and second fields to zero. Time values are converted to
timestamp by taking values for the year, month and day fields
from CURRENT_DATE. Timestamp values are converted to date
or time by discarding the field values that do not appear in the
target.

Interval values Single field interval values are converted to exact numeric by
truncating decimal digits or by padding decimal digits with
zeros. If any loss of leading precision occurs, or if overflow
occurs, an error is raised.

Binary values If the inserted data is longer than the column definition, an error
is reported and the INSERT operation fails.
If the inserted data is shorter than the column definition, and the
column is fixed-length binary, an error is reported and the
INSERT operation fails.

Data Explanation

Mimer SQL Version 11.0 87
User’s Manual

For example:

Insert the values 'GW', 'Guinea-Bissau' and 'XOF' into the CODE, COUNTRY and
CURRENCY_CODE columns respectively into the COUNTRIES table:

INSERT INTO countries(code, country, currency_code)
 VALUES ('GW', 'Guinea-Bissau', 'XOF');

inserts the row:

If you insert explicit values into all of the columns in a table, the column list can be
omitted from the INSERT statement. The values specified are then inserted into the table
in the order that the columns are defined in the table.
Thus the example above could also be written:

INSERT INTO countries
 VALUES ('GW', 'Guinea-Bissau', 'XOF');

Inserting Results of Expressions
You can also insert the result of an expression into a table:

INSERT INTO mimer_store.customers(customer_id,
 title, surname, forename,
 date_of_birth,
 address_1, address_2, town,
 postcode, country_code,
 email, password,
 registered)
 VALUES (DEFAULT,
 'Mr', 'Eriksson', 'Sven',
 mimer_store.cast_to_date('25/10/1953'),
 'Kungsgaten 64', 'Box 1713', 'Uppsala',
 '751 47', 'SE',
 'training@mimer.com', 'secret',
 CURRENT_DATE);

Inserting with a Subquery
Values to be inserted can also be specified in the form of a subquery, i.e. fetched from a
table in the database.

INSERT INTO formats
SELECT 11, 'Book & Cassette', MAX(formats.category_id),

MAX(display_order) + 10
FROM formats JOIN categories

ON formats.category_id = categories.category_id
WHERE category = 'Books';

Inserting the result of a subquery can insert a number of rows into a table. If any of the
rows are rejected (e.g. because of a duplicate primary or unique key), the whole INSERT
statement fails and no rows are inserted.

CODE COUNTRY CURRENCY_CODE

GW Guinea-Bissau XOF

88 Chapter 5 Working With Data
Updating Tables

Inserting Sequence Values
The value to be inserted can be the value of a sequence. The constructs that return the
current value or next value of a sequence can be used as column values in the INSERT
statement:

INSERT INTO products(product, product_id)
 VALUES ('SQL Reference', NEXT VALUE FOR product_id_seq);

INSERT INTO mimer_store_music.titles(item_id, artist_id)
 VALUES (CURRENT VALUE FOR mimer_store.item_id_seq, 500999);

Inserting Null Values
The keyword NULL may be used to insert the null value into a column, provided that the
column is not defined as NOT NULL:

INSERT INTO tracks(item_id, track_no, track, length)
 VALUES (60099, 14, 'Bayamesa', NULL);

The null indicator is implicitly inserted into columns when no value is given for that
column and the column definition does not include a default value.
Thus, the following INSERT statement will give the same results as the example above:

INSERT INTO tracks(item_id, track_no, track)
 VALUES (60099, 14, 'Bayamesa');

Updating Tables
Data in existing table rows can be changed with the UPDATE statement. This statement
has the general form:

UPDATE table
SET column = value
WHERE search-condition;

The search condition specifies which rows in the table are to be updated. If no search
condition is specified, all rows will be updated.

Update the exchange rate for US dollars to 0.8886:
UPDATE CURRENCIES

SET EXCHANGE_RATE = 0.8886
WHERE CODE = 'USD';

Discount all Sony prices by 10 percent:
UPDATE items

SET price = price * 0.90
WHERE producer_id IN (SELECT producer_id

FROM producers
WHERE producer = 'Sony');

Primary key columns can be updated provided the table is stored in a databank with
TRANSACTION or LOG option.

Mimer SQL Version 11.0 89
User’s Manual

Deleting Rows from Tables
The DELETE statement removes rows from a table, and has the general form:

DELETE FROM table
WHERE search-condition;

The search condition specifies which rows in the table are to be deleted. If no search
condition is specified, all rows will be deleted (the table is emptied but not dropped).

Delete all countries that begin with the letter 'D' from the COUNTRIES table:
DELETE FROM countries
WHERE country LIKE 'D%';

Delete all rows from the CUSTOMERS table:
DELETE FROM customers;

Delete all Sony items:
DELETE FROM mimer_store.items
WHERE producer_id IN (SELECT producer_id

FROM mimer_store.producers
WHERE producer = 'Sony');

Calling Procedures
In addition to using data manipulation statements directly, as just described, it is also
possible to manipulate table data by calling a procedure. Procedures perform the specific
data manipulations laid out in the procedure definition.
Any SQL statement in the grouping procedural-sql-statement, see the Mimer SQL
Reference Manual, Chapter 12, Procedural SQL Statements, can be used in a procedure,
and this includes all the data manipulation statements.
The use of procedures allows data manipulation within the database to be controlled both
in terms of strictly defining which data manipulation operations are performed and also
in terms of regulating which database objects can be affected.
In the CALL statement, the value-expressions or assignment targets specified for each of
the procedure parameters must be of a data type that is assignment-compatible, see the
Mimer SQL Reference Manual, Chapter 7, Assignments, with the parameter data type.
See the Mimer SQL Reference Manual, Chapter 12, CALL, for full details of the CALL
statement and the Mimer SQL Programmer’s Manual, Chapter 11, Mimer SQL Stored
Procedures, for a general discussion of the stored procedure functionality supported in
Mimer SQL.

Examples of Calling Procedures

Invoke the procedure called SEARCH in the MIMER_STORE_MUSIC schema:
CALL mimer_store_music.search(:title, :artist, CAST(NULL as integer));

90 Chapter 5 Working With Data
Updatable Views

Updatable Views
INSERT, UPDATE and DELETE statements may be used on views.
The operation is then performed on the base table upon which the view is defined.
However, certain views may not be updated (for example a view containing DISTINCT
values, where a single row in the view may represent several rows in the base table).
A view is not updatable if any of the following conditions are true:
• the keyword DISTINCT is used in the view definition
• the select list contains components other than column specifications, or contains

more than one specification of the same column
• the FROM clause specifies more than one table reference or refers to a non-

updatable view
• the GROUP BY clause is used in the view definition
• the HAVING clause is used in the view definition
Note: By defining an INSTEAD OF trigger any view can be made updatable. If all the

INSTEAD OF triggers on the view are dropped, the view will revert to not
updatable if one or more of the above conditions are true.

Mimer SQL Version 11.0 91
User’s Manual

Chapter 6

Managing
Transactions

This chapter discusses transaction principles, logging and handling transactions.

Transaction Principles
A transaction is an environment where it is possible to COMMIT all of the operations
performed within it, or to ensure that all of them fail.

Transaction Phases
In general, three transaction phases exist:
• build-up, during which the database operations are requested
• prepare, during which the transaction is validated
• commitment, during which the operations performed in the transaction are written

to disk.
Transaction build-up, which may be started explicitly or implicitly; prepare and
commitment are both initiated explicitly through a request to commit the transaction
(using COMMIT).
In interactive application programs, build-up takes place typically over a time period
determined by the user, while prepare and commitment are part of the internal process of
committing a transaction, which occurs on a time-scale determined by machine
operations.
The transaction begins by taking a snapshot of the database in a consistent state.
During build-up, changes requested to the contents of the database are kept in a write-set
and are not visible to other users of the system. This allows the database to remain fully
accessible to all users. The application program in which build-up occurs will see the
database as though the changes had already been applied. All changes requested during
transaction build-up become visible to other users when the transaction is successfully
committed.
A major function of the transaction handling in Mimer SQL multi-user systems is
concurrency control. This means protecting the database from inconsistency which might
arise when two users attempt to change the same information at the same time.

92 Chapter 6 Managing Transactions
Logging Transactions

Mimer SQL supports distributed transactions based on the XA interface as defined by the
Open Group and Microsoft's Distributed Transaction Coordinator (DTC) protocol. This
means that Mimer SQL can be used in application environments that support distributed
transactions.
See the Mimer SQL Programmer’s Manual, Chapter 9, Transaction Handling and
Database Security, for a more detailed discussion of transaction handling and database
security.

Logging Transactions
Transaction control also provides the basis for protection of the database against
hardware failure.
Changes made to a database may be logged, to provide back-up protection in the event of
hardware failure, provided that the changes occur within a transaction and that the
databanks involved have the LOG option. Transaction handling is, therefore, important
even in standalone environments where concurrency control issues do not arise.
The system logging databank, LOGDB is where transaction changes are recorded. It
contains a record of all transactions executed since the latest back-up copy of a databank
was taken and the log cleared. The latest back-up copy of the databank, together with the
contents of LOGDB, may be used to restore the databank in the event of a databank crash.

Logging Options
Transaction control and logging is determined at the databank level by options set when
the databank is defined.
The options are:

All important databanks should be defined with LOG option, so that valuable data is not
lost by any system failure.

Option Description

LOG All operations on the databank are performed under transaction
control. All transactions are logged.

TRANSACTION All operations on the databank are performed under transaction
control. No transactions are logged.

WORK All operations on the databank are performed without transaction
control (even if they are requested within a transaction), and are not
logged.
Sets of operations (DELETE, UPDATE or INSERT on several rows)
which are interrupted will not be rolled back.

READ ONLY Only read only operations are allowed, i.e. DELETE, UPDATE or
INSERT can not be performed on tables in a databank with this
option.

Mimer SQL Version 11.0 93
User’s Manual

Handling Transactions
Transaction control statements in Mimer SQL are:
• COMMIT

• COMMIT BACKUP

• ROLLBACK

• SET TRANSACTION READ ONLY

• SET TRANSACTION READ WRITE

• SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

• SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

• SET TRANSACTION ISOLATION LEVEL READ COMMITTED

• SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

• SET TRANSACTION START EXPLICIT

• SET TRANSACTION START IMPLICIT

• SET TRANSACTION DIAGNOSTICS SIZE

• SET SESSION CHARACTERISTICS AS TRANSACTION READ ONLY

• SET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE

• SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
SERIALIZABLE

• SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
REPEATABLE READ

• SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
READ COMMITTED

• SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
READ UNCOMMITTED

• SET SESSION CHARACTERISTICS AS TRANSACTION DIAGNOSTICS SIZE

• START BACKUP

• START TRANSACTION

SQL Statement Restrictions in Transactions
The following SQL statements may not be used inside a transaction:

Data definition statements (e.g. ALTER, DROP, UPDATE STATISTICS) may be used
inside a transaction provided they are the only statement executed in that transaction.

ENTER SET SHADOW

LEAVE SET TRANSACTION

SET DATABANK START BACKUP

SET DATABASE START TRANSACTION

SET SESSION

94 Chapter 6 Managing Transactions
Handling Transactions

Optimizing Transactions
It is strongly recommended that the SET TRANSACTION READ ONLY option be used for
each transaction that does not perform updates to the database and that the SET
TRANSACTION READ WRITE option be used only when a transaction performs updates.
Taking a little extra care to set these options appropriately will ensure the transaction
performance remains optimal at all times.
The default transaction read option can be defined by using SET SESSION, see Default
Transaction Options on page 94. If this has not been used to set the default transaction
read option, the default is READ WRITE.

Consistency Within a Transaction
The SET TRANSACTION ISOLATION LEVEL options are provided to control the degree
to which the updates performed by one transaction are affected by the updates performed
by other transactions which are executing concurrently.
The default isolation level can be defined by using SET SESSION, see Default
Transaction Options on page 94. If this has not been used to set a default isolation level,
the default is REPEATABLE READ. This isolation level guarantees that the end result of
the operations performed by two or more concurrent transactions is the same as if the
transactions had been executed in a serial fashion, except that an effect known as
‘Phantoms’ may occur.
This is where one transaction reads a set of rows that satisfy some search condition.
Another transaction then performs an update which generates one or more new rows that
satisfy that search condition. If the original query is repeated (using exactly the same
search condition), extra rows appear in the result set that were previously not found.
The other isolation levels are: READ UNCOMMITTED, READ COMMITTED and
SERIALIZABLE.
All four isolation levels guarantee that each transaction will be executed completely or
not at all and that no updates will be lost.
Refer to Mimer SQL Reference Manual, Chapter 12, SET TRANSACTION, for a full
description of the effects that are possible, or guaranteed never to occur, at each of the
four isolation levels.

Default Transaction Options
• SET SESSION

The SET SESSION statement is provided so that default values for certain
transaction control settings can be defined.
SET SESSION allows the default settings for SET TRANSACTION READ and SET
TRANSACTION ISOLATION LEVEL to be defined.

• SET TRANSACTION READ and SET TRANSACTION ISOLATION LEVEL
The transaction control settings defined by SET TRANSACTION READ, see
Optimizing Transactions on page 94, and SET TRANSACTION ISOLATION
LEVEL, see Consistency Within a Transaction on page 94, apply to the single next
transaction to be started. If these statements are not used explicitly before each
transaction, the default settings apply.

Mimer SQL Version 11.0 95
User’s Manual

Chapter 7

Creating a Database
This chapter describes the SQL statements for creating and managing the database
structure. Examples are based on the database listed in Appendix B The Example
Environment.
In addition, Mimer BSQL provides specific commands for listing and describing database
objects, see Chapter 9, Mimer BSQL.
SQL includes statements for creating and modifying the database structure:
• create idents, schemas, databanks, shadows, domains, sequences, tables, triggers,

functions, procedures, modules, views, indexes and synonyms
• saving documentary comments on objects
• altering the definition of idents, databanks, shadows and tables
• dropping objects from the database.
All information describing the database structure is stored in the data dictionary.

Database Modelling
Before the database is defined, it is extremely important to design the database model.
Well-functioning and efficient databases cannot be created without a model as the
foundation.
Without careful design, much of the flexibility and efficiency inherent in a relational
database structure may be lost.

Creating Idents and Schemas
Idents are authorized users of the system or groups of users defined for easier ident
management, see Idents on page 16.
A schema defines a local environment within which private database objects can be
created. The ident creating the schema has the right to create objects in it and to drop
objects from it.
The statement for creating idents has the general form:

CREATE IDENT username
AS ident-type
[USING 'password']
[WITH | WITHOUT SCHEMA];

96 Chapter 7 Creating a Database
Creating Idents and Schemas

Ident Names
The case of letters is insignificant for an ident name and it must be composed of a unique
sequence of case-less characters (e.g. the idents ABC and aBc cannot both exist in the
database because they are identical when case is ignored).

Passwords
Passwords are composed of case-significant characters and must be entered exactly as
they are defined.
Passwords are optional for USER idents. A USER ident with an OS_USER login may
connect to Mimer SQL without providing a password. Passwords are required for
PROGRAM idents. Passwords are not used for GROUP idents.

Schemas
When a USER or PROGRAM ident is created, a schema with the same name can also be
created automatically and the created ident becomes the creator of the schema. This
happens by default unless WITHOUT SCHEMA is specified in the CREATE IDENT
statement. For idents who are not supposed to create database objects, it’s good practice
to specify WITHOUT SCHEMA.
All private database objects created by an ident must belong to a schema which, by
default, is the schema with the same name as the ident. When any private database object
is created, its name can be specified in the fully qualified form that explicitly identifies
which schema the object is to belong to. An ident may create objects in schemas ‘owned’
by it (i.e. the schema created automatically when the ident was created and any schemas
explicitly created by the ident).
An ident with IDENT or SCHEMA privilege can create additional schemas by using the
CREATE SCHEMA statement. The objects belonging to the schema can be defined in the
CREATE SCHEMA statement and created at the same time as the schema, refer to the
Mimer SQL Reference Manual, Chapter 12, CREATE SCHEMA for details.

Creating Idents and Schemas, Examples

Create a user ident MIMER_ADM with the password 'adm':
Note: Schema MIMER_ADM will also be automatically created.

CREATE IDENT mimer_adm AS USER USING 'adm';

Create a program ident AUDIT with the password 'economy' without creating a
schema:

CREATE IDENT audit AS PROGRAM USING 'economy' WITHOUT SCHEMA;

Create a group ident:
CREATE IDENT mimer_admin_group AS GROUP;

Create a schema called MIMER_STORE:
CREATE SCHEMA mimer_store;

Mimer SQL Version 11.0 97
User’s Manual

Create table CURRENCIES in the schema MIMER_STORE:
CREATE TABLE mimer_store.currencies (
 code CHARACTER(3) PRIMARY KEY,
 ...

Create schema called MIMER_STORE_NEW that contains sequence Z:
CREATE SCHEMA mimer_store_new
 CREATE SEQUENCE z;

Creating Databanks
A databank is the file where tables and sequences are stored. A Mimer SQL database may
contain any number of databanks.

Create Databank Statement
The statement for creating a databank has the general form:

• The CREATE DATABANK clause defines the databank name.
• The optional FILESIZE clause is used to specify the initial file size (it will be

dynamically extended as space is required). If the clause is omitted, an initial file
size of 2000 kB is assumed. The optional GOALSIZE, MAXSIZE and MINSIZE
attributes are used to manage the file size, see Mimer SQL Reference Manual,
Chapter 12, CREATE DATABANK.

• The optional FILE clause defines the file where the databank is to be stored (the
form of the filename follows the operating system file naming conventions). If the
FILE clause is omitted, the file is created in the database home directory with the
same name as databank-name.

• The optional OPTION clause defines the transaction handling and logging option,
see Logging Transactions on page 92. If the OPTION clause is omitted, the
TRANSACTION option is assumed.

98 Chapter 7 Creating a Database
Creating Tables

Examples

Create a databank called mimer_blobs with the default parameters:
Note: The default parameters are with TRANSACTION option and size 2000 kB. This

databank is created in a file called “mimer_blobs.dbf”
CREATE DATABANK mimer_blobs;

Create the mimer_store databank with LOG option, allocate 1200 MB for it, and
store it in a file called 'mstore.dbf':

CREATE DATABANK mimer_store SET FILESIZE 1200 M,
 FILE 'mstore.dbf',
 OPTION LOG;

At this point, the databank is empty.

Creating Tables
After the physical file space has been allocated on a disk for the databank, (CREATE
DATABANK), you can create the tables. The basic CREATE TABLE statement defines the
columns in the table, the primary key, any unique or foreign keys and which databank the
table is to be stored in. Table names and column names may be up to 128 characters long.
As a convention, we have defined primary key column(s) as the first column(s) in the
example definitions. However, this is not a necessity; primary key columns may be
defined anywhere in the column list. Primary keys are always NOT NULL, so there is no
need to explicitly state that in the table definition.

Create Table Statement

Example

Create the table CURRENCIES with three columns in the MIMER_STORE schema.
The table shall be as follows:
• Name the first column CODE, make it of the CHARACTER data type with a

maximum of three characters.
• Name the second column CURRENCY, make it of the CHARACTER data type with a

maximum of 32 characters and don't allow null values to be stored in the column.
• Name the third column EXCHANGE_RATE and make it of the data type DECIMAL with

a total of twelve digits, four of which can be decimal values.
• Declare the CODE column as the primary key and place this table in the

MIMER_STORE databank.
CREATE TABLE mimer_store.currencies (
 code CHARACTER(3),
 currency CHARACTER(32) NOT NULL,
 exchange_rate DECIMAL(12, 4),
 PRIMARY KEY(code))
 IN mimer_store;

Mimer SQL Version 11.0 99
User’s Manual

The CREATE TABLE clause defines the name of the table followed by a column list, which
includes the names of the columns in the table, their data type, if they should allow the
null indicator and the primary key declaration. Each item in the column-list is separated
from the next by a comma, and the entire list is enclosed in parentheses.
A table definition may only include one primary key clause. The primary key can be made
up of more than one column.
The IN clause states which databank the table is to be stored in. This clause may be
omitted; if the IN clause is not specified, Mimer SQL will select the ‘best’ databank in
which to place the table.
The empty table now exists in the databank. Data is inserted into the table with the
INSERT statement, see Inserting Data on page 85.
The preceding example shows the simplest form of column list. The following variants
may also be used:
• columns belonging to domains
• columns defined with collations
• default values (overriding any domain default for the column)
• columns not belonging to the primary key defined as NOT NULL
• unique constraints (in addition to the primary key)
• foreign key constraints
• check constraints.

The ITEMS Table
The ITEMS table in the example database is defined with many of the options that can be
used in creating tables. See the Mimer SQL Reference Manual, Chapter 12, CREATE
TABLE, for more information.
The ITEMS table is defined as follows:

CREATE TABLE items (
 item_id internal_id DEFAULT NEXT VALUE FOR item_id_seq,
 product_id internal_id CONSTRAINT itm_product_id_not_null NOT NULL,
 format_id format_id CONSTRAINT itm_format_id_not_null NOT NULL,
 release_date DATE,
 status CHAR DEFAULT 'A' CONSTRAINT itm_status_not_null NOT NULL
 CONSTRAINT itm_status_valid
 -- Available, Deleted
 CHECK (status IN ('A', 'X')),
 price euros CONSTRAINT itm_price_valid
 CHECK (price >= 4.99 AND price <= 366.00),
 stock SMALLINT CONSTRAINT itm_stock_not_null NOT NULL
 CONSTRAINT itm_stock_valid CHECK (stock >= 0),
 reorder_level SMALLINT CONSTRAINT itm_reorder_level_not_null NOT NULL,
 ean_code BIGINT CONSTRAINT itm_ean_code_not_null NOT NULL,
 producer_id internal_id DEFAULT NULL,
 image_id internal_id DEFAULT NULL,
 CONSTRAINT itm_primary_key PRIMARY KEY(item_id),
 CONSTRAINT itm_ean_code_exists UNIQUE (ean_code),
 CONSTRAINT itm_products
 FOREIGN KEY (product_id) REFERENCES products(product_id)
 ON DELETE CASCADE ON UPDATE NO ACTION,
 CONSTRAINT itm_formats FOREIGN KEY (format_id) REFERENCES formats
 ON DELETE CASCADE ON UPDATE NO ACTION,
 CONSTRAINT itm_producers FOREIGN KEY (producer_id) REFERENCES producers
 ON DELETE NO ACTION ON UPDATE NO ACTION,
 CONSTRAINT itm_images FOREIGN KEY (image_id) REFERENCES images
 ON DELETE SET DEFAULT ON UPDATE NO ACTION) IN mimer_store;

100 Chapter 7 Creating a Database
Creating Tables

The ordering of column specifications, key clauses and check conditions is not fixed. If
desired, the key and check clauses can be written in association with the respective
column specifications.
Each constraint is given a name which allows it to be dropped and modified separately.
The constraint name is also useful if a program wants to find out which constraint failed
for a particular statement.

Column Definitions
Columns should in general be defined as NOT NULL unless there is a specific reason for
using the null value in the column (e.g. is the value not known, not applicable or given
some other meaning). The presence of null values can often complicate the formulation
of queries, see Handling Null Values on page 67.
Note: Take particular care to exclude null from numerical columns which are to be

used for mathematical operations.
Domains are used for many columns to help in maintaining database integrity. By using
the same domain for columns in different tables, the column data types are guaranteed to
be consistent. See Creating Domains on page 103 for more information

The Primary Key Constraint
The purpose of a primary key is to define a key value that uniquely identifies each table
row, therefore the primary key value for each row in the table must be unique.
The primary key constraint can consist of more than one column in the table. The choice
of columns to use as the primary key is determined by the relational model for the
database, which is outside the scope of this manual.

Unique Constraints
A unique constraint can be defined for one or more columns in the table. The list of
columns that make up the unique constraint are specified in the UNIQUE clause for the
table when it is created.
Specifying UNIQUE in the definition of a column in the table is equivalent to supplying a
list of one column in the UNIQUE clause for the table and effectively specifies a one-
column unique constraint.

Foreign Keys – Referential Constraints
Use foreign keys to maintain integrity between the contents of related tables.
The effect of a foreign key is to constrain table data in a way that only allows a row in the
referencing table which has a foreign key value that matches the specified key value of a
row in the referenced table.
A referencing table row which has a foreign key value with the null value in at least one
of the columns will always fulfil the referential constraint and therefore be acceptable as
a row in the referencing table.
A foreign key constraint can be defined with a foreign key clause at CREATE TABLE or
added afterwards using ALTER TABLE.

Mimer SQL Version 11.0 101
User’s Manual

The table referenced in a foreign key clause can be an existing table or a table defined in
the current statement (allowing self-referencing foreign keys at CREATE TABLE and
circular foreign keys at CREATE SCHEMA).
The number of columns listed as FOREIGN KEY must be the same as the number of
columns in the primary key or unique key of the REFERENCES table. See the CREATE
TABLE syntax in the Mimer SQL Reference Manual for details.
The nth FOREIGN KEY column corresponds to the nth column in the primary key of the
REFERENCES table, and the data types and lengths of corresponding columns must be
identical.
A table definition may contain several FOREIGN KEY references. Each column in the
table may be used in many FOREIGN KEY clauses, but only once per FOREIGN KEY
clause.
Note: A table containing a foreign key reference or referenced in a foreign key must

be stored in a databank with either the TRANSACTION or LOG option.

Foreign Key Example
The ITEMS table has four foreign key references:

CREATE TABLE items (
 item_id internal_id DEFAULT NEXT VALUE FOR item_id_seq,
 product_id internal_id CONSTRAINT itm_product_id_not_null NOT NULL,
 format_id format_id CONSTRAINT itm_format_id_not_null NOT NULL,
 .
 .
 producer_id internal_id DEFAULT NULL,
 image_id internal_id DEFAULT NULL,
 .
 .
 CONSTRAINT itm_products
 FOREIGN KEY (product_id) REFERENCES products(product_id)
 ON DELETE CASCADE ON UPDATE NO ACTION,
 CONSTRAINT itm_formats FOREIGN KEY (format_id) REFERENCES formats
 ON DELETE CASCADE ON UPDATE NO ACTION,
 CONSTRAINT itm_producers FOREIGN KEY (producer_id) REFERENCES producers
 ON DELETE NO ACTION ON UPDATE NO ACTION,
 CONSTRAINT itm_images FOREIGN KEY (image_id) REFERENCES images
 ON DELETE SET DEFAULT ON UPDATE NO ACTION)
 .
 .

These maintain referential integrity as follows:

• FOREIGN KEY (product_id) REFERENCES products(product_id)
Data that is not present in the PRODUCT_ID column of the PRODUCTS table will not
be accepted in the PRODUCT_ID column in the ITEMS table.

• FOREIGN KEY (format_id) REFERENCES formats
Data that is not present in the FORMAT_ID column of the FORMATS table will not be
accepted in the FORMAT_ID column in the ITEMS table.

• FOREIGN KEY (producer_id) REFERENCES producers
Data that is not present in the PRODUCER_ID column of the PRODUCERS table will
not be accepted in the PRODUCER_ID column in the ITEMS table.

• FOREIGN KEY (image_id) REFERENCES images
Data that is not present in the IMAGE_ID column of the IMAGES table will not be
accepted in the IMAGE_ID column in the ITEMS table.

102 Chapter 7 Creating a Database
Creating Tables

Specifying ON DELETE
When defining a foreign key constraint it is possible to specify in an ON DELETE clause
what action that shall take place if the corresponding record in the referenced table is
deleted.
The possible actions are

• NO ACTION
Any attempt to delete a key value that is referenced by a foreign key will fail. This
action is the default behavior.

• SET NULL
If a key value in the referenced table is deleted the corresponding values in the
foreign key table is set to the null value

• SET DEFAULT
If a key value in the referenced table is deleted the corresponding values in the
foreign key table is set to the default value for the columns in the foreign key

• CASCADE
If a key value in the referenced table is deleted the corresponding records in the
foreign key table are also deleted

Check Constraints
Check constraints in table definitions are used to make sure that data in a column (or row)
in the table fits certain conditions.

CREATE TABLE items (
 .
 .
 status CHAR (1) DEFAULT 'A' CONSTRAINT itm_status_not_null NOT NULL
 CONSTRAINT itm_status_valid
 -- Available, Deleted
 CHECK (status IN ('A', 'X')),
 price euros CONSTRAINT itm_price_valid
 CHECK (price >= 4.99 AND price <= 366.00),
 stock SMALLINT CONSTRAINT itm_stock_not_null NOT NULL
 CONSTRAINT itm_stock_valid CHECK (stock >= 0),
 .
 .

The check clause defined on the PRICE column extends any limitations imposed by the
EUROS domain definition. The extension applies only to this table, and does not affect
other columns in the database that belong to the EUROS domain:

CREATE DOMAIN euros AS NUMERIC(7, 2)
 CONSTRAINT euros_value_not_null CHECK (VALUE IS NOT NULL)
 CONSTRAINT euros_value_valid CHECK (VALUE > 0.0);

The constraint names, e.g. ITM_PRICE_VALID in the ITEMS table, can be used in an
ALTER TABLE statement to drop the check constraint. All constraints, primary key,
unique, not null and foreign key constraints can be named in this manner.
If no constraint name is given, a unique name is generated by the system. This name can
be seen by using the describe statement in BSQL. See Chapter 9, Mimer BSQL.

Mimer SQL Version 11.0 103
User’s Manual

Ensure that either the customer's e-mail address and password are both defined or
that neither is defined:

CREATE TABLE customers (
 .
 .
 email VARCHAR(128) COLLATE english CHECK (char_length(trim(email)) > 0),
 password VARCHAR(18) CHECK (char_length(trim(password)) > 0),
 .
 .
 CONSTRAINT cst_email_password_cross_check
 CHECK ((email IS NULL AND password IS NULL)
 OR (email IS NOT NULL AND password IS NOT NULL))
 .
 .

Creating Sequences
A sequence can be used to provide the default value for a table column or a domain, etc.
A sequence returns a series of integer values which is defined by a start value, a minimum
value, a maximum value, an increment value, and whether the sequence is to be cyclic or
not.
A sequence that has been initialized has a current value, which is returned from the
function CURRENT VALUE. The function NEXT VALUE is used to initialize a sequence
and to subsequently advance the current value of the sequence through its defined series
of values.
A no cycle sequence will never return the same value twice.

Examples of Sequences

Create a sequence that returns odd numbers:
CREATE SEQUENCE seq_1 START WITH 1 INCREMENT BY 2 IN userdb;

Create a sequence that defines the following series of values: 1, 4, 7, 10:
CREATE SEQUENCE seq_2

START WITH 1
INCREMENT 3
MAXVALUE 10
NO CYCLE

IN DATABANK userdb;

Create a table that uses a sequence to set a column default value:
CREATE TABLE objinfo (objid INTEGER DEFAULT NEXT VALUE FOR obj_seq,

description NCHAR VARYING(1000));

Creating Domains
Domains are used as data types in column definitions when creating tables in order to:
• assist in keeping the database consistent
• validate the data (particular values or data type) accepted in the columns
• define default values for columns.

104 Chapter 7 Creating a Database
Creating Domains

Create Domain Statement
The statement for creating domains has the general form:

CREATE DOMAIN domain-name
 AS data-type
 [DEFAULT default-value]
 [{[CONSTRAINT constraint_name] CHECK (check-condition)}...];

• The CREATE DOMAIN clause defines the domain name.
• The AS clause defines the domain data type.
• The DEFAULT clause defines a default value for the domain
• The CHECK clause defines the domain limits.
It is a good practice for maintaining the integrity of the database to define domains for as
many columns as possible.

Domains with a Default Value
The default clause defines values that are inserted into the column when an explicit value
is not specified or the keyword DEFAULT is used in an INSERT statement.

Examples

Define the default value '000000' for the domain SIXDIGITS:
CREATE DOMAIN sixdigits AS CHAR(6) DEFAULT '000000';

Define the session user's name as the default value for the domain USER_NAME:
CREATE DOMAIN user_name AS NVARCHAR(128) COLLATE SQL_IDENTIFIER
 DEFAULT SESSION_USER;

Domains with a Check Clause
Domains defining default values can also include check clauses. You could define the
SOUNDEX domain as:

CREATE DOMAIN sixdigits AS CHAR(6) DEFAULT '000000'
 CHECK (VALUE IS NOT NULL)
 CHECK (CHAR_LENGTH(TRIM(VALUE)) = 6
 AND VALUE BETWEEN '000000' AND '999999');

This means that the null indicator will not be accepted into columns belonging to this
domain and that the value must be a character string of six digits.
If the default value is defined as being outside the check constraint this ensures that an
explicit value must always be inserted into the column.

Searching and Check Clauses
Specification of a CHECK clause means that only values for which the specified search
condition evaluates to true may be assigned to a column belonging to the domain.
The search condition, see the Mimer SQL Reference Manual, Chapter 10, Search
Conditions, in the CHECK clause may only reference the domain values (by using the
keyword VALUE), constants, or the keywords CURRENT_USER, SESSION_USER and
NULL.

Mimer SQL Version 11.0 105
User’s Manual

Creating Functions, Procedures, Triggers and
Modules

Functions and procedures are SQL routines that are stored in the data dictionary.
A module is a collection of SQL routines.
Triggers contain the same constructs as routines but are created on tables or views
(depending on the type of trigger) and execute before, after or instead of a specified data
manipulation operation.
Refer to the Mimer SQL Reference Manual, Chapter 12, SQL Statements for the syntax
definitions for CREATE FUNCTION, CREATE MODULE, CREATE PROCEDURE and
CREATE TRIGGER, and the Mimer SQL Programmer’s Manual, Chapter 11, Mimer SQL
Stored Procedures for a general discussion of the stored procedure functionality in Mimer
SQL.

Creating Functions and Procedures
The CREATE FUNCTION statement is used to create a function that does not belong to a
module and the CREATE PROCEDURE statement is used to create a procedure that does
not belong to a module.
The format of the routine definition is the same in the CREATE FUNCTION and CREATE
PROCEDURE statements as it is in a function or procedure declaration in a module.

Creating a Module
A module is created by using the CREATE MODULE statement and all the routines that
belong to the module are defined by declaring them within the CREATE MODULE
statement.
Routines cannot be added to a module after the module has been created and a routine
cannot be removed from the module it belongs to. The routines in a module behave in all
respects as single objects (e.g. EXECUTE privilege is applied on individual routines in a
module, not the module). If the module is dropped, all the routines in it are dropped.

Creating a Trigger
The CREATE TRIGGER statement is used to define a trigger on a table or view.

Examples
Note: The examples that follow show the ‘@’ character which is used in Mimer

BSQL to delimit SQL statements whose syntax involves use of the normal
end-of-statement character ‘;’ before the actual end of the statement.
This is the case for many of the SQL/PSM statements. See Chapter 9, Mimer
BSQL for details.
The ‘@’ character may be used to delimit any statement. This is useful when
dealing with large statement as the error reporting facility in BSQL shows more
information in such cases.

106 Chapter 7 Creating a Database
Creating Functions, Procedures, Triggers and Modules

Create a standalone function FUNC_1 with one input parameter of data type
VARCHAR(20) that returns a value of data type INTEGER:

@
CREATE FUNCTION func_1(p1 VARCHAR(20)) RETURNS INTEGER
BEGIN
 ...
END
@

Create a standalone procedure PROC_1 with one input parameter of data type
INTEGER and one output parameter of VARCHAR(20):

@
CREATE PROCEDURE proc_1(IN p_value1 INTEGER,
 OUT p_value2 VARCHAR(20))
BEGIN
 ...
END
@

Create a module M1 containing 2 procedures, PROC_1 (with no parameters),
PROC_2 (one input parameter, X, of data type INTEGER) and 1 function, FUNC_1
(with no parameters, returning an INTEGER):

@
CREATE MODULE m1
 DECLARE PROCEDURE proc_1()
 READS SQL DATA
 BEGIN
 ...
 END;

 DECLARE PROCEDURE proc_2(IN p_x INTEGER)
 MODIFIES SQL DATA
 BEGIN
 ...
 END;

 DECLARE FUNCTION func_1() RETURNS INTEGER
 READS SQL DATA
 BEGIN
 ...
 END;
END MODULE
@

Create a trigger that will execute after INSERT operations on table PRODUCTS:
@
CREATE TRIGGER products_after_insert AFTER INSERT ON products
REFERENCING NEW TABLE AS pdt
FOR EACH STATEMENT
BEGIN ATOMIC
 ...
END
@

Note: It is recommended that all functions, procedures and triggers are created by
executing a command file so that they may be easily re-created in the event of
being unintentionally dropped because of CASCADE effects following a drop.
The effect of CASCADE can be quite far-reaching where routines and modules
are concerned, see the Mimer SQL Programmer’s Manual.

Mimer SQL Version 11.0 107
User’s Manual

The use of a command file also facilitates module re-definition by dropping an
existing module, altering the CREATE MODULE statement in the command file
and creating the new, redefined module.

Creating Views
A view is a logical subset of one or more base tables or views where columns are chosen
by naming them and rows are chosen through specified conditions relating to column
values.
Views are created, for example, so that users who need not see all the data in a single table
are shown only the parts of the table that interest them (restriction views). Views can also
be created as a combination of a number of columns from several different tables (join
views).
Operations on views are actually performed on the underlying base tables. Certain view
definitions do not allow data to be changed in the view (read-only views). See Updatable
Views on page 90 for further details.
View names can be up to 128 characters long. Views are defined in terms of a SELECT
statement; the result of the SELECT statement forms the contents of the view. There are
no restrictions on which select statements that can be used in a view definition.

Creating a View

Create a restriction view on the CUSTOMERS table called CUSTOMER_DETAILS
containing limited information:

CREATE VIEW customer_details
 AS SELECT surname, forename, address_1, address_2, town, postcode,
 title, date_of_birth, country_code, customer_id
 FROM customers;

In this case the columns in the view are named after the columns listed in the SELECT
clause, since the view definition does not include a list of column names.

Create a join view, including an outer join:
CREATE VIEW product_details
 AS SELECT product, COALESCE(producer, ' ') AS producer, format,
 price, stock, reorder_level, release_date, ean_code,
 status, product_search, item_id, category_id, product_id,
 display_order, image_id
 FROM products JOIN items ON products.product_id = items.product_id

JOIN formats ON items.format_id = formats.format_id
LEFT OUTER JOIN producers ON items.producer_id = producers.producer_id;

Check Option
The check option can be used in updatable view definitions to limit the data that can be
inserted into the view. If a check option is specified, data which does not fulfill the
definition of the view cannot be inserted into the view.

CREATE VIEW swedish_customers
 AS SELECT *
 FROM customer_details
 WHERE country_code = 'SE'
 WITH CHECK OPTION;

108 Chapter 7 Creating a Database
Creating Secondary Indexes

The check option in the view definition (WITH CHECK OPTION) means that the
COUNTRY_CODE column must be set to SE if new rows are inserted into the view or rows
are updated using the view.
If there is an instead of trigger defined for the view, the WITH CHECK OPTION does not
have any effect.

Creating Views Based on Other Views
Views can be based on other views. When a view is created based upon another view or
views, the original view’s limitations are carried over to the new view.

CREATE VIEW customer_addresses (surname, forename, recipient,
 address_1, address_2, town, postcode, country,
 salutation, customer_id)
 AS SELECT surname, forename,
 UPPER(recipient(title, forename, surname)), address_1,
 COALESCE(address_2, ' '), UPPER(town), UPPER(postcode), UPPER(country),
 salutation(title, forename, surname, date_of_birth, country_code),
 customer_id
 FROM customer_details
 JOIN countries ON code = country_code;

Creating Secondary Indexes
A secondary index is automatically used during searching when it improves the efficiency
of the search.
Secondary indexes are maintained by the system and are invisible to the user.
Any column(s) may be specified as a secondary index, except columns declared using a
LOB data type.
Columns in the PRIMARY KEY, the columns of a FOREIGN KEY and columns defined as
UNIQUE are automatically indexed, (in the order in which they are defined in the key), and
therefore creation of an index on these columns will not improve performance.
Secondary index tables are purely for Mimer SQL’s internal use – you create the index,
and Mimer SQL handles the rest.
If, for instance, you want to know which products were released on a specific date, Mimer
SQL would have to search successively through the entire ITEMS table to find all items
that matched the date you specified. If, however, you create a secondary index on release
date, Mimer SQL would locate that date directly in the secondary index, which would
save time.
Secondary indexes can improve the efficiency of data retrieval; but introduces an
overhead for write operations (UPDATE, INSERT, DELETE). In general, you should create
indexes only for columns that are frequently searched.
Indexes cannot be created directly on columns in views. However, since searching in a
view is actually implemented as searching in the base table, an index on the base table
will also be used in view operations.

Mimer SQL Version 11.0 109
User’s Manual

Examples of Secondary Index

Create a secondary index called ITM_RELEASE_DATE on the RELEASE_DATE col-
umn in the ITEMS table:

CREATE INDEX itm_release_date ON items(release_date);

Primary key columns may also be included in a secondary index. If a table has the primary
key columns A, B and C, the primary index would cover all three columns of the primary
key.
The following combinations of the columns in the primary key are automatically indexed:
A, AB and ABC. In addition, you could create secondary indexes on columns B, C, BC, AC
etc.
An index may also be defined as UNIQUE, which means that the index value may only
occur once in the table. (For this purpose, null is treated as equal to null). However, it is
preferable to use unique constraints.

Create a UNIQUE secondary index called ITM_EAN_CODE on the EAN_CODE col-
umn in the ITEMS table:

CREATE UNIQUE INDEX itm_ean_code ON ITEMS(ean_code);

Sorting Indexes
The sorting order for indexes may be defined as ascending or descending. However, this
makes no difference to the efficiency of the index, since Mimer SQL searches indexes
forwards or backwards depending on the circumstances. I.e. the following two indexes
are compatible, and only one of them is required.

CREATE INDEX idx_asc ON t1 (c1 ASC)
CREATE INDEX idx_desc ON t1 (c1 DESC)

In some cases specifying the sort order makes sense. For example when ordering the
result set by mixed orders, e.g:

SELECT * FROM t1
ORDER BY c1 ASC, c2 DESC;

In this case the index below is appropriate:
CREATE INDEX idx_mix ON t1 (c1 ASC, c2 DESC);

Creating Synonyms
Synonyms, or alternative names can be created for tables, views or other synonyms. You
can create synonyms to personalize tables or just for your own convenience. Synonym
names can be made up of a maximum of 128 characters.
Table names are ‘qualified’ by the name of the schema to which they belong. The
qualified form of the table name is the schema name followed by the table name and the
two are separated by a period.
Synonyms are particularly useful when several users refer to a common table, such as
MIMER_STORE.ITEMS, MIMER_STORE.CURRENCIES, etc. With synonyms, several
users can work in the same apparent environment without needing to refer to the tables
by their qualified names.

110 Chapter 7 Creating a Database
Commenting Objects

Synonym Examples
The table ITEMS in the schema MIMER_STORE has the qualified name:

MIMER_STORE.ITEMS

The ident called MIMER_STORE need only refer to it as:
ITEMS

If other users wish to use this table, they must refer to it by its fully qualified name since
they do not have the same name as the schema to which the table belongs.
If a user named JAMES, who wishes to refer to the ITEMS table, belonging to the schema
MIMER_STORE, as simply ITEMS, he can create a synonym.
In the following example, the schema name JAMES is implied by default (which must also
have been created by user JAMES if the CREATE is to succeed) because the synonym name
is specified in its unqualified form (and the default schema name is the name of the
current ident):

CREATE SYNONYM items FOR mimer_store.items;

Another user can then create his own synonym for the ITEMS synonym that now exists in
schema 'JAMES', which has the fully qualified name:

JAMES.ITEMS

Commenting Objects
Comments may be stored against any of the following objects:

Comments cannot be deleted – they can only be replaced by a new comment. A blank
string may be provided as a comment if you want to suppress an existing comment.
Only the creator of the object may store a comment for it.
Comments are for information only and do not affect data retrieval or manipulation in any
way.
Comments may be read with the DESCRIBE command, see DESCRIBE on page 133, or
by retrieving the appropriate columns from the INFORMATION_SCHEMA views, see the
Mimer SQL Reference Manual.

Comment Example

Store the comment 'Holds currency details' on the CURRENCIES table:
COMMENT ON TABLE currencies IS 'Holds currency details';

COLUMN IDENT PROCEDURE SHADOW TRIGGER

DATABANK INDEX SCHEMA SYNONYM TYPE

DOMAIN METHOD SEQUENCE TABLE VIEW

FUNCTION MODULE

Mimer SQL Version 11.0 111
User’s Manual

Altering Databanks, Tables and Idents
The following sections explain how to alter databanks, tables and idents. you can also
read about which objects you cannot alter.

Altering a Databank
Databanks can only be altered by their creator.
There are three uses for the ALTER statement:
• to change the physical file location for a databank
• to change the transaction and logging options on the databank
• to manage the file size allocated for the databank.

Examples

Change which file the MIMER_ORDERS databank is stored in from its previous file
to file 'DISK2:MIMER_ORDERS.DBF':
Note: The file specification is in Alpha/OpenVMS format.

ALTER DATABANK mimer_orders SET FILE 'DISK2:[DBD]MIMER_ORDERS.DBF';

Note: This statement changes the filename stored for the databank in the data
dictionary. It does not actually move the databank to the new location.
To move a databank, begin by copying or renaming the file in the operating
system and then use ALTER DATABANK… SET FILE to change the file
specification in the data dictionary.

Change the option on the MIMER_BLOBS databank from TRANSACTION to LOG:
ALTER DATABANK mimer_blobs SET OPTION LOG;

Set the size of the MIMER_BLOBS database to 2000 MB:
ALTER DATABANK mimer_blobs SET FILESIZE 2000 M;

Note: Use of the ALTER DATABANK… SET FILESIZE statement is not strictly
necessary because databank files are extended dynamically. However,
increasing the file allocation by a relatively large figure can help to minimize
file fragmentation and improve response times.

Altering Tables
The ALTER TABLE statement changes the definition of the specified table and may only
be used by the creator of the schema to which the table belongs.
There are the following uses for the ALTER TABLE statement:
• to add a new column or table constraint definition to an existing table
• to drop a column or table constraint from an existing table
• to change the default value for a column in an existing table

112 Chapter 7 Creating a Database
Altering Databanks, Tables and Idents

• to drop the default value for a column in a table
• to change a column in an existing table to have a specified data type, provided the

old and new data types are assignment-compatible, see the Mimer SQL Reference
Manual and the column is not referenced by any constraints or views

A new column created with the ALTER TABLE… ADD statement is appended to end of the
existing column list. The new column will include the default value defined for the
column or defined for the domain to which it belongs or, if no default value exists, the
null value.
Note: If a column added to a table is defined as NOT NULL, then it must have a

default value defined or belong to a domain which has a default value, because
the NOT NULL column cannot be given null values.

Examples

Add a column called CREDIT_RATING with a data type of CHAR(1) to the CUSTOM-
ERS table:

ALTER TABLE customers ADD credit_rating CHAR(1);

This creates a column containing the null value in each row in the table.
If a constraint is added to a table, the data in the table is checked to ensure it fulfills the
restriction in the constraint.

Drop the column DATE_OF_BIRTH from the table CUSTOMERS, subject to the con-
dition that there are no other objects dependent on this column:

ALTER TABLE customers DROP date_of_birth RESTRICT;

Drop the column DATE_OF_BIRTH from the table CUSTOMERS, if dependent
objects exist, these are dropped as well:

ALTER TABLE customers DROP date_of_birth CASCADE;

Change the length of the column FORMAT in the table FORMATS:
ALTER TABLE formats ALTER COLUMN format VARCHAR(32);

Change the default value for the column REORDER_LEVEL, the new default value
is one:

ALTER TABLE items ALTER reorder_level SET DEFAULT 1;

Drop the check constraint ITM_PRICE_ILLEGAL from the ITEMS table:
ALTER TABLE items DROP CONSTRAINT itm_price_valid;

Redefine a foreign key constraint for the CUSTOMERS table:
ALTER TABLE customers DROP CONSTRAINT cst_countries;
ALTER TABLE customers ADD CONSTRAINT cst_countries
 FOREIGN KEY (country_code) REFERENCES countries
 ON DELETE CASCADE ON UPDATE NO ACTION;

Drop the default value for the column REGISTERED:
ALTER TABLE customers ALTER registered DROP DEFAULT;

Mimer SQL Version 11.0 113
User’s Manual

Note on Dropping
When dropping a column from a table, the CASCADE and RESTRICT keywords can be
used to specify the action that will be taken on objects that are dependent on the dropped
column.
If CASCADE is specified, dependent objects are also dropped. For instance if a dropped
column is part of a primary key, the primary key will also be dropped.
If RESTRICT (the default) is specified and there are other objects affected, the statement
will be aborted, with an error condition. See also, Dropping Objects from the Database
on page 113.

Altering Idents
Only passwords can be altered with the ALTER IDENT statement. Ident names cannot be
altered.
USER and PROGRAM idents can change their own password if they so wish.
Passwords can also be changed by the creator of the ident. Also, an ident without a
password is not allowed to set the password, only the creator of the ident may do this.

Change the ident MIMER_ADM's password to 'evjkl9u'.
ALTER IDENT mimer_adm SET PASSWORD 'evjkl9u';

Objects Which May Not Be Altered
Domains, functions, procedures, modules, triggers, views and indexes cannot be altered.
It is therefore important that you think through your domains and views thoroughly and
carefully before you create them to make sure that they suit the needs of your database.
The functions and procedures contained in a module are created when the module is
created and thereafter no alterations can be made to the module (the module and all the
routines contained in it can, of course, be dropped).
The next section will discuss dropping objects and the results of this on the database.

Dropping Objects from the Database
The DROP statement is used to drop the following objects from the database:

The CASCADE or RESTRICT keywords may be used to specify the action to be taken if
other objects exist that are dependent on the object being dropped:
• If RESTRICT (the default) is specified, an error is returned if other objects are

affected and the drop operation is aborted.
• If CASCADE is specified, dependent objects are dropped as well.

COLLATION INDEX SEQUENCE TABLE

DATABANK METHOD SHADOW TRIGGER

DOMAIN MODULE STATEMENT TYPE

FUNCTION PROCEDURE SYNONYM VIEW

IDENT SCHEMA

114 Chapter 7 Creating a Database
Dropping Objects from the Database

System database objects can only be dropped by their creator. Private database objects
can only be dropped by the creator of the schema to which they belong.
Therefore use caution when using the DROP statement with CASCADE, as the operation
may have a recursive effect on all objects relating to it. For example, when a table is
dropped, all views, synonyms, routines and triggers created on or referencing that table
are also dropped.
The DROP statement removes whole objects from the database. It cannot be used to
remove columns from tables, this is done by the ALTER TABLE statement, see Altering
Tables on page 111.

Dropping Databanks and Tables

Drop the CURRENCIES table:
DROP TABLE currencies RESTRICT;

If the keyword CASCADE is specified, all views, synonyms and indexes based on
CURRENCIES are also dropped as well as any functions, procedures and triggers
referencing the table.

Drop the MIMER_STORE databank:
DROP DATABANK mimer_store RESTRICT;

If the keyword CASCADE is specified, all tables in the MIMER_STORE databank are also
dropped and any views, synonyms, triggers and indexes based on those tables are also
dropped as well as any functions, procedures and triggers referencing any of the dropped
objects.
An attempt is automatically made to delete the physical databank file when a databank is
dropped.
There may be occasions, because of access rights issues in the file system, when the
database server’s attempt to delete the physical databank file might fail. If recommended
procedures for databank file management are followed, see the Mimer SQL System
Management Handbook, the databank file should be deleted correctly.

Dropping Sequences
When a sequence is dropped, all the objects (i.e. constraints, domains, functions,
procedures, default values, triggers and views) referencing the sequence are also dropped.

Drop the CUSTOMER_ID_SEQ sequence:
DROP SEQUENCE customer_id_seq CASCADE;

The specification of CASCADE ensures that the sequence is dropped even if it is being
referenced by other objects in the database.

Dropping Domains
When a domain is dropped, columns using the domain retain the properties of the domain
through the creation of column constraints.

Mimer SQL Version 11.0 115
User’s Manual

Drop the EUROS domain:
DROP DOMAIN euros CASCADE;

Note: If you re-create a domain that has been dropped, the domain will be seen as a
completely new domain and it will not be associated with any columns that
belonged to the old domain.

To change the restrictions on the columns that were defined with a domain that has been
dropped, use the ALTER TABLE statement.

Dropping Idents
When an ident is dropped, everything that the ident has created (including other idents
and everything created by those idents) as well as all privileges granted by the ident are
dropped. For this reason, physical users should never own objects, except for synonyms
and personal views.

Drop the MIMER_ADM ident:
DROP IDENT mimer_adm RESTRICT;

Dropping Functions, Modules, Procedures and Triggers
The effect of using the keyword CASCADE can be rather dramatic when modules, routines
and triggers are dropped. For this reason it is recommended that all those objects are
created by running a command file so they can be easily reconstructed in case of being
dropped by mistake.

Drop the function called MIMER_STORE_BOOK.FORMAT_ISBN:
DROP FUNCTION mimer_store_book.format_isbn CASCADE;

Drop the procedure called COMING_SOON:
DROP PROCEDURE coming_soon CASCADE;

Drop the module called MIMER_STORE_MUSIC.ROUTINES:
DROP MODULE mimer_store_music.routines CASCADE;

Drop the trigger called PRODUCTS_AFTER_INSERT:
DROP TRIGGER products_after_insert CASCADE;

About Dropping Modules and Routines
The following points should be noted when dropping modules and routines:
• When a module is dropped, all the routines contained in it will be dropped.
• If a routine is dropped and it is referenced from another object, the referencing

object will also be dropped.
• If a routine belonging to a module is to be dropped as a consequence of a cascade,

only that routine is dropped (the other routines in the module and the module itself
will remain unaffected).

116 Chapter 7 Creating a Database
Dropping Objects from the Database

Mimer SQL Version 11.0 117
User’s Manual

Chapter 8

Defining Privileges
Privileges control the operations which users are allowed to perform in the database.
Well-structured privileges are essential for maintaining data security.
There are three types of privileges:
• System privileges, which give the right to create global objects within the database.
• Object privileges, which give rights over certain specified objects in the database.
• Access privileges, which give rights of access to the data in a specified table or

view.
System privileges are granted to the system administrator upon installation, and may be
passed on to other idents. Objects and access privileges are initially granted only to the
creator of an object. The creator may however pass the privileges on to other idents.

Granting and Revoking Privileges
Privileges are granted to idents with the GRANT statement and revoked from idents with
the REVOKE statement.
All privileges may be granted with the ‘with grant option’, which means that the receiver
of the privilege in turn has the right to grant that privilege to other idents.
The creator of an object is automatically granted full privileges on that object with grant
option. Thus the creator of:
• a group is automatically a member of that group
• a program ident may enter it
• a table has full access privileges
• a schema may create objects in it and drop them, etc.
When privileges that were granted with the ‘with grant option’ are revoked, the right to
grant those privileges to other idents is also revoked.
The ‘with grant option’ can be revoked separately without revoking the privilege itself.
Idents may only grant privileges that they themselves possess to other idents, that is,
idents cannot grant privileges to themselves.
Likewise, privileges may only be revoked by the grantor - idents cannot revoke privileges
from themselves.
Certain operations are not controlled by explicit privileges, but may only be performed
by the creator of the object involved. These operations include ALTER (with the exception
of ALTER IDENT, which may be performed by either the ident himself or by the creator
of the ident), DROP and COMMENT.

118 Chapter 8 Defining Privileges
Ident Structure

Ident Structure
In the initial installation, one user ident, the system administrator with user ident name
SYSADM, is automatically created.

SYSADM Privileges
The system administrator has the following privileges (with grant option):
• BACKUP

• DATABANK

• IDENT

• SCHEMA

• SHADOW

• SELECT access on all tables and views in the data dictionary.
The system administrator is ultimately responsible for the structure of the whole system.
In other respects, however, the system administrator is an ordinary user ident in the
system.
There is no ident in Mimer SQL with automatic right of access to all objects within the
system.
It is quite possible, and may be advisable especially in large system, that the system
administrator is prevented from accessing the actual contents of the database; the system
administrator’s job is to manage objects in the system, not work on the data.

About System Utilities
Certain system utilities may only be run by idents with BACKUP or SHADOW privilege, see
the Mimer SQL System Management Handbook.
When granting privileges, the keyword PUBLIC refers to a logical group that covers all
idents in the database, including those created in the future.

Recommendations for Ident Structure
The following general recommendations can be made for structuring the idents in a
system:
• Functional roles within the system, generally defined by one or more applications

that are run, should be assigned to program idents. These are not coupled to any
physical individual or group of individuals and thus have a lifetime independent of
turnover of personnel.
The system administrator is just such a function, but is coupled to a user ident rather
than a program ident for practical purposes.

• People accessing the system are represented by USER idents. They may be dropped
if the person concerned leaves the company.
User idents should not be granted privileges directly, other than membership in
groups. A USER ident with an OS_USER login is allowed access to the database on
the authorization of a valid log-in to the operating system.

Mimer SQL Version 11.0 119
User’s Manual

• Group idents are used to represent logical users of the system. Privileges are
granted to groups rather than to individual programs or users. The individual idents
are granted membership in the group to which they belong, and thereby gain the
correct access to the system.

• USER idents should not in general be able to create objects. This is performed by
specifying WITHOUT SCHEMA when the user is created. In this way, individual user
idents may be dropped with no cascading effects.

• WITH GRANT OPTION should be used sparingly and the ident hierarchy kept
shallow. This minimizes the chance of undesired cascading revocation of
privileges.

If these recommendations are followed, maintenance of the ident structure in the system
is simplified. Access to the contents of the database is granted to relatively few group
idents instead of many individual programs or users, and when a physical individual
leaves the company, their user ident can be dropped with no cascading consequences.

Granting Privileges
The following sections explain how to grant system, object and access privileges.

Granting System Privileges
System privileges are granted to the system administrator at the time of installation of the
system. System privileges refer to global information, that affects the database as a whole.
The system privileges are:

Examples

Give the ident MIMER_STORE the privilege to create new databanks:
GRANT DATABANK TO mimer_store;

Give the ident MIMER_STORE the privilege to create new idents with grant option:
GRANT IDENT TO mimer_store WITH GRANT OPTION;

Privilege Explanation

BACKUP The right to perform backup and restore operations.

DATABANK The right to create databanks.

IDENT The right to create idents and schemas.

SCHEMA The right to create schemas.

SHADOW The right to create shadows and perform shadow control
operations.

STATISTICS The right to execute the UPDATE STATISTICS statement.

120 Chapter 8 Defining Privileges
Granting Privileges

Granting Object Privileges
Object privileges are held by idents on database objects (functions, procedures, programs,
groups, tables, domainssequences).
The object privileges are:

Examples

Give MIMER_WEB the privilege to execute the COMING_SOON procedure:
GRANT EXECUTE ON PROCEDURE coming_soon TO mimer_web;

Make MIMER_ADM a member of the MIMER_ADMIN_GROUP group with grant
option:

GRANT MEMBER ON mimer_admin_group TO mimer_adm WITH GRANT OPTION;

Give MIMER_ADM the privilege to create new tables in the MIMER_STORE data-
bank:

GRANT TABLE ON mimer_store TO mimer_adm;

Give the members of the MIMER_ADMIN_GROUP group the privilege to use the
NAME domain:

GRANT USAGE ON DOMAIN name TO mimer_admin_group;

Granting Access Privileges
Access privileges define what data the idents are allowed to manipulate in tables.
There are five access privileges:

Privilege Explanation

EXECUTE The right to execute a function or procedure, or the right to enter a
specified program ident.

MEMBER Membership in a specified group ident.

TABLE The right to create tables in a specified databank.

SEQUENCE The right to create sequences in a specified databank.

USAGE The right to specify the named domain where a data type would
normally be specified (in contexts where use of domains are allowed),
or the right to use a specified sequence.

Privilege Explanation

SELECT The right to read the table contents.

INSERT The right to add new rows to the table (this privilege may be limited
to specified columns within the table).

DELETE The right to remove rows from the table.

Mimer SQL Version 11.0 121
User’s Manual

The keyword ALL may be used as shorthand for all of privileges that the grantor holds
with grant option.

Examples

Give the MIMER_ADMIN_GROUP group the privileges to read and update rows from
the PRODUCERS table:

GRANT SELECT, UPDATE ON producers TO mimer_admin_group;

Give MIMER_USER_GROUP all privileges that you hold on the table COUNTRIES
and give them the right to pass those privileges on:

GRANT ALL ON countries TO mimer_user_group WITH GRANT OPTION;

Give MIMER_ADMIN_GROUP the privilege to select all rows in the CURRENCIES
table, with the privilege to only update the EXCHANGE_RATE column:

 GRANT SELECT, UPDATE(exchange_rate) ON currencies TO
 mimer_admin_group;

Give everyone the privilege to select all rows in the CURRENCIES table:
GRANT SELECT ON currencies TO PUBLIC;

Give MIMER_ADM the right to use the ITEMS table as a foreign key:
GRANT REFERENCES ON mimer_store.items TO mimer_adm;

Revoking Privileges
Privileges can only be revoked by the grantor. Care must be taken when revoking
privileges, especially when those privileges were granted ‘with grant option’. Revoking
such privileges from an ident can have recursive effects on all idents who have been
granted privileges by that ident. See Recursive Effects of Revoking Privileges on page 123
for details.
The keywords CASCADE and RESTRICT can be used in the REVOKE statements to control
whether the recursive effects should be allowed or not. If RESTRICT (the default) is
specified and any recursive effects are identified the whole revoke operation will fail,
leaving all objects intact. If the keyword CASCADE is specified, the revoke operation will
proceed with recursive effects.
Privileges granted to a group cannot be revoked separately from individual members of
the group. To revoke a group privilege from an individual, either revoke the privilege
from the group or revoke the membership of the individual in the group.

UPDATE The right to change the contents of existing rows in the table (this
privilege may be limited to specified columns within the table).

REFERENCES The right to use the primary or unique key of the table as a foreign
key reference (this privilege may be limited to specified columns
within the table).

Privilege Explanation

122 Chapter 8 Defining Privileges
Revoking Privileges

If a privilege has been granted with the WITH GRANT OPTION it is possible to revoke the
grant option only. That is, the ident looses the right to grant the privilege to other idents.
The ident still has the privilege, but privileges granted to other idents are revoked.

Revoking System Privileges
Revoking system privileges does not affect objects already created under the
authorization of the privilege.
The following examples show how to revoke system privileges.

Take away the privilege to create new databanks from the ident MIMER_STORE:
REVOKE DATABANK FROM mimer_store RESTRICT;

Take away the privilege to create new idents from the ident MIMER_STORE:
 REVOKE IDENT FROM mimer_store RESTRICT;

Revoking Object Privileges
The following examples show how to revoke object privileges.

Take away the privilege to execute the COMING_SOON procedure from
MIMER_WEB:

REVOKE EXECUTE ON PROCEDURE coming_soon FROM mimer_web;

Take away MIMER_ADM's membership of the MIMER_ADMIN_GROUP group:
REVOKE MEMBER ON mimer_admin_group FROM mimer_adm;

Take away the right to use the domain NAME from the group MIMER_ADMIN-
_GROUP:

REVOKE USAGE ON DOMAIN name FROM mimer_admin_group;

Note: Revoking usage on domain prevents the ident from using that domain as a data
type in new definitions, any existing definitions created by the ident will
remain unaffected.

Revoking Access Privileges
The following examples show how to revoke access privileges.

Revoke the privilege to read and update rows from the PRODUCERS table from the
group MIMER_STORE_GROUP:

REVOKE SELECT, UPDATE ON producers FROM mimer_admin_group;

When the REFERENCES privilege on a table is taken away from an ident, all foreign key
links referencing that table are removed.

Revoke the right to use columns in the ITEMS table as a foreign key from
MIMER_ADM:

REVOKE REFERENCES ON mimer_store.items FROM mimer_adm RESTRICT;

Mimer SQL Version 11.0 123
User’s Manual

Revoke the right to grant select on the COUNTRIES table. Any grants that members
of the group have made will also be revoked:

REVOKE GRANT OPTION FOR SELECT ON countries
 FROM mimer_user_group CASCADE;

The Keyword ALL
The keyword ALL may be used as a shorthand for all the privileges that may be revoked
in the current context.

Recursive Effects of Revoking Privileges
If CASCADE is specified in a REVOKE statement, the following recursive effects may
occur:
• If a privilege WITH GRANT OPTION is revoked from an ident, all instances of that

privilege granted to other idents under the authorization of the WITH GRANT
OPTION are also revoked. Privileges granted for procedures, functions and triggers
that reference objects accessed by the WITH GRANT OPTION will also disappear.

• If SELECT privilege on a table is revoked from an ident, views created by the ident
under the authorization of that SELECT privilege are dropped.

• If REFERENCE privilege on a table is revoked from an ident, any FOREIGN KEY
constraints in tables created by that ident under the authorization of that
REFERENCE privilege are removed.

• If the privilege held by an ident on an object referenced in a routine or trigger is
revoked, the routine or trigger will be dropped. (This applies to EXECUTE on a
routine, USAGE on a sequence or an access privilege on a table or view held WITH
GRANT OPTION).

Dependencies
The recursive effect of revoking a privilege depends on how many instances of that
privilege have been granted. An ident will hold more than one instance of a privilege
when it has been granted more than once (by different idents, as an ident cannot grant the
same privilege to the same ident more than once).
One or more of those instances may have been granted WITH GRANT OPTION.
The data dictionary keeps a record of which instance of a privilege has WITH GRANT
OPTION and which does not.
The recursive effects will occur only when the last instance of the required privilege is
revoked. That is, when the last instance of the privilege held WITH GRANT OPTION is
revoked from an ident, all instances of the ident granting the privilege to others will be
withdrawn; and when the last instance of the privilege is revoked from the ident, the
cascade effects of the ident no longer holding the privilege will occur.

124 Chapter 8 Defining Privileges
Revoking Privileges

This is illustrated in the example cases that follow:

CASE 1
1 A grants with grant option to M

M grants to X
2 B grants with grant option to M

M grants to Y
3 A revokes from M

Both X and Y keep privileges
4 B revokes from M

Both X and Y lose privileges

CASE 2
1 A grants with grant option to M
2 B grants without grant option to M

M grants to X
M grants to Y

3 A revokes from M
M loses grant option
Both X and Y lose privileges

4 B revokes from M
M loses privilege

As a consequence of the cascading effects of revoking privileges, careful advance
planning of the hierarchical structure of idents in a system can be essential to the long
term viability of the system.
An unplanned ident structure can easily become impossible to overview and control after
a relatively short period of system use.

Mimer SQL Version 11.0 125
User’s Manual

Chapter 9

Mimer BSQL
This chapter discusses Mimer BSQL, a command line oriented tool for executing SQL
statements both in scripts and interactively.

Other SQL Tools
DbVisualizer, by DbVis Software (https://www.dbvis.com), is included in the Mimer SQL
distribution. (Not for the OpenVMS platform.)

Running BSQL
BSQL can be run by a script or interactively. Interactive operation can be used to execute
statements entered directly or read from sequential files.

About Complex SQL Statements – @
Use the @ character to delimit a complex SQL statement where the normal end-of-
statement character ‘;’ appears before the end of the statement (e.g. when creating
functions, procedures and triggers.)

Example
@
create function capitalize(str nvarchar(1000)) returns nvarchar(1000)
begin atomic
declare outstr nvarchar(1000);
declare strlen integer;
declare n integer default 2;
set strlen = length(str);
set outstr = upper(substring(str from 1 for 1));
while n <= strlen do
set outstr = outstr || case when substring(str from n - 1 for 1) = ' ' then

upper(substring(str from n for 1))
else

lower(substring(str from n for 1))
end;

set n = n + 1;
end while;
return outstr;

end
@

https://www.dbvis.com

126 Chapter 9 Mimer BSQL
Running BSQL

Running BSQL From a Script
Create a script file with the following contents:
• the command to start BSQL
• the username
• the password
• the SQL statements and BSQL commands
• the EXIT command (or end of file).

Unicode Pipe Support in Console Programs on Windows
All Mimer SQL console programs such as BSQL, can pipe Unicode files. The files can
be any of the Unicode formats supported by Mimer SQL such as UTF16 big and little
endian, and UTF8.
When output is piped to a file, the input decides the type of the output file. If the input file
is ASCII, the output will also be ASCII. If the input file is UTF16, the output will also be
UTF16. If the input is from the keyboard, the output will be an UTF16 file on Windows.
For example:

BSQL < UNIFILEIN.TXT > UNIFILEOUT.TXT

Security and Script Jobs
For unattended operation, a script file must either include the Mimer SQL ident username
and password in explicit form or connect using an OS_USER login.
For security reasons, make sure that your script files are well protected and/or remove
your password from the file after execution.
Alternatively, SQL statements and BSQL commands may be written in a sequential file
without username and password, and executed with the READ command from an
interactive BSQL session.

Mimer SQL Version 11.0 127
User’s Manual

Running BSQL
How you start BSQL depends on your operating system.

BSQL Command-line Arguments
The BSQL command line argument syntax is:

bsql [-m|-s] [-u user] [-p pass] [-q SQL [-c]] [database]

bsql [--multi|--single] [--user=user] [--password=pass]
[--query=SQL [--continue]] [database]

bsql [-v|--version] | [-?|--help]

Options
Windows & Unix-
style

VMS-style Function

-c
--continue

/CONTINUE The switch can be used together with
the --query switch to indicate that
the BSQL program is not terminated
after the execution of the query.

-m
--multi

/MULTI Connects to the database in multi-user
mode.

-p password
--password=password

/PASSWORD=password Password for ident. If the switch is
omitted the user is prompted for a
password, unless OS_USER is
specified with the username switch, as
described above.
VMS: Note that in an Open VMS

environment it might be
necessary to enclose the
password in quotation marks
as the value otherwise is
translated to upper case.

-q query
--query=query

/QUERY=query query can be any BSQL command or
SQL statement. If a query is supplied,
BSQL will terminate immediately
after the query has been processed.

-s
--single

/SINGLE Connects to the database in single-user
mode.

-u username
--username=username

/USERNAME=username Ident name to be used in connect. If the
switch is not given the user is
prompted for a username.
To connect using OS_USER, give
-u "", --username="", or
/USERNAME="".

-v
--version

/VERSION Display version information.

128 Chapter 9 Mimer BSQL
Running BSQL

If a database name is not specified, the default database will be accessed.
If neither --single nor --multi is specified for the optional mode flag, the way the
database is accessed will be determined by the setting of the MIMER_MODE variable, see
Mimer SQL System Management Handbook, Appendix A, Specifying Single-user Mode
Access.
If this is not set, it will be accessed in multi-user mode.
If multiple instances of a qualifier is given, the last one is used. For example

bsql --single --multi --username=t1 --username=t2

is valid and means connect user t2 in multi-user mode.

Linux examples
Start BSQL and connect user cosmo with password Kramer:

bsql --username=cosmo --password=Kramer

Start BSQL, connect using OS_USER, execute a query, and then leave:
bsql --user="" --query="select * from \"SomeTable\" where user = 'COSMO'"

VMS examples
Start BSQL and connect user cosmo with password Kramer:

bsql /USERNAME="cosmo" /PASSWORD="Kramer"

Start BSQL, connect using OS_USER, execute a query, and then leave:
bsql /USERNAME="" /QUERY="select * from ""SomeTable"" where user = 'COSMO'"

Note: You can also use the Unix-style syntax in OpenVMS.

Windows examples
Start BSQL and connect user cosmo with password Kramer:

bsql --username=cosmo --password=Kramer

Start BSQL, connect using OS_USER, execute a query, and then leave:
bsql --user="" --query="select * from \"SomeTable\" where user = 'COSMO'"

-?
--help

/HELP Show help text.

database database Specifies the name of the database to
access. If a database name is not
specified, the default database will be
accessed, see Mimer SQL System
Management Handbook, Chapter 3,
The Default Database.

Windows & Unix-
style

VMS-style Function

Mimer SQL Version 11.0 129
User’s Manual

To start Mimer BSQL from the Windows Start button:
Click Start, navigate to your Mimer SQL program group and select Batch SQL
which is found in the Utilities sub-group.

Logging IN
Starting BSQL displays the following:
$ bsql
Mimer SQL Command Line Utility, version 11.0.7A
Copyright (C) Mimer Information Technology AB. All rights reserved.

Username:

After you have entered a username and a correct password, the BSQL prompt is
displayed:

SQL>

You can now enter BSQL specific commands and general SQL statements.

BSQL Command Line Editing – Linux
Command line editing is available in the BSQL program, which uses a line-oriented
interface.
The following functions are available:

Use: To:

ctrl-a Move to beginning of command

ctrl-b Move backwards in command

ctrl-d Delete current character

ctrl-e Move to end of command

ctrl-f Move forwards in command

ctrl-h Delete previous character

ctrl-k Delete after current position in command

ctrl-n Next command

ctrl-o Execute retrieved command and get next from history list

ctrl-p Previous command

ctrl-r Retrieve command by search condition

ctrl-t Change place for the previous two characters

ctrl-u Delete command

ctrl-w Delete before current position in command

ctrl-<space> Set mark in command (or ‘esc <space>’)

ctrl-x ctrl-x Go to mark set by ‘ctrl <space>’

ctrl-x ctrl-h Show the history list

130 Chapter 9 Mimer BSQL
BSQL Commands

You can use the arrow keys for command retrieval and for positioning the cursor within
a line, i.e. the same function as for ctrl-b, ctrl-f, ctrl-n and ctrl-p.
To change the number of commands that can be held in the history list, the environment
variable MIMER_HISTLINES can be used (the default is 23).
Note: The operating system may have control sequences set that, if they overlap,

override those described above. E.g. the settings can be listed using the Linux
stty -a command.

BSQL Commands

ctrl-x ctrl-r Retrieve command by history list number

esc h Delete previous word

esc d Delete next word

esc b Move to previous word

esc f Move to next word

Use: To:

Command Function

CLOSE Closes active log files, see CLOSE on page 132.

DESCRIBE Describes a specified object, see DESCRIBE on
page 133.

EXIT Leaves BSQL, see EXIT on page 142.

GET DIAGNOSTICS Presents status and diagnostics information, see GET
DIAGNOSTICS on page 142

LIST Lists information on a specified object, see LIST on
page 143.

LOG Logs input, output or both on a sequential file, see LOG
on page 146.

READ INPUT Reads commands from a sequential file, see READ
INPUT on page 147.

READLOG Obtains information about logged operations, see
READLOG on page 147.

SET ECHO Specifies whether lines are echoed to the BSQL window
during READ INPUT, see SET ECHO on page 151.

SET EXECUTE Activate or deactivate the execution of queries, see SET
EXECUTE on page 152.

SET EXPLAIN Activate or deactivate the explain facility, see SET
EXPLAIN on page 152.

Mimer SQL Version 11.0 131
User’s Manual

BSQL commands are not case sensitive.

About BSQL Syntax Descriptions
For information on how to read the syntax diagrams that follow, please refer to
Mimer SQL Reference Manual, Chapter 2, Reading SQL Syntax Diagrams.

SET HEADER Activate or deactivate display of column headings, see
SET HEADER on page 153.

SET LINECOUNT Sets the BSQL page size, see SET LINECOUNT on
page 154.

SET LINESPACE Sets the number of blank lines between each output
record, see SET LINESPACE on page 154.

SET LINEWIDTH Sets the BSQL page width, see SET LINEWIDTH on
page 155.

SET LOG Stops or resumes logging input, output or both, see SET
LOG on page 155.

SET MAX_BINARY_LENGTH Specifies the maximum display length for binary
columns, see SET MAX_BINARY_LENGTH on
page 155.

SET MAX_CHARACTER_LENGTH Specifies the maximum display length for character
columns, see SET MAX_CHARACTER_LENGTH on
page 156.

SET MESSAGE Specifies whether messages are displayed, see SET
MESSAGE on page 156.

SET OUTPUT Specifies whether output should be written, see SET
OUTPUT on page 156.

SET PAGELENGTH Defines the page length of output file, see SET
PAGELENGTH on page 157.

SET PAGEWIDTH Defines the page width of output file, see SET
PAGEWIDTH on page 157.

SET SILENCE Specifies whether or not messages or column headers
should be displayed, see SET SILENCE on page 157.

SET STATISTICS Specifies whether or not statement statistics should be
displayed, see SET STATISTICS on page 158.

SHOW SETTINGS Displays current values of all set options, SHOW
SETTINGS on page 158.

TRANSACTIONS Displays the menu for administration of distributed
transactions, see TRANSACTIONS on page 159.

WHENEVER Sets action to be taken in response to an error or warning,
see WHENEVER on page 160.

Command Function

132 Chapter 9 Mimer BSQL
BSQL Commands

CLOSE
Closes log files.

Syntax

Description
The command closes the specified log file. If no log type is specified, all active log files
are closed.

Mimer SQL Version 11.0 133
User’s Manual

DESCRIBE
Describes a specified object.

Syntax

Where object-type is:

Description
The DESCRIBE command presents the following menu, when no object is specified:

 Menu for describe

1. Databank 8. View 15. Collation
2. Domain 9. Module 16. Type
3. Ident 10. Procedure 17. Method
4. Index 11. Function 18. Specification
5. Synonym 12. Trigger 19. Specific
6. Table 13. Sequence 20. Statement
7. View 14. Shadow 0. Exit

Choosing an item presents a submenu for choosing between different DESCRIBE
functions – see the table that follows for details.

134 Chapter 9 Mimer BSQL
BSQL Commands

Entering an exclamation mark (!) in the Select field returns to the previous menu level.
Entering a double exclamation mark (!!) terminates the DESCRIBE session.
Specifying an object type and name in the command executes the first menu choice for
that object. If no object name is given, the user is prompted for a name.
Selection numbers should not be used in script files, since they may change in future
versions.
Note: DESCRIBE is not available when connected to a Mimer SQL server of version

8.1 or older.

DESCRIBE DATABANK Options
DESCRIBE DATABANK Result

BRIEF Lists the following information on the specified databank:
creator
file space used
allocated size
filename
databank option
minsize
goalsize
maxsize
removable option
backup information
tables
sequences.

BY TABLE PRIVILEGE Lists the following information on the specified databank:
idents with table privilege.

FULL Lists the following information on the specified databank:
creator
file space used
allocated size
filename
databank option
minsize
goalsize
maxsize
removable option
backup information
tables
sequences
idents with table privilege
comment
creation date.

Mimer SQL Version 11.0 135
User’s Manual

DESCRIBE DOMAIN Options

DESCRIBE IDENT Options

DESCRIBE DOMAIN Result

BRIEF Lists the following information on the specified domain:
data type
default value
check constraints.

BY REFERENCES Lists the following information on the specified domain:
referenced objects
referencing objects.

BY ACCESS Lists the following information on the specified domain:
idents with usage privilege.

FULL Lists the following information on the specified domain:
data type
default value
check constraints
referenced objects
referencing objects
idents with usage privilege
comment
creation date.

DESCRIBE IDENT Result

BRIEF Lists the following information on the specified ident:
creator
ident type
YES/NO if the ident has a schema with the same name or not
YES/NO if the ident has a password or not
A list of OS_USER logins defined for the ident
privileges held by ident.

BY ACCESS Lists the following information on the specified ident:
accessible objects.

BY OWNERSHIP Lists the following information on the specified ident:
created objects.

136 Chapter 9 Mimer BSQL
BSQL Commands

DESCRIBE INDEX Options

DESCRIBE SYNONYM Options

DESCRIBE TABLE Options

FULL Lists the following information on the specified ident:
creator
ident type
YES/NO if the ident has a schema with the same name or not
YES/NO if the ident has a password or not
A list of OS_USER logins defined for the ident
accessible objects
created objects
comment
creation date.

DESCRIBE IDENT Result

DESCRIBE INDEX Result

BRIEF Lists the following information on the specified index:
table name and columns on which the index is defined
sort order
uniqueness
index algorithm
comment
creation date.

DESCRIBE SYNONYM Result

BRIEF Lists the following information on the specified synonym:
schema and name of referenced table/view
comment
creation date

DESCRIBE TABLE Result

VERY BRIEF Lists the following information on the specified table or view:
column names and types.

BRIEF Lists the following information on the specified table or view:
column names and types
default values
constraints
referenced domains
indexes
triggers.

BY ACCESS Lists the following information on the specified table or view:
idents with access.

Mimer SQL Version 11.0 137
User’s Manual

DESCRIBE VIEW Options

DESCRIBE MODULE Options

DESCRIBE PROCEDURE Options

BY REFERENCES Lists the following information on the specified table or view:
referencing objects
referenced objects.

FULL Lists the following information on the specified table or view:
column names and types
default values
constraints
referencing objects
referenced objects
indexes
triggers
idents with access
databank location
comment
creation date
date when statistics were generated.

DESCRIBE TABLE Result

DESCRIBE VIEW Result

BRIEF Lists the following information on the specified view:
view definition
updatability
check option
comment
creation date.

DESCRIBE MODULE Result

BRIEF List the following information on the specified module:
module definition
comment
creation date.

DESCRIBE PROCEDURE Result

BRIEF Lists the following information on the specified procedure:
parameters
return types
access mode.

BY ACCESS Lists the following information on the specified procedure:
idents with execute privilege.

138 Chapter 9 Mimer BSQL
BSQL Commands

DESCRIBE FUNCTION Options

BY REFERENCES Lists the following information on the specified procedure:
referencing objects
referenced objects.

FULL Lists the following information on the specified procedure:
parameters
return types
access mode
idents with execute privilege
referencing objects
referenced objects
source definition
module name
comment
creation date.

DESCRIBE PROCEDURE Result

DESCRIBE FUNCTION Result

BRIEF Lists the following information on the specified function:
parameters
return type
access mode.

BY ACCESS Lists the following information on the specified function:
idents with execute privilege.

BY REFERENCES Lists the following information on the specified function:
referencing objects
referenced objects.

FULL Lists the following information on the specified function:
parameters
return type
access mode
idents with execute privilege
referencing objects
referenced objects
source definition
module name
comment
creation date.

Mimer SQL Version 11.0 139
User’s Manual

DESCRIBE TRIGGER Options

DESCRIBE SEQUENCE Options

DESCRIBE TRIGGER Result

BRIEF Lists the following information on the specified trigger:
table name on which trigger is defined
trigger event
trigger type
event time.

BY REFERENCES Lists the following information on the specified trigger:
referenced objects.

FULL Lists the following information on the specified trigger:
table name on which trigger is defined
trigger event
trigger type
event time
referenced objects
source definition
comment
creation date.

DESCRIBE SEQUENCE Result

BRIEF List the following information about the specified sequence:
initial value
increment value
maximum value
databank location.

BY ACCESS List the following information on the specified sequence:
idents with usage privilege.

BY REFERENCES List the following information on the specified sequence:
referencing objects.

FULL List the following information about the specified sequence:
initial value
increment value
maximum value
databank location
referencing objects
idents with usage privilege
comment
creation date.

140 Chapter 9 Mimer BSQL
BSQL Commands

DESCRIBE SCHEMA Options

DESCRIBE SHADOW

DESCRIBE COLLATION

DESCRIBE SCHEMA Result

BRIEF List the following information about the specified schema:
schema owner
contained objects
comment
creation date.

DESCRIBE SHADOW Result

BRIEF List the following information on the specified shadow:
shadow creator
databank name
filename
comment
creation date

DESCRIBE COLLATION Result

BY REFERENCES List the following information about the specified collation:
columns using the specified collation
all objects using the specified collation

FULL List the following information on the specified collation:
character set schema
character set name
pad attribute
version
delta definition
idents with usage privilege on the specified collation
comment
creation date
columns using the specified collation
all objects using the specified collation

Mimer SQL Version 11.0 141
User’s Manual

DESCRIBE SPECIFIC
Describe specific can be used to describe overloaded routines by using their specific
name.

DESCRIBE SPECIFIC Result

BRIEF List the following information about the specified routine:
schema name
routine name
statement type
return type (if function)
determinism
access mode
For each parameter:
parameter name
parameter mode
data type

BY ACCESS List the following information about the specified routine:
idents with execute privilege on the routine

BY REFERENCE Lists the following information about the specified routine
objects referenced by the routine
objects referencing the routine

FULL Lists the following information about the specified statement
schema name
routine name
statement type
return type (if function)
determinism
access mode
For each parameter:
parameter name
parameter mode
data type
idents with execute privilege on the routine
objects referenced by the routine
objects referencing the routine
creation date
comment

142 Chapter 9 Mimer BSQL
BSQL Commands

DESCRIBE STATEMENT

EXIT
Leave BSQL.

Syntax

Description
Terminates the BSQL session.

GET DIAGNOSTICS
Get diagnostics for statement.

Syntax

Description
Presents all status and diagnostics information for the preceding statement.

DESCRIBE STATEMENT Result

BRIEF List the following information about the specified statement:
schema name
statement name
statement type
statement definition

BY ACCESS List the following information about the specified statement:
idents with execute privilege on the statement

BY REFERENCE Lists the following information about the specified statement:
objects referenced by the statement

FULL Lists the following information about the specified statement:
schema name
statement name
statement type
statement definition
idents with execute privilege on the statement
objects referenced by the statement
creation date
comment

Mimer SQL Version 11.0 143
User’s Manual

LIST
Lists information on a specified object.

Syntax

Where object-type is one of the object types listed below.

Description
The LIST command presents the following menu, if no object-type is specified:

 Menu for List

 1. Databanks 8. Views 15. Shadows
 2. Domains 9. Modules 16. Collations
 3. Idents 10. Procedures 17. Methods
 4. Indexes 11. Functions 18. Specifications
 5. Objects 12. Triggers 19. Types
 6. Synonyms 13. Sequences 20. Statements
 7. Tables 14. Schemata 0. Exit

Choosing an item presents a submenu for choosing between different LIST functions -
see the table that follows for details.
Entering an exclamation mark (!) in the Select field returns to the previous menu level.
Entering a double exclamation mark (!!) returns two levels.
Giving an object type in the command executes the first menu choice for that type.
Selection numbers should not be used in script files, because the may change in future
versions.
Note: LIST is not available when connected to a Mimer SQL server of version 8.1 or

older.

LIST COLLATIONS Options

LIST DATABANKS Options

LIST COLLATIONS Result

ALL Lists all collations in the database.

IN SCHEMA Lists collations in the specified schema.

LIST DATABANK Result

ALL Lists all databanks in the database.

CREATED BY Lists databanks created by a specified ident.

144 Chapter 9 Mimer BSQL
BSQL Commands

LIST DOMAINS Options

LIST FUNCTIONS Options

LIST IDENTS Options

LIST INDEXES Options

LIST MODULES Options

LIST OBJECTS Options

LIST PROCEDURES Options

LIST DOMAINS Result

ALL Lists all domains in the database.

IN SCHEMA Lists domains in the specified schema.

LIST FUNCTIONS Result

ALL Lists all the functions the current ident has execute privilege on.

IN SCHEMA Lists functions in the specified schema.

LIST IDENTS Result

ALL Lists all idents in the database.

CREATED BY Lists idents created by a specified ident.

LIST INDEXES Result

ALL Lists the secondary indexes in the database.

IN SCHEMA Lists secondary indexes in the specified schema.

LIST MODULES Result

ALL Lists all the modules in the database that are visible to (i.e.
created by) the current ident.

LIST OBJECTS Result

ALL Lists objects in the database.

CREATED BY Lists objects created by a specified ident.

WITH TYPE Lists objects of a specified type.

LIST PROCEDURES Result

ALL Lists all the procedures the current ident has execute privilege
on.

IN SCHEMA Lists procedures in the specified schema.

Mimer SQL Version 11.0 145
User’s Manual

LIST SCHEMATA Options

LIST SEQUENCES Options

LIST SHADOWS Options

LIST STATEMENTS Options

LIST SYNONYMS Options

LIST TABLES Options

LIST TRIGGERS Options

LIST SCHEMATA Result

ALL Lists schemata created by the current ident.

LIST SEQUENCES Result

ALL Lists all the sequences the current ident has usage privilege on.

IN SCHEMA Lists sequences in the specified schema.

LIST SHADOWS Result

ALL List shadows created on databanks created by the current ident
or all shadows if the current ident has shadow privilege.

LIST STATEMENTS Result

ALL List all the precompiled statements the current ident has usage
privilege on.

IN SCHEMA List all statements belonging to the defined schema.

LIST SYNONYMS Result

ALL Lists synonyms in the database.

IN SCHEMA Lists synonyms in the specified schema.

LIST TABLES Result

ALL Lists tables in the database.

IN SCHEMA Lists tables in the specified schema.

LIST TRIGGERS Result

ALL List triggers defined on tables accessible to current user.

IN SCHEMA Lists triggers in the specified schema.

146 Chapter 9 Mimer BSQL
BSQL Commands

LIST VIEWS Options

LOG
Logs input, output or both to a specified sequential file.

Syntax

Description
All input, output or both will be logged in the specified sequential file.
If ON is specified a new file will always be created, otherwise the log data is appended to
the file.
Logging is paused with the SET LOG OFF command and is resumed with the SET LOG
ON command. Use CLOSE to stop logging permanently.
Using the AS option, you can set the file format to LATIN1, UTF8, UTF16, UTF16BE,
UTF16LE, UTF32, UTF32BE or UTF32LE.
WITH BOM and WITHOUT BOM can be used to override platform specific default BOM
behavior.
When logging INPUT the max width of logged data is determined by the value of
LINEWIDTH.
When logging INPUT, OUTPUT the max width and max length of logged data is
determined by the values of LINEWIDTH and LINECOUNT.
When logging OUTPUT the max width and max length of logged data is determined by the
values of PAGEWIDTH and PAGELENGTH.
See the SET LINECOUNT on page 154, SET LINEWIDTH on page 155, SET
PAGELENGTH on page 157 and SETSET PAGEWIDTH on page 157 for details.

Example
SQL>log input,output on 'create_environment_log.dat';

LIST VIEWS Result

ALL Lists views in the database.

IN SCHEMA Lists views in the specified schema.

Mimer SQL Version 11.0 147
User’s Manual

READ INPUT
Reads commands from a sequential file.

Syntax

Description
Commands and SQL statements are read from the specified file.
When READ ALL, both commands and prompt answers are read from the sequential file.
(READ ALL is default mode.)
When READ COMMAND is specified, commands are read from the input file while prompt
answers are taken from the script file or interactively (depending on the situation).
Using the AS option, you can set the file format to LATIN1, UTF8, UTF16, UTF16BE,
UTF16LE, UTF32, UTF32BE or UTF32LE.

Example
SQL>read input from 'create_environment.dat';

READLOG
Obtains information about logged operations.

Syntax

Description
READLOG is a Mimer SQL function which enables you to read the contents of LOGDB
so that you can check logged operations performed on the database since the last backup
copy or incremental backup was taken.
You can use READLOG as an audit trail or, in the event of a system failure, to determine
which databanks need to be restored (i.e. which databanks have been altered since the last
backup).

Functions
READLOG enables you to select information from LOGDB on the basis of time interval,
ident performing the operation, and specified databanks or tables.
This is particularly useful in production systems where LOGDB can contain a large number
of entries.

Authorization
To list the log for selected tables or all tables in a databank, you must have SELECT access
on the tables in question.
To list the log for the entire database, you must have BACKUP privilege.

148 Chapter 9 Mimer BSQL
BSQL Commands

Using the READLOG Functionality
You control the READLOG functionality using a menu from which different listing options
may be set before finally performing the read operation.
The different listing options are set by using menu selections 1-5. The menu is re-
displayed after selecting any of these so that further options may be set for the listing.
When all the desired listing options have been set in this way, a listing is produced from
the log by choosing menu selection 6, 7 or 8 from under List operations.
 -- Read log --

List definitions List restrictions List operations
---------------- ----------------- ---------------
1. Log file 3. Time interval 6. Specified tables
2. File properties 4. Ident 7. Tables in databank
 5. Databank 8. All (no data)
0. EXIT

List Definitions – Output Control

Log File
Choosing Log file allows you to specify the name of a sequential file into which the
listing is to be placed. In systems where the terminal may be addressed by a logical
filename, this may be given to display the listing on the terminal.
If this option is not selected, a sequential file with the default name RDLOGL will be used.
The following example sets the log file explicitly:

SQL>READLOG;

 -- Read log --

List definitions List restrictions List operations
---------------- ----------------- ---------------
1. Output 3. Time interval 6. Specified tables
2. Properties 4. Ident 7. Tables in databank
 5. Databank 8. All (no data)
0. EXIT

Select: 1
Output to file or terminal (F/T) [F]: F
Log list file: READLOG.DAT

List Properties
The file properties choice is used to set either the width of a report or the format
for the log file. The file format can be one of the following encodings:
1. Default
2. Latin 1
3. UTF 8
4. UTF 16
5. UTF 16 big endian
6. UTF 16 little endian
7. UTF 32
8. UTF 32 big endian
9. UTF 32 litte endian

Default means the encoding specified by the locale settings for the client.

Mimer SQL Version 11.0 149
User’s Manual

List Restrictions

Time interval
This option allows the listing to be restricted to a given time interval, specified as a
starting time and a finishing time.
Times are given as a single parameter representing year, month, day, hour, minute and
second in the format YYYYMMDDHHMMSS.
If an incomplete time specification is given (truncated from the right), the remaining
parameters are taken as low for the starting time and high for the finishing time. Thus
giving 200211 as both the starting and finishing time, lists the log from the beginning to
the end of November 2002.
A default time value is assumed if no time interval is specified, or may be chosen for
starting or finishing time by specifying a ‘blank’ time.
If no start time is specified, the time at the beginning of the log is assumed. If no end time
is specified, the time at the end of the log is assumed.
If neither a start time nor an end time is specified, the following message is displayed:

** No time restriction

A selected time interval applies for all subsequent list operations in the current session
until the time interval is reset.
A time interval of two months has been selected in the following example:

Select: 3
Format : YYYYMMDDHHMMSS
Starttime: 201211
Endtime : 201212

Ident
Selecting an ident restricts the listing to operations performed by that ident. Only one
ident may be selected for a given listing.
The default setting lists operations performed by all idents.
The default applies if no ident restriction is selected, or may be chosen by specifying a
blank ident. If the default is chosen, the following message is displayed:

** No ident restriction

A selected ident applies for all subsequent list operations in the current session until a new
ident is specified.
Example:

Select: 4
Identname: mimer_store

Databank
Selecting a databank restricts the listing to operations performed on that databank. This
option must be specified if the list operation 7 (Tables in databank) is to be used.
Only one databank may be selected for a given listing.
If no databank is specified, the list operation is done for all databanks. If this is the case,
the following message is displayed:

** No databank restriction

150 Chapter 9 Mimer BSQL
BSQL Commands

A selected databank applies for all subsequent list operations in the current session until
the databank is reset.
Example:

Select: 5
Databank: mimer_orders

List Operations

Specified Tables
This option activates listing of the log for selected tables in the database.
As many tables may be specified as are required, with the table name qualified, if
necessary, by the name of the schema to which it belongs.
If no schema is specified, the schema with the same name as the current ident is assumed.
Databank restrictions selected with option 5 are ignored if specified tables are selected.
However, any ident and time restrictions selected with options 3 and 4 are applied.
The ident running READLOG must have SELECT access on the requested tables, otherwise
the following message is displayed for the table in question:

** No select access on table

If a non-existent table is requested, the following message is displayed:
** No such table

Errors of this type do not abort the listing if valid and invalid requests are mixed in the
same operation.
The list operation is activated by giving a blank response to the prompt for a table name
when all the required tables have been specified, as in the following example:

Select: 6
Table: HOTELADM.EMPLOYEE
Table: HOTELADM.STAFF
Table: HOTELADM.SALARY
Table:

Note: The list operation can be interrupted by entering an exclamation mark !.

Tables in Databank
Operations on all tables in the databank specified under option 5 are listed. If no databank
has been selected, the following message is displayed and the user must select a new
option:

**Databank not entered

Time or ident restrictions selected with options 3 or 4 are applied.
Data is listed only for those tables to which the ident running READLOG has SELECT
access.
Tables to which access is denied are indicated by the following message in the log list file:

Table <schema-name.table-name> - No select access

Mimer SQL Version 11.0 151
User’s Manual

All (No Data)
This option lists logged operations without details of data records (see below). The ident
running READLOG must have BACKUP privilege.
If the privilege is not held by the current ident the following error message is displayed:

** AUTHORIZATION FAILURE

Output Format
The output from READLOG is divided into transactions, showing the date and time, the
ident performing the transaction (with entered program idents where appropriate) and the
number of database records read during the transaction.
Note: The output does not contain statements for reconstructing the logged

operations - it is simply a documentary record of the transactions performed on
the database

If list operations 6 or 7 (select by Specified tables or Tables in databank) are
selected, the contents of the affected rows in the table are displayed. Insert and delete
operations are listed as a single row. Update operations are recorded as the state of the
row before and after the update.
If the list operation 8, All (no data), is selected the operations are listed without the
data records.

SET ECHO
Controls whether or not lines read during READ INPUT are echoed.

Syntax

Description
When echo is set to ON, lines read during READ INPUT are echoed to the BSQL window
or log file. When echo is set to OFF, these lines are not echoed. The default value is ON.
The setting has no effect on the output of responses to BSQL commands and statements.

152 Chapter 9 Mimer BSQL
BSQL Commands

SET EXECUTE
Activate or deactivate the execution of queries.

Syntax

Description
When execute is set to off no queries will be executed. This can be useful when using the
explain facility or when testing a script for correctness.
Note: The SET EXECUTE OFF mode also affects statements like CREATE INDEX

and DROP INDEX. I.e. do not forget to SET EXECUTE ON to be able to create
or drop an index when examining different explain outputs for a query.

SET EXPLAIN
Activate or deactivate the explain facility.

Syntax

Description
When the explain facility is activated the execution plan for the query is shown. By
default the query will be executed, to avoid this behavior the SET EXECUTE command
can be used. (Note that SET EXECUTE OFF applies to DDL statements as well, e.g.
CREATE INDEX will only verify correctness, no index will be created.)
The execution plan will show different operations and the sequence in which these
operations are performed.
DbVisualizer Pro’s explain plan tool is the recommended choice when working with a
Mimer SQL server. See https://www.dbvis.com/features/tour/explain-plan/.
The BSQL Explain output for Mimer SQL is XML based. The different node types are
described in the following table:

Node Description

cost This is the cost of executing the current node and all underlying
nested nodes. The unit of cost is a ~ row access.

hits Number of rows that are passed on from this part of the tree to
higher nodes.

visits Number of rows that the database server needs to process to find
the requested rows.

index This is the access path used to access the rows in the table.

https://www.dbvis.com/features/tour/explain-plan/

Mimer SQL Version 11.0 153
User’s Manual

How to read the XML output and how to understand the DbVisualizer explain is
described in Appendix A Mimer SQL Explain.

SET HEADER
Activate or deactivate display of column headings.

Syntax

Description
If SET HEADER is ON, column headings for result sets are displayed. If SET HEADER is
OFF no column headings are displayed.
SET HEADER ON is default.

type This is the type of the index. It can be primary key, secondary
index or similar. Some constraints are maintained through the use
of hidden indexes. In these cases the name corresponds to the
constraint name.

order Each table/index access is ordered according these numbers. The
order can also be determined by viewing the explain tree.

scan This shows whether the system can process the rows in the table
efficiently or not. Sequential scan means the entire table/index
must be scanned. Leadingkeys means there are conditions on one
or several of the leading columns in the table/index. Trailingkeys
means there are conditions on one or several trailing keys. In
practise this usually means that all rows have to be processed
unless the leading columns contain very few values. Unique
means the row is uniquely identified and the can be processed
quickly.

index lookup
only

When index lookup only is used the base table does not need to be
accessed as the index contains all the necessary information to
process the query. If index lookup only is not used for each row
in the index the corresponding row in the base table will be
accessed.

Node Description

154 Chapter 9 Mimer BSQL
BSQL Commands

SET LINECOUNT
Sets the length of the BSQL window.

Syntax

Description
The LINECOUNT value defines the length of the BSQL window.
If LINECOUNT has a value greater than zero, output will temporarily be stopped after the
number of lines defined for the value.
After the Continue-prompt, the user will have the choice of either continuing with the
display or terminating the output.
Answering ‘Y’ (default) implies that the output will continue until the number of lines is
reached again.
Answering ‘N’ terminates the output. Answering ‘G’ will ignore the line count and the
output will continue until all data are displayed.
If LINECOUNT is zero, the output will continue until all data is displayed.
The value of LINECOUNT must either be zero or >= 10.
The value of LINECOUNT affects data written to the terminal and data logged using the
command LOG INPUT,OUTPUT.

Default
If BSQL is run from a script job, LINECOUNT is zero by default. For interactive operation,
the default value is environment-dependent.

SET LINESPACE
Sets the number of blank lines between each output record.

Syntax

Description
The LINESPACE value defines the number of blank lines to be written between each
output record. This value is only used when printing the result of a SELECT statement.
The maximum value for LINESPACE is 9. The default value is 0.

Mimer SQL Version 11.0 155
User’s Manual

SET LINEWIDTH
Specifies the width of the output.

Syntax

Description
The LINEWIDTH value defines the width for output to the BSQL window or log file. If a
single line exceeds this value, the data will be continued at the next line.
The value of LINEWIDTH affects data written to the terminal, and data logged using the
commands LOG INPUT or LOG INPUT,OUTPUT.
The value for LINEWIDTH must be between 20 and 255.

SET LOG
Stops or resumes logging input, output or both.

Syntax

Description
When SET LOG is set to OFF, logging of input, output or both in a sequential file is
temporarily stopped.
Resume logging with the SET LOG ON command.
If no input/output log is specified, all active logs are stopped or resumed.

SET MAX_BINARY_LENGTH
Specifies the maximum display length for binary columns.

Syntax

Description
The MAX_BINARY_LENGTH value defines the number of elements that are displayed when
selecting data that is defined as binary, binary varying or binary large object.
The default value is 15 000 and the value must be between 1 and 15 000.
As a binary string is shown as a hexadecimal string with two characters for each element
the display length will be twice the value of MAX_BINARY_LENGTH.

156 Chapter 9 Mimer BSQL
BSQL Commands

SET MAX_CHARACTER_LENGTH
Specifies the maximum display length for character columns.

Syntax

Description:
The MAX_CHARACTER_LENGTH value defines the number of characters that are displayed
when selecting data that is defined as any character data type.
The default value is 15 000 and the value must be between 1 and 15 000.

SET MESSAGE
Specifies whether or not messages should be displayed.

Syntax

Description
Specifies whether or not result messages such as One row found etc. are written.
The default setting is ON.

SET OUTPUT
Specifies whether or not output should be displayed.

Syntax

Description
When OUTPUT is set to ON, the output from BSQL is written to the BSQL window. When
it is set to OFF, the output does not appear.
The default value is ON.

Mimer SQL Version 11.0 157
User’s Manual

SET PAGELENGTH
Specifies the page size of the output log file.

Syntax

Description
The PAGELENGTH value defines the page size of the file on which output is logged, i.e. at
what interval a page break will be performed. A value of zero will result in no page
breaks.
The PAGELENGTH value can either be set to zero or >= 10. The default value is machine-
dependent.
The value of PAGELENGTH affects data logged using the command LOG OUTPUT.

SET PAGEWIDTH
Specifies the page width of the output log file.

Syntax

Description
The PAGEWIDTH value defines the width for output to the BSQL window or log file. If a
single line exceeds this value, the data will be continued at the next line.
The value of PAGEWIDTH affects data logged using the command LOG OUTPUT.
The value for PAGEWIDTH must be larger than 20.

SET SILENCE
Specifies whether or not column headers or information messages should be displayed.

Syntax

Description
If SET SILENCE ON then BSQL will not display any column headers nor any messages
when selecting or modifying data.
SET SILENCE OFF will revert to the default behavior.

158 Chapter 9 Mimer BSQL
BSQL Commands

SET STATISTICS
Specifies whether or not statement statistics should be displayed.

Syntax

Description
When STATISTICS is set to ON, additional information about INSERT, DELETE, UPDATE
and SELECT statements will be shown. This includes number of table operations and
transaction records.
A table operation is either a read or write to a table, index or temporary table that occurred
during the statement. For instance, if a select statement read an index record and then
reads additional columns (not present in the index) from the base table this will be
counted as two table operations. Likewise when doing update statements, operations on
base tables and operations on indexes will be counted as separate operations.
The number of transaction records for a statement includes the number of records insert,
deleted or updated and any records that needs to be kept for checking constraints and
transaction consistency.
The default value is OFF.

SHOW SETTINGS
Displays the current values of all set options.

Syntax

Description
Displays the current values for all SET options, i.e. ECHO, EXECUTE, EXPLAIN,
LINECOUNT, LINESPACE, LINEWIDTH, LOG, MAX_BINARY_LENGTH,
MAX_CHARACTER_LENGTH, MESSAGE, OUTPUT, PAGELENGTH, PAGEWIDTH, SILENCE,
TRANSACTION START, TRANSACTION ISOLATION LEVEL, TRANSACTION MODE (read
only or read write).
Current server name, server version, and connection names are also displayed.

Mimer SQL Version 11.0 159
User’s Manual

TRANSACTIONS
Displays the menu for administration of distributed transactions.

Syntax

Description
You can use the TRANSACTIONS command to monitor distributed transactions that are in
a prepared or heuristically completed state. Note that all transactions are uniquely
identified by the XID string. Because those strings are somewhat long, BSQL assigns a
small sequence number to each line to be used as a shorthand. This shorthand is only valid
until the List transactions option is used again. Note that since transactions are
normally short-lived, the same transaction may be assigned different sequence numbers
each time the List transactions option is used.
Note: The TRANSACTIONS command should only be used in exceptional

circumstances, such as when a transaction monitor has crashed or a network
failure has occurred making it is impossible to establish contact with a
transaction monitor.

The command will present the following menu:
 Menu for handling distributed transactions

1. List transactions 2. Heuristic commit 3. Heuristic rollback
0. Exit

The List transactions option displays a list of all distributed transactions that are
either in a prepared ore heuristically completed state. For example:
NUMBER STATUS XID
====== ========== ===
 1 Prepared 34C6F6E675849446E616D6520
===
 2 Prepared C6F6E675849446E616D6520
===

 2 transactions found

To heuristically commit or rollback a distributed transaction, you can choose option 2 or
3 in the menu. This will prompt for a transaction number which should correspond to a
number in the listing. It is not possible to heuristically commit or rollback a distributed
transaction without a prior listing.
When a distributed transaction is heuristically committed or rolled back it will remain in
the list until it has been forgotten by the transaction monitor.
If the transaction with sequence number 1 (XID 34C6F6E675849446E616D6520) was
heuristically committed a subsequent listing would look like this:
NUMBER STATUS XID
====== ========== ===
 1 Prepared C6F6E675849446E616D6520
===
 2 Committed 34C6F6E675849446E616D6520
===

 2 transactions found

160 Chapter 9 Mimer BSQL
Variables in BSQL

More information on distributed transactions in general, can be found in the Mimer SQL
Programmer’s Manual, Chapter 10, Distributed Transactions.

WHENEVER
Determines which actions should be taken in the event of an error or warning.

Syntax

Description
If an error or warning should occur in a file being run in a script, there are different action
options that may be chosen to determine what should happen:

Execution Flow

Variables in BSQL
Host variables are used in SQL statements to pass values between the database and an
application program, see the Mimer SQL Programmer’s Manual.
Host variable syntax is also supported in BSQL to facilitate interactive design and testing
of SQL statements intended for use in SQL application programs.
In BSQL, host variables serve as parameter markers, and the user is prompted for
parameter values when the statement is executed.
You can use host variables used to:
• assign values to columns in the database (UPDATE and INSERT statements)
• to manipulate information taken from the database or contained in other variables

(in expressions)
• to provide values for comparison predicates.
In all these contexts, the data type and length of the host variable must be compatible with
that of any database values within the same syntax unit.

EXIT Leaves BSQL if script mode. Returns to prompt if interactive mode. I.e.
if interactive mode and file input mode, the remaining file input is ignored
and a new prompt is received.

CONTINUE Continues execution.

Mimer SQL Version 11.0 161
User’s Manual

Writing Host Variables in SQL
Host variables are written in SQL as:

:host-identifier

or
:host-identifier :indicator-identifier

or
:host-identifier INDICATOR :indicator-identifier

In the first construction, the host identifier is the name of the main host variable.
In the second and third constructions, the main variable host-identifier is associated with
an indicator variable indicator-identifier, used to signal the assignment of a null value to
the main variable.
See the Mimer SQL Programmer’s Manual for a description of the use of indicator
variables.

Scope of Host Variables
The scope of host variables in BSQL is restricted to the individual usage instance in each
statement.
Variables may not be used to pass values between separate statements, and the same
variable name used more than once in a statement represents separate, independent
variables.

Using Host Variables
When host variables are used in BSQL, BSQL prompts for the variable values, for
example:

SQL>SELECT * FROM countries WHERE country = :COUNTRY;
COUNTRY: Spain

This corresponds to the statement:
SQL>SELECT * FROM countries WHERE country = 'Spain';

Note: The entered variable is not enclosed between single quotation marks, in
contrast to the corresponding string value.
Variables enclosed in single quotation marks will be interpreted as literal
strings.

Including Indicator Variables
If an indicator variable is included, you will be prompted for whether to use a null value.
If you answer the prompt with No, you will then be prompted for a value.

162 Chapter 9 Mimer BSQL
BSQL and Multiple Connections

If you answer Yes, the null value will be used. For example:
SQL>UPDATE currencies SET exchange_rate = :RATE:IND
SQL& WHERE code = 'BND';
Null ?n
RATE: 1.34

SQL>UPDATE currencies SET exchange_rate = :RATE:IND
SQL& WHERE code = 'BND';
Null ?y

In the first example above, the exchange_rate value is updated to 1.34. In the second
example, the exchange_rate value is set to null.
Note: The prompts appear in the order in which the variables are used in the

statement.

BSQL and Multiple Connections
After logging in using BSQL, additional connections can be established using the
CONNECT statement, which has the following form:

CONNECT TO 'database' [AS 'connection_name']
USER 'username' USING 'password';

This statement establishes a new connection between the user and a database, see the
Mimer SQL Reference Manual, Chapter 12, CONNECTfor details.
The database may be given an explicit connection name for use in DISCONNECT and SET
CONNECTION statements. If no explicit connection name is specified, the database name
is used as the connection name.

Changing Connections
BSQL may make multiple connections to the same or different databases using the same
or different idents, provided that each connection is identified by a unique connection
name. In this situation only one connection is active and the other connections are
inactive. A connection established by a successful CONNECT statement is automatically
active.
A connection may be made active by the SET CONNECTION statement.
For example:

SET CONNECTION 'connection_name';

Disconnecting
The DISCONNECT statement breaks the connection between the user and a database. The
connection to be broken is specified as the connection name or as one of the keywords
ALL, CURRENT or DEFAULT.

DISCONNECT 'connection_name';

A connection does not have to be active in order to be disconnected. If an inactive
connection is broken, BSQL still has uninterrupted access to the database through the
current (active) connection, but the broken connection is no longer available for
activation with SET CONNECTION.

Mimer SQL Version 11.0 163
User’s Manual

If the active connection is broken, BSQL cannot access any database until a new
CONNECT or SET CONNECTION statement is issued.
Note: The distinction between breaking a connection with DISCONNECT and making

a connection inactive by issuing a CONNECT or SET CONNECTION for a
different connection is, a broken connection has no saved resources and cannot
be reactivated by SET CONNECTION.

The table below summarizes the effect on the connection con1 of CONNECT,
DISCONNECT and SET CONNECTION statements depending on the state of the
connection.

Transaction Handling in Mimer BSQL
Normal Mimer SQL transaction handling behavior applies in Mimer BSQL. The default
transaction start setting of implicit means that, by default, a transaction is started
whenever one is needed.
For a detailed description of transaction handling behavior in Mimer SQL, refer to the
Mimer SQL Programmer’s Manual, Chapter 9, Transaction Handling and Database
Security.
A special feature of BSQL is that all implicitly started transactions are automatically
committed at the end of each statement, so that by default no attention needs to be paid to
transaction handling at all in BSQL.
The START and COMMIT (or ROLLBACK) statements may be used together to group a
number of statements into a single transaction when this is required.
Any transactions explicitly started using START will not be automatically committed by
BSQL, so COMMIT or ROLLBACK must be used.

Statement con1 non–
existent

con1 current con1
inactive

CONNECT TO 'DB1' AS 'CON1' con1 current error –
connection
already exists

error –
connection
already exists

DISCONNECT 'CON1' error –
connection
doesn’t exist

con1
disconnected

con1
disconnected

SET CONNECTION 'CON1' error –
connection
doesn’t exist

ignored con1 made
current

CONNECT TO 'DB2' AS 'CON2' – con1 made
inactive

con1
unaffected

DISCONNECT 'CON2' – con1
unaffected

con1
unaffected

SET CONNECTION 'CON2' – con1 made
inactive

con1
unaffected

164 Chapter 9 Mimer BSQL
LOBs in BSQL

LOBs in BSQL
Although BSQL is not designed to handle Large OBjects (LOBs), it does provide limited
LOB support for testing purposes.
A LOB is a column defined as being of type Character Large OBject (CLOB),
National Character Large OBject (NCLOB) or Binary Large OBject (BLOB).
Columns defined as CLOB will, in all essentials, be treated as being the same as VARCHAR
with a maximum length of 15 000 characters.
Columns defined as NCLOB will, in all essentials, be treated as being the same as NCHAR
VARYING with a maximum length of 5 000 characters.
Columns defined as BLOB will be treated as BINARY VARYING with a maximum length
of 15 000.
LOBs larger than these limits cannot be entered as input, and will be truncated as output.
For more information on LOB data types, see the Mimer SQL Reference Manual,
Chapter 6, Data Types in SQL Statements.

Errors in BSQL
Error messages are shown when you attempt to execute an erroneous SQL statement.
There are two types of errors: semantic errors and syntax errors.

Semantic Errors
Semantic errors arise when SQL statements are formulated with correct syntax, but do not
reflect the user’s intentions.
For example, suppose that a user wishes to select the string constant Hotel: and the
actual hotel name from the table HOTEL, but uses double quotation marks instead of single
quotation marks around the string constant:

SELECT "Hotel:",NAME
FROM HOTEL;

Double quotation marks are used to delimit identifiers containing special characters, so
that the statement is interpreted as a request to select two columns, called Hotel: and
NAME, from the table. The first column does not exist.
This example will in fact lead to an execution error, and is easily detected. Other semantic
mistakes can be more difficult to find, when the statement is executed but gives the
‘wrong’ answer.
An example is the incorrect use of null in a search condition:

SELECT RESERVATION FROM BOOK_GUEST
WHERE CHECKOUT = CAST(NULL as DATE);

This will always give an empty result set, since null is not equal to anything.
The correct formulation would read WHERE CHECKOUT IS NULL.
Always check that the result of an SQL query looks reasonable, in particular if the query
is complicated.

Mimer SQL Version 11.0 165
User’s Manual

Syntax Errors
Syntax errors are constructions which break the rules for formulating SQL statements.
For example:
• spelling errors in keywords

SLEECT (for SELECT)
• incorrect or missing delimiters

DELETEFROM (for DELETE FROM)
SELECT column1 column2 (for SELECT column1,column2)

• incorrect clause ordering
UPDATE table WHERE condition SET values

(for UPDATE table SET values WHERE condition)
Syntactically incorrect statements are not accepted and an appropriate error message is
displayed.
The error must be corrected before the statement can be executed.
For syntax errors, BSQL analyzes the statement and makes an intelligent guess as to
where the error lies. This guess is based upon the most likely syntax or appearance of the
statement in question. The system then points out the error and lists an error message
based on this analysis. The appearance of this pointer on your screen is machine
dependent. In the examples shown in this chapter, the pointer appears as ‘^’. The
messages are self-explanatory.
The statement analysis is however not completely foolproof and misleading error
messages may arise. If the message seems to be inaccurate, check the statement
construction against the syntax diagram in the Mimer SQL Reference Manual.

Error Examples
Some examples of errors and resulting error messages are listed below.

Incorrect statement:
SELECT AVG(country) FROM countries;

Error message:
SELECT AVG(country) FROM countries;
 ^
Invalid operand type, expected type is NUMERIC or INTERVAL

Incorrect statement:
SELECT country FROM countries
WHERE currency_code ON ('USD','GBP','SEK');

Error message:
SELECT country FROM countries
WHERE currency_code ON ('USD','GBP','SEK');
 ^
Syntax error, 'ON' assumed to mean 'IN'

166 Chapter 9 Mimer BSQL
Error Messages

Incorrect statement:
In the following example, the error analysis is misleading:

SELECT country FROM countries
WJERE currency_code = 'USD';

Error message:
SELECT country FROM countries
WJERE currency_code = 'USD';
 ^
Syntax error, END-OF-QUERY assumed missing

The misspelled word WJERE is not recognized as an attempt to write WHERE, so that the
second line is not interpreted as a selection condition.

Error Messages
Error messages from BSQL are shown when you enter an illegal BSQL command or
attempt to execute an erroneous SQL statement.
The error messages for erroneous SQL statements are the same as the return codes found
in the Mimer SQL Programmer's Manual.
Error messages that can be received for illegal BSQL commands are:

Code Message

-1 String exceeds 256 characters which is not allowed

-2 File could not be opened

-3 Too many files have been opened

-5 Conflict. One of COMMIT or ROLLBACK and EXIT or CONTINUE

-100 Undefined command <%>

-101 Ambiguous command <%>

-102 <%> command not valid in this context

-103 Missing semicolon

-104 Missing statement terminator (@)

-201 Syntax error

-202 Undefined keyword

-203 String expected

-204 Filenames must be enclosed in apostrophes

-205 Invalid numerical literal

-206 Unexpected end of command

-207 Too many parameters

-300 Failed to read dictionary

Mimer SQL Version 11.0 167
User’s Manual

-400 Record too large for one page (<%> lines required) Increase value of LC/PL
or set them to zero

-600 The number of host variables cannot exceed 20

-666 Space area exhausted

-700 Help databank not installed or inaccessible

-701 Help topic not found

-776 Maximum record length <%> exceeded

-777 Maximum header length exceeded

-800 Load/unload is not allowed within a transaction

-801 Pending transaction , Commit or Rollback

-802 Invalid transaction number, must be between 1 and <%>

-803 Server version and BSQL version must be the same when using READLOG

-804 The READLOG statement cannot be used within a transaction

-805 Invalid string literal, missing delimiter (')

-806 Error when reading from terminal

-807 <%> logging has not been activated with the LOG command

-810 There are no recovered XA transactions

-811 Support for XA commands is not enabled

-900 No buffer saved

-999 Too long statement

-1001 Syntax error in file name

-1002 File not found

-1003 File protection violation

-1004 File locked

-1005 Maximum number of opened files exceeded

-1006 Disk space exhausted

-1007 ** Installation dependent **

-1008 ** Installation dependent **

-1009 Unspecified file open error

-1101 Disk space exhausted

-1200 Previous perform file is not finished

-1300 Only select statements can be used with PRINT

Code Message

168 Chapter 9 Mimer BSQL
Error Messages

-1400 Invalid numerical argument

-1500 Illegal value for <%>

-1600 The routine is overloaded. Use describe specific instead.

-1700 Maximum number of result items exceeded, limited to 300.

-1800 Maximum number of input items exceeded, limited to 300.

Code Message

Mimer SQL Version 11.0 169
User’s Manual

Appendix A

Mimer SQL Explain
The Mimer SQL server contains a highly advanced SQL optimizer. The optimizer
performs numerous transformations and computes the most efficient access path to get
the query results.
It is possible to view the results of the optimization process to help in the construction of
efficient queries. In the bsql command line utility (aka. Batch SQL), the optimizer output
may be viewed in its raw format. The output is xml-based.
It is also possible to view a graphical output of the same data in the DbVisualizer Pro
front-end. (Note that this functionality is not available in the version bundled with the
Mimer SQL distribution.) Download a DbVisualizer Pro trial license and try it out!
(https://www.dbvis.com/download/)
Here is some reference material about explain output followed by some sample queries.

Node name Explanation

select The SQL statement is a select statement

insert The SQL statement is an insert statement

update The SQL statement is an update statement

delete The SQL statement is a delete statement

tempTable The optimizer has decided to use a temporary table for the
results thus far in the query.

union The optimizer is performing a union all of two or more result
sets (i.e. concatenating the results without temporary table). An
SQL UNION operation is typically translated to a tempTable
containing a union.

subselect A subselect node is a subquery such as an exists, a scalar
subquery, or a quantified predicate (IN-clause etc.). A
subquery will be executed for each row found in the outer
table(s).

constSubselect A constSubselect node is a subquery that has no dependencies
to outer tables and returns zero or one row. Examples of this are
non-correlated exists and scalar subqueries. These are only
executed once and the result is reused for each row found in the
outer table(s).

innerJoin The innerJoin node is used when two tables are joined. Only
rows that match the join condition are returned.

https://www.dbvis.com/download/

170 Appendix A Mimer SQL Explain

The following attributes are used:

outerJoin The outerJoin node is used for an outer join query. When there
is no match in the outer join, null values are returned.

crossJoin This is a join where there are no join conditions between two
tables. Every row in the first table will match all rows returned
by the second table. The query may be lacking appropriate
conditions when this occurs. Double check that your query
returns the desired results.

table This node is used to access the contents of a single table and/or
index.

Attribute Used by Explanation

name table Table name including alias used in SQL
statement.

order table Scan order of the table/index in the query.

index table Here we see the name of the access path picked
by the optimizer. The name depends on the type,
either name of the index or the constraint. When
a base table is read the primary key or internal
key is always used.

scan table - sequential: this is a complete table scan. In
general, they should be avoided as with more data
in the table the query will take longer to execute.
- trailingKeys: Means there are conditions on the
second or later columns in the index. Unless all
previous columns contain very few data values,
this will be an expensive scan.
- leadingKeys: One or several of the first columns
in the index have conditions on them. Usually a
good access path.
- unique: The entire key is specified. Always a
very good access path.

type table - Primary key.
- Index created with a create index statement.
- Foreign key index.
- Unique constraint index.
- Internal key. This is a generated key for tables
without a primary key defined.

Node name Explanation

Mimer SQL Version 11.0 171
User’s Manual

Join
Let us start with a simple query. It uses the Mimer sample database (see The EXLOAD
program on page 180.) Login as MIMER_STORE with password GoodiesRUs if you want
to try it:

select cou.country, cur.currency from currencies cur, countries cou
where cou.country in ('Belgium', 'Norway')
and cou.currency_code = cur.code;

indexLookupOnly table When accessing an index, first the index is read
and then the base table. However, if an SQL
statement only uses column values that are
present in the index then indexLookupOnly can
be used. In this case only the index is read and no
corresponding base table lookup is made.
Please note that when a primary key or internal
key is used, only the base table is read even
though this option is not set.

cost All nodes The estimated cost for the accessing the table.

hits All nodes The number of hits that will be returned.

visits All nodes The number or rows that the system will read
from a table or temporary table. When an index is
accessed this includes both index table lookup
and base table lookup (unless indexLookupOnly
is used in which case the base table is never
accessed). For parent nodes (such as a join node)
this is the accumulated value for underlying
accesses.

tempWrites tempTable Number of rows written to temporary table.

rows table This is the number of rows in the table. This is the
value from the last time update statistics was run
on the table. If there are no statistics collected for
table the optimizer will look in the table to
estimate the number of rows.

Attribute Used by Explanation

172 Appendix A Mimer SQL Explain

The query returns which currency is used in Belgium and Norway. The explain plan in
DbVisualizer looks as follows:

The diagram is read starting in the lower left corner and then working your way up to the
right. If in doubt, check the scan order field to see the execution order. The same query in
bsql is shown here. Note the command set explain on is given first to see the explain
plan:

SQL> set explain on;
SQL> select cou.country, cur.currency from currencies cur, countries cou
SQL& where cou.country in ('Belgium', 'Norway')*
SQL& and cou.currency_code = cur.code;
Start of explain result

 <select cost="6" hits="2" visits="6">
 <innerJoin cost="6" hits="2" visits="6">
 <table name="countries cou" order="1" index="cnt_country_exists"
 scan="leadingKeys" type="unique key"
 cost="4" hits="2" visits="4" rows="234"/>
 <table name="currencies cur" order="2" index="SQL_PRIMARY_KEY_5715"
 scan="unique" type="primary key"
 cost="1" hits="1" visits="1" rows="162"/>
 </innerJoin>
 </select>

End of explain result

country
currency
==
Belgium
Euros
===
Norway
Norwegian Kroner
===

 2 rows found

Mimer SQL Version 11.0 173
User’s Manual

Let us examine the explain output in some detail. Note that the XML contains exactly the
same information as is used by DbVisualizer to display the explain graph.
The join order picked by the optimizer is to start with the countries table. This table is then
joined with the currencies table.

<table name="countries cou" order="1" index="cnt_country_exists"
 scan="leadingKeys" type="unique key" cost="4" hits="2" visits="4"
rows="234"/>

Order 1 shows that the countries table is read first. The unique key cnt_country_exists
index is used to scan the table. We have a condition on the first column in the index
(cou.country = 'Belgium') which is why the scan is "leadingKeys". In DbVisualizer you
can see all the columns of cnt_country_exists under Access Paths:

The index cnt_country_exists has both the country column and the primary key code
column. The visit count is 4 because two rows are read in the index, and two rows from
the base table. This will result in a hit-count of 2 rows. The statistics indicates there are
234 rows in the countries table.
Let us now examine the join-node:

<innerJoin cost="6" hits="2" visits="6">
 <table name="countries cou" order="1" index="cnt_country_exists"
scan="leadingKeys"
 type="unique key" cost="4" hits="2" visits="4" rows="234"/>
 <table name="currencies cur" order="2" index="SQL_PRIMARY_KEY_5715"
scan="unique"
 type="primary key" cost="1" hits="1" visits="1" rows="162"/>
</innerJoin>

The join node contains the cost of processing the two tables. The number of visits and hits
are as follows:
Visits (6) = visits in countries (4) + hits in countries (2) * visits in currencies
(1)
Hits (2) = hits in countries (2) * hits in currencies (1)

When there are no temporary tables involved the cost is equal to the total number of visits.

174 Appendix A Mimer SQL Explain

Let us see what would happen if we were to force the opposite join order. This is done by
using the {order} clause in the from-list:

SQL> set explain on;
SQL> select cou.country, cur.currency
SQL& from {order} currencies cur, countries cou
SQL& where cou.country in ('Belgium', 'Norway')
SQL& and cou.currency_code = cur.code;
Start of explain result

 <select cost="486" hits="162" visits="486">
 <innerJoin cost="486" hits="162" visits="486">
 <table name="currencies cur" order="1" index="SQL_PRIMARY_KEY_5715"
 scan="sequential" type="primary key"
 cost="162" hits="162" visits="162" rows="162"/>
 <table name="countries cou" order="2" index="SQL_FOREIGN_KEY_5723"
 scan="leadingKeys" type="foreign key index"
 cost="2" hits="1" visits="2" rows="234"/>
 </innerJoin>
 </select>

End of explain result

This was clearly a bad idea. We now got a sequential scan of the currencies table. Since
we only had a join condition (cou.currency_code = cur.code) on this table which
cannot be evaluated until we read both tables we get 162 hits. The countries table now
uses the foreign key index to find the values. The inner join cost was:
Visits (486) = visits in currencies (162) + hits in currencies (162) * visits in
countries (2)
Hits (162) = hits in currencies (162) * hits in countries (1)

Inner join, outer join and cross join are all computed in this way.

Temporary Tables
There are several different types of temporary tables depending on which operation is
being handled. For example distinct, group by and order by. Tables used for order by and
group by are both inserted to and read. This is seen as both a write count and a visit count.
Distinct temporary tables are only used to avoid duplicates and never have to be read. In
this case we have a write count, but no visit count. It is a bit more expensive to perform
write operations than read operations. The optimizer currently uses a factor of ~1.4 to
estimate the cost.

Mimer SQL Version 11.0 175
User’s Manual

Let us look at an example:
SQL> set explain on;
SQL> select cou.country from currencies cur, countries cou
SQL& where cou.currency_code = cur.code
SQL& and cur.currency in ('Swiss Francs', 'Pulas', 'Czech Korony')
SQL& order by cou.country;
Start of explain result

 <select cost="175" hits="3" visits="171" tempWrites="3">
 <tempTable cost="172" class="TempTableOrderBy" hits="3" visits="3"
tempWrites="3">
 <innerJoin cost="168" hits="3" visits="168">
 <table name="currencies cur" order="1" index="SQL_PRIMARY_KEY_5715"
 scan="sequential" type="primary key"
 cost="162" hits="3" visits="162" rows="162"/>
 <table name="countries cou" order="2" index="SQL_FOREIGN_KEY_5723"
 scan="leadingKeys" type="foreign key index"
 cost="2" hits="1" visits="2" rows="234"/>
 </innerJoin>
 </tempTable>
 </select>

End of explain result

As can be seen the optimizer estimates that 3 rows will be both written and read from the
temporary table. The cost (172) = innerjoin cost (168) + tempWrites (3) * 1.4. In the next
level we add the cost for reading (visits="3") so the total cost is 175.

Subqueries
There are three variations of optimization of subqueries that are important to understand:
• The simplest one is where the subquery is executed once for each row of the outer

query.
• Sometimes it is possible to execute the subquery as a join with the outer table(s). In

this case the subquery can occur somewhere in the join order. Depending on the
actual conditions a temporary table may be needed to eliminate duplicates in this
case.

• If the subquery is not correlated, i.e. has no conditions that relate to the outer query
and only return zero or one rows, then the query can be executed once and for all
and the result is then reused as the outer tables are processed.

176 Appendix A Mimer SQL Explain

We will look at examples of the above three cases.
select cou.country from countries cou
where country in ('Andorra','Angola','Anguilla','Antigua and Barbuda')
and cou.currency_code in (select cur.code from currencies cur
 where exchange_rate > 0.3);

For each hit in the countries table we run the subselect. In the query the optimizer has used
the primary key to look up the corresponding row in the currencies table. The subselect
is evaluated 4 times and each has a cost of 1.

Mimer SQL Version 11.0 177
User’s Manual

We will now take a look at a query where the subquery participates in the outer query join.
SQL> set explain on;
SQL> select cur.currency
SQL& from currencies cur
SQL& where exists (select 1 from countries c
SQL& where c.country in ('Sweden' ,'Japan')
SQL& and c.currency_code = cur.code);
Start of explain result

 <select cost="9" hits="2" visits="6" tempWrites="2">
 <tempTable cost="9" class="TempTableJoinBySubselect" tempWrites="2">
 <innerJoin cost="6" hits="2" visits="6">
 <table name="countries c" order="1" index="cnt_country_exists"
 scan="leadingKeys" type="unique key"
 cost="4" hits="2" visits="4" rows="234"/>
 <table name="currencies cur" order="2" index="SQL_PRIMARY_KEY_5715"
 scan="unique" type="primary key"
 cost="1" hits="1" visits="1" rows="162"/>
 </innerJoin>
 </tempTable>
 </select>

End of explain result

In the explain output the exists now participates as part of the join with the currencies
table. An extra temporary table is in this query needed to eliminate duplicates.
And finally the third type is the constant subquery.

SQL> set explain on;
SQL> select cur.currency
SQL& from currencies cur
SQL& where cur.exchange_rate < (select exchange_rate
SQL& from currencies xcur, countries cou
SQL& where cou.country = 'Belgium'
SQL& and cou.currency_code = xcur.code);
Start of explain result

 <select cost="165" hits="54" visits="165">
 <constSubselect cost="3" hits="1" visits="3">
 <innerJoin cost="3" hits="1" visits="3">
 <table name="countries cou" order="1" index="cnt_country_exists"
 scan="leadingKeys" type="unique key"
 cost="2" hits="1" visits="2" rows="234"/>
 <table name="currencies xcur" order="2" index="SQL_PRIMARY_KEY_5715"
 scan="unique" type="primary key"
 cost="1" hits="1" visits="1" rows="162"/>
 </innerJoin>
 </constSubselect>
 <table name="currencies cur" order="3" index="SQL_PRIMARY_KEY_5715"
 scan="sequential" type="primary key"
 cost="162" hits="54" visits="162" rows="162"/>
 </select>

End of explain result

The select using currencies and countries is a scalar subselect that only returns a single
value. There are no references to the outer table currencies cur. Therefore the
constSubelect node can be used. It is executed only once, and then the result is used for
each row in the currencies cur table. In the query above the cost is much cheaper than
evaluating the subquery for each row in currencies cur (instead of a cost of 165 we would
get 660 = 165 + 165 * 3).

178 Appendix A Mimer SQL Explain

Union
Let us look at an example of how union costs are computed:

SQL> set explain on;
SQL> select c.category from categories c
SQL& union
SQL& select f.format from formats f;
Start of explain result

 <select cost="30" hits="13" visits="16" tempWrites="10">
 <tempTable cost="30" class="TempTableUnion" visits="3" tempWrites="10">
 <union cost="13" hits="13" visits="13">
 <table name="formats f" order="1" index="fmt_primary_key"
 scan="sequential" type="primary key"
 cost="10" hits="10" visits="10" rows="10"/>
 <table name="categories c" order="2" index="ctg_primary_key"
 scan="sequential" type="primary key"
 cost="3" hits="3" visits="3" rows="3"/>
 </union>
 </tempTable>
 </select>

End of explain result

In a union duplicates are eliminated. This can be seen as a tempTable node. The cost of
the union is the cost of each branch and then the temporary table handling. Remember that
writes cost an extra ~1.4 in the cost. It can be noted that the optimizer has reordered the
union branches because the select from the categories tables only returns distinct values
because there is a unique index on the category column. When the last union branch is
distinct (i.e. that branch alone does not return any duplicate values), the system will only
check if the value has been seen in earlier union branches. This can be seen as
tempWrites="10" (from the first union branch) and visits="3" to check that the value has
not occurred before. The total cost (30) = union cost (13) + tempWrites 10 * 1.4 + temp
table visits (3).
The optimizer does not know anything about the actual content of the two columns.
However, the SQL programmer may know that the values in the two tables are distinct.
If that is the case the query can be rephrased as:

SQL> set explain on;
SQL> select c.category from categories c
SQL& union all
SQL& select f.format from formats f;
Start of explain result

 <select cost="13" hits="13" visits="13">
 <union cost="13" hits="13" visits="13">
 <table name="categories c" order="1" index="ctg_primary_key"
 scan="sequential" type="primary key"
 cost="3" hits="3" visits="3" rows="3"/>
 <table name="formats f" order="2" index="fmt_primary_key"
 scan="sequential" type="primary key"
 cost="10" hits="10" visits="10" rows="10"/>
 </union>
 </select>

End of explain result

The change is that UNION ALL is used instead of UNION. This will, of course, result in a
more efficient query as no temporary table handling is needed. The cost has subsequently
dropped from 30 to 13!

Mimer SQL Version 11.0 179
User’s Manual

Appendix B

The Example
Environment

This appendix describes the contents of the Mimer SQL example environment.
The complete environment is owned by a USER ident named MIMER_STORE.
The MIMER_STORE ident is granted the privilege to create databanks and idents.
The example environment is based on a store that sells music and books, available in
various formats. The store also has a web site, through which users can place orders.
Stored procedures (SQL/PSM) are used to take care of various aspects of the business
logic.
The example environment forms as the basis for examples given in the Mimer SQL
documentation set.

The example environment can also be created manually by using the EXLOAD program
(see below).
For more information about the example environment, see the feature description ‘The
Example Database’ on the Mimer SQL developer site,
https://developer.mimer.com/article/the-example-database/.

Linux: On Linux, the dbinstall utility, used to create the system
databanks, provides an option to create the example environment.

Win: On Windows, the Mimer Administrator is used to create the system databanks.
The wizard used for this provides an option to create the example environment.

https://developer.mimer.com/article/the-example-database/

180 Appendix B The Example Environment
The EXLOAD program

The EXLOAD program
By using the EXLOAD program the example environment can be created or removed. (The
example environment can also be removed by dropping the MIMER_STORE ident from
any SQL command tool).
At installation of the example environment, default values are provided for passwords and
for databank filenames. These default values can be changed by using the ALTER
command after the installation is completed or by explicitly giving passwords and
filenames as command line arguments to the EXLOAD command, see the syntax below.

Syntax
The EXLOAD syntax (expressed in Unix-style) is as follows:

exload [-s | -m] [-f | -r] [-p pass] [database]

exload [--single | --multi] [--force | --remove] [--password=pass] [database]

exload [-v|--version | [-?|--help]

When creating the example database it is possible to change the default values for
passwords and filenames. This is done by adding parameters after the 'database'
parameter (that must be given in this case). These optional parameters must be added in
the following order:

[MIMER_STORE-password
MIMER_ADM-password
MIMER_USR-password
MIMER_WEB-password
MIMER_STORE-databank-filename
MIMER_ORDERS-databank-filename
MIMER_BLOBS-databank-filename]

Mimer SQL Version 11.0 181
User’s Manual

Command-line Arguments

All parameters to EXLOAD are optional. If no command line arguments are given, the
following will happen:
• A SYSADM password is needed and will be prompted for.
• Access mode and database name will be taken from MIMER_MODE and

MIMER_DATABASE, respectively.
• If the example environment is already installed a question is prompted whether to

continue or not
• Default values are used for all example database passwords and filenames. The

values used are displayed when the EXLOAD program is executed.

Unix-style VMS-style Function

-s
--single

/SINGLE Single-user mode database
access

-m
--multi

/MULTI Multi-user mode database
access

-r
--remove

/REMOVE Remove the example database

-f
--force

/FORCE Install the example database
even if it already exists. The
old environment is dropped.

-p SYSADMpwd
--password=SYSADMpwd

/PASSWORD=SYSADMpwd Password for SYSADM

database database Database name

MIMER_STOREpwd MIMER_STOREpwd Password for
MIMER_STORE ident

MIMER_ADMpwd MIMER_ADMpwd Password for MIMER_ADM
ident

MIMER_USRpwd MIMER_USRpwd Password for MIMER_USR
ident

MIMER_WEBpwd MIMER_WEBpwd Password for MIMER_WEB
ident

MIMER_STOREdbfilename MIMER_STOREdbfilename Filename for
MIMER_STORE databank

MIMER_ORDERSdbfilename MIMER_ORDERSdbfilename Filename for
MIMER_ORDERS databank

MIMER_BLOBSdbfilename MIMER_BLOBSdbfilename Filename for
MIMER_BLOBS databank

-?
--help

/HELP Show help text.

-v
--version

/VERSION Display version information.

182 Appendix B The Example Environment
The MIMER_STORE Schema

Exit Codes
The EXLOAD program returns an error status to the operating system when an error is
encountered. This may be useful when running EXLOAD from scripts.
The following error codes are used:

The MIMER_STORE Schema
In this base schema most of the objects supported by Mimer SQL are introduced:
collations, databanks, domains, idents, sequences, synonyms, tables and views. They are
used to demonstrate some of the functionality that is available – constraints; primary,
unique and foreign keys; secondary indices; NOT NULL; default values; and column and
table check clauses. The schema also includes examples of PSM routines and triggers.
When an ident, other than a GROUP, is created, a schema of the same name is created by
default. Objects in the MIMER_STORE schema have to be created before other objects can
reference them.

Databanks
A databank is the physical file where a collection of tables is stored. There are three
databanks defined in the example environment; the databank where the tables containing
BLOBs will be stored is defined with the TRANSACTION option. The databanks have
names that start with the prefix MIMER_.

Domains
There are a number of domains defined. In essence, a domain is a column data type
specification that can be used in a number of table column definitions.
A number of different data types are introduced. The domains introduce the idea of
consistency in the table definitions and demonstrate how to use check clauses, including
the equivalent of NOT NULL.

Sequences
A sequence is an object that can provide a unique integer value. The sequences start with
initial values other than the default to give the various sequences different number ranges;
this is sometimes helpful when looking at data. The sequence names have a _SEQ suffix
to help to clarify when they are being used.

Tables
Data in a relational database is logically organized in tables, which consist of horizontal
rows and vertical columns. Columns are identified by a column-name.

Linux/Windows OpenVMS Usage

0 (success) 1 (success) This code is used when EXLOAD has executed
successfully.

>1 (error) 2 (error) This error code is used when EXLOAD failed to
execute successfully.

Mimer SQL Version 11.0 183
User’s Manual

A relational database is built up of several inter-dependent tables that can be joined
together. Tables are joined by using related values that appear in one or more columns in
each of the tables.
All the foundation tables are created under the MIMER_STORE schema; these tables
provide a reasonably complete set for an introduction to SQL.
The tables CURRENCIES and COUNTRIES are used in many of the basic examples in this
manual and contain entries for almost all countries and currencies, providing a moderate
amount of data for any exercise.

Table name Description

CURRENCIES Holds currency details.
Introduces the use of domains (qualified with the schema name)
and the decimal data type. Demonstrates that column constraints
can include the primary key definition. Introduces the concept of
NOT NULL in column definitions.
Uses the CHARACTER data type to show the difference compared
to CHARACTER VARYING.
The table is created with the schema name explicitly included,
after this example the default option is used.
Note the table is not defined in a specific databank, the system
determines which databank to use; all other tables are created in
a named databank.
Examples of creating comments on the table and columns follow
this table creation; these are the only examples of comments.

COUNTRIES Holds country details.
Introduces the concept of naming constraints; as when naming
objects, a consistent approach will give benefits. Includes a
unique constraint.
Introduces a foreign key definition linking the currency code to
an entry in the CURRENCIES table. The column in the referenced
table (CURRENCIES) is explicitly named; in future this is only
done if the columns are not defined as the primary key.

CATEGORIES Product categories, i.e. Music and Books. A category of ‘Video’
is included for course work.
Shows the use of a collation in a column definition. A collation
is a set of rules that determines how data is sorted and compared.
Character data is sorted using collations that define the correct
character sequence, with the capability to handle case-sensitivity
and accents.
In this table create statement the primary, unique and foreign
keys are defined as table constraints. This is the style that has
been adopted in the rest of the schema, the previous examples
were to show the syntax possibilities; again a consistent
approach will make it easier for others.

184 Appendix B The Example Environment
The MIMER_STORE Schema

FORMATS Product formats, e.g. Paperback, Audio CD.
A domain could/should have been used for the CATEGORY_ID
columns in the CATEGORIES and FORMATS table.
There are two unique constraints, both defined on two columns.
A DISPLAY_ORDER column has been included; the idea is that
this can be used to display the different formats for a particular
product in an order other than alphabetic.

PRODUCERS Name of the record label or book publisher i.e. the organization
that made the product.
Shows the use of a column default value that refers to a sequence.

PRODUCTS Name of the product, i.e. name of the album or title of the book.
It may be that the same product name is the title of a book and an
album.
Until this point these referenced tables had been defined with the
primary key as the identifier and the associated ‘name’ as a
unique key; this demonstrates the reverse.
This table holds a Soundex value of the name. As we shall see
later the name is processed before the Soundex value is taken. A
secondary index is defined on this Soundex value.

IMAGES An item may have an image associated with it; for example the
image could be an album or book jacket cover.
Note that this table is in the MIMER_BLOBS databank and
therefore changes are not logged.

Table name Description

Mimer SQL Version 11.0 185
User’s Manual

ITEMS This forms a link between a product name and the different
formats in which it is available. For example an album may
appear in a number of different formats: Audio CD, Cassette,
DVD Audio and Vinyl.
The table contains a number of attributes for the item, such as
price and stock level. There is also a reorder level but that is an
extension for the classroom (i.e. a trigger can be used to place an
order).
This table references a number of other tables and introduces the
ability to specify what action to take when a referenced row is
deleted. Both the PRODUCER_ID and IMAGE_ID permit a null
value, which allows outer joins to be demonstrated.
A date data type is introduced in RELEASE_DATE. A secondary
index is created on the date column allowing examples of how
date ranges can be used.
The European Article Numbering (EAN) code is a useful
example; it is the barcode that appears on everything these days.
It is a unique key in its own right but the table has ITEM_ID as
the primary key, making the EAN_CODE a candidate key.
Obviously the EAN_CODE could have been used in referencing
tables but in general it is a mistake to use external identifiers to
join tables; this conflicts with the use of the International codes
in the CURRENCIES and COUNTRIES tables but the data in these
tables can be considered to be static.
A property of an EAN code is that it is a 13-digit number that
incorporates a check digit. A PSM function to validate the check
digit is included later in this schema; an ALTER TABLE statement
then uses the PSM routine in a check clause to validate the EAN
code.

CUSTOMERS Personal details for store customers, whether they are on a
mailing list or are Web users.
Shows the use of current_date as a default value against the
REGISTERED column.
The idea is that when customers order through the Web-site they
will be prompted for their e-mail address and password; the table
check clause makes sure that the e-mail and password are either
both defined or neither is defined.
Secondary indices are defined on the date of birth and post code
columns, these are both useful when trying to identify a customer
(e.g. when there are too many John Smiths to search through by
name).

ORDERS A record of when a customer placed an order.

Table name Description

186 Appendix B The Example Environment
The MIMER_STORE Schema

Note that the CUSTOMERS, ORDERS and ORDER_ITEMS tables are grouped together in the
MIMER_ORDERS databank.
It could be argued that the ITEMS table is not fully normalized – the PRODUCER_ID is
repeated for each different format. But if you think about it you will realize that there is
no benefit in introducing another table, only a penalty.

PSM Routines
The MIMER_STORE schema also introduces some fairly simple PSM routines (defined in
a module named ROUTINES). These routines provide a basic introduction to functions and
procedures; they demonstrate the general syntax of a number of PSM statements,
including deterministic and access options.
Routines defined in a module cannot be modified without dropping the module, in which
case all the routines in the module are dropped.
Note: The use of the ‘@’ character which is used in BSQL to delimit SQL statements

whose syntax involves use of the normal end-of-statement character ‘;’ before
the actual end of the statement. The ‘@’ character may be used to delimit any
statement; this is useful when dealing with large statements as the error
reporting facility in BSQL shows more information in such cases.

You can debug PSM routines using Mimer SQL’s Java-based graphic debugger. The
debugger has support for watching variables, step-wise execution and setting breakpoints.
You can debug procedures, functions and triggers.

ORDER_ITEMS What items went into an order and the price at the time that the
order was placed.
This is the first time that a multi-column primary key is used.
VALUE is an SQL reserved word; the definition shows how to
force the use of a reserved word.

STOP_WORDS Contains the 100 most common words in the English language.

Table name Description

Routine name Description

AGE_OF_ADULT Procedure that returns the age that a person is considered
to be an adult.
A slightly contrived procedure to introduce the in and out
parameter types; also includes an interval data type and a
case statement.

CAPITALIZE Function that processes a string making the first character
of a word uppercase and the remainder of the word
lowercase.

CAST_TO_DATE Function that takes a character string (dd/mm/yy) and
converts it to a date data type.
Note the use of the like comparison.
Introduce the concept of signaling, but this can be skipped
over at this point.

Mimer SQL Version 11.0 187
User’s Manual

The ITEMS table is altered to include a check clause using the VALIDATE_EAN_CODE
function to ensure that only valid EAN codes can be entered.
After the definition of the views (see next section for details) there is another PSM
routine, it shows how to create a standalone procedure.

EAN_CHECK_DIGIT Function that returns the check digit for an EAN.

EXTRACT_DATETIME Function to return just the variable component from a
datetime or interval value. The value has to be cast to a
character string in the call.
Uses ‘is not null’.

EXTRACT_DATE Function to show how EXTRACT_DATETIME is used.

INDEX_TEXT Function to process a character string, removing all
punctuation characters. Also removes any of the words
that are held in the table STOP_WORDS by using the exists
predicate.

PRODUCT_SEARCH_CODE Function to return the Soundex value of a character string
after it has been processed by the INDEX_TEXT function.

RECIPIENT Function to form the recipient details, e.g. for a letter
address – Mr J Smith.
Note that the use of ‘is not null’ is redundant.

SALUTATION Function to create a formal or informal salutation based
on the age of the person.
Performs simple date arithmetic using the
AGE_OF_ADULT function.

STOP_WORDS Database load procedure to extract the words from a
character string and insert them into the STOP_WORDS
table.

VALIDATE_EAN_CODE Function to return the EAN code with the correct check
digit.
Example of large number arithmetic.

Routine name Description

188 Appendix B The Example Environment
Procedures

Procedures

Views
There are a number of views in the MIMER_STORE schema to show various aspects of the
functionality that can be supported.

Procedure name Description

COMING_SOON Result set procedure that returns the products for a particular
category that will be released in the next month.
Makes use of the PRODUCT_DETAILS view to demonstrate that a
select against a view is treated the same as a table.
Shows how to define a result set procedure and one form of the
row data type. Introduces the concepts of cursors.
The use of get diagnostics avoids any real need to cover
condition handlers at this stage.

View name Description

CUSTOMER_DETAILS Based on the single table CUSTOMERS.
Shows the simplest type of view – updatable if the user
has the privilege. Allows a new customer to be added to
the database.

SWEDISH_CUSTOMERS Based on the previous view (i.e. views can be defined on
views) but with a selection condition so that only Swedish
customers are displayed.
Uses a ‘with check option’ so that only Swedish
customers can be operated on through this view.

CUSTOMER_ADDRESSES Again based on the CUSTOMER_DETAILS view but also
joined to the COUNTRIES table.
Shows how PSM functions can be used from standard
SQL statements, including applying pre-defined
functions on the result.
Demonstrates how to name the columns in a view
definition. Introduces the coalesce expression.
The join is slightly more complicated than it needs to be
because the column names are not consistent.

PRODUCT_DETAILS Forms a view across a number of tables, including an
outer join on the PRODUCERS table.
Note that the coalesce expression in the select list is
named; all calculated columns in a view have to be
named.

Mimer SQL Version 11.0 189
User’s Manual

Triggers
There are examples of two very simple statement triggers in the MIMER_STORE schema,
both defined against the PRODUCTS table. They are designed to ensure that the value of
the PRODUCT_SEARCH column is based on the product name. The insert trigger
unconditionally performs an update of the PRODUCT_SEARCH column (setting it to the
default value), which will force the update trigger to fire.
The update trigger checks whether the value in the PRODUCT_SEARCH column is equal to
the value returned by the PRODUCT_SEARCH_CODE function when applied to the product
name. If the value of PRODUCT_SEARCH is inconsistent with the product name then an
update is performed; this will cause a recursive call of the update trigger. Note that an
update statement causes the trigger to fire even when no rows are updated, hence the use
of 'if exists'.
The PRODUCT_SEARCH_CODE function returns the Soundex value of the product name
after it has been processed by the INDEX_TEXT function, which basically involves
stripping out any of the words that appear in the STOP_WORDS table (i.e. the 100 most
common words in the English language). As an example, the album title ‘Same As It Ever
Was’ is reduced to ‘Same Ever’ by the INDEX_TEXT function and the Soundex value
returned by the PRODUCT_SEARCH_CODE function would then be ‘467900’. By using this
function against a user input string, it is possible to allow a limited level of fuzzy
matching.

Idents
There are a number of idents, both users and groups. All ident names have a MIMER_
prefix and group idents have a _GROUP suffix to aid with their identification.
The user ident MIMER_ADM can be thought of as an administrator, which is the reason why
the user has been given the system privilege to create new idents and tables. Access and
object privileges are not granted directly to the user but inherited through membership of
MIMER_ADMIN_GROUP. This group of idents has a high level of privileges to manipulate
the database tables and views but they do not have total uncontrolled access, only the
MIMER_STORE ident has that. It should be possible to perform a lot of the course work
from the MIMER_ADM ident.
The user MIMER_USR is granted membership of the MIMER_STORE_GROUP. As can be
seen it is possible to grant a group membership of another group; in this case, the
members of the MIMER_ADMIN_GROUP (now and in the future) are automatically granted
whatever privileges are allocated to MIMER_STORE_GROUP. So when the execute
privilege on the PSM procedure COMING_SOON is allocated to MIMER_STORE_GROUP it
is automatically also granted to the members of MIMER_ADMIN_GROUP, which includes
the user MIMER_ADM.
Note: At the end of the default installation of the example database, the permission to

create further idents and databanks from example environment is revoked.
This is since the default system is given public passwords, and therefore is
open to any user. The revoke commands used are the following:
REVOKE DATABANK FROM MIMER_STORE;
REVOKE IDENT FROM MIMER_STORE CASCADE;

To deliberately open up the system, use the GRANT IDENT and GRANT
DATABANK statements.
See the exdef.sql file for details.

190 Appendix B The Example Environment
The MIMER_STORE_MUSIC Schema

The MIMER_STORE_MUSIC Schema
Schemas have been used to group objects related to a specific area; note that all the
schemas are owned by the ident MIMER_STORE.
It is possible to ignore the schemas other than MIMER_STORE; they can be viewed as a
black box for the purposes of an introduction to SQL.
A CREATE SCHEMA statement is used to demonstrate that, within the statement, an object
doesn't have to be created before it can be referenced.
The DURATION domain introduces the INTERVAL data type.

Tables

Views

Note that the CREATE SCHEMA statement includes grant object privilege statements as
well as object definitions.

Table name Description

ARTISTS Holds artist names (e.g. Bruce Springsteen) with a Soundex value
based on the name.
Shows that objects in schema other than the current have to be
qualified with the owning schema name.

TITLES Links an artist name with an item.

TRACKS Holds track details, e.g. title, length.

SAMPLES Holds samples from the tracks.

View name Description

DETAILS This view includes the PRODUCT_DETAILS view and demonstrates
a number of things:
Tables can be included from more than one schema.
The use of a correlation name in the PRODUCT_DETAILS table
reference.
Restriction conditions can be applied so that different users would
see different results, in this case the ident MIMER_WEB would not
see vinyl albums.
One of the quirks in SQL – ITEM_ID has to be explicitly included
in the select-list.

SEARCH This view is based on DETAILS but includes additional selection
restrictions.
Note that the AS clause is noise and may be omitted but it does add
clarity. This view demonstrates both forms.

Mimer SQL Version 11.0 191
User’s Manual

PSM Routines
The names in the PSM routines for this schema have been capitalized rather than the parts
separated by an underscore.

PSM routine name Description

AddTitle Procedure to insert the base details for an album into the
database, updating a number of tables.
There are a number of checks on the input, for instance that
the format is valid for the Music category and that the label
exists in the PRODUCERS table – these introduce exception
handlers.
Uses another form of the row data type.
Demonstrates the use of CURRENT VALUE of a sequence.

AddTrack Procedure to insert the track details for an EAN code.
Demonstrates the use of SQLSTATE values in an exception
handler.
Introduces the RESIGNAL statement and shows another
option with GET DIAGNOSTICS.

ArtistName Function to remove any leading definite or indefinite articles
from a name.

ArtistSearchCode Function to return the Soundex value of a character string
after it has been processed by the ArtistName function.

Search Result set procedure that searches the Music 'database' for
matches based on the supplied title and artist details; a third
parameter specifies the maximum number of rows to be
returned (a value of zero suppresses this feature).
Makes use of the SEARCH view. Includes the use of the
DISPLAY_ORDER column in the FORMATS table to present the
data in an order other than alphabetic.
Each row is given a star rating that indicates the level of match
(**** = exact). The artist 'Bruce Springsteen' provides a
number of matches.
This procedure demonstrates the level of functionality that
can be placed in the database.

TitleDetails Result set procedure that returns music details for a given item
identifier.
Given the result from a search this would allow the user to
'drill down' into the displayed information.
Illustrates how the compound statement label can be used to
qualify a variable name. Shows that interval arithmetic can be
performed.

192 Appendix B The Example Environment
The MIMER_STORE_BOOK Schema

Triggers
There are two statement triggers in the MIMER_STORE_MUSIC schema, both defined
against the ARTISTS table. They are designed to ensure that the value of the
ARTIST_SEARCH column is based on the artist name. The same technique as used in the
MIMER_STORE schema to force an unconditional update is applied in the insert trigger.
The update trigger is written to show that it can contain the same level of functionality as
any PSM routine; in this case it uses a cursor to process the updates.

Idents
Execute privilege on the PSM routines Search, TitleDetails and TrackDetails is
granted to MIMER_STORE_GROUP.
Synonyms are created by MIMER_STORE for all tables and views in the
MIMER_STORE_MUSIC schema. The synonyms are created with a MUSIC_ prefix for the
DETAILS, SEARCH and TITLES tables/views.

The MIMER_STORE_BOOK Schema
This schema contains a table named TITLES, as does the MIMER_STORE_MUSIC schema.

Tables

Object privileges are granted on the MIMER_STORE_BOOK schema tables to
MIMER_ADMIN_GROUP.

TrackDetails Result set procedure that returns any track details for a given
item identifier.
Usage is the same as for TitleDetails.
Demonstrates the use of a user defined SQLSTATE.

PSM routine name Description

Table name Description

TITLES Links an item with a list of authors and an ISBN.
A book may have more than one author, the names are held as a list
in the column AUTHORS_LIST in the form: surname,
forenames; surname, forenames; …

AUTHORS Links an item to an entry in the KEYWORDS table.

KEYWORDS Holds each author in the form surname,[first initial].
An extension would be to categorize books and create a new table
to form a link between an item and various categories, with the
category being held in the KEYWORDS table.

Mimer SQL Version 11.0 193
User’s Manual

PSM Routines
PSM routine name Description

VALIDATE_ISBN Procedure to validate an ISBN.
Uses an INOUT parameter.
Shows how to CAST to an INTEGER and trap any error to
validate that a string is numeric.

FORMAT_ISBN Function to format an ISBN (e.g. insert hyphens to
separate the country, group, publisher, title identifiers).
Demonstrates the use of CASE statements, including where
there is not an ELSE. Uses a row data type to simplify
coding.

AUTHORS Function to return the first author from a list of authors; if
there is more than one author then a mark of omission is
included.

AUTHORS_NAME Function to format an author's name into
surname[,initial].

KEYWORD_ID Function to insert a word into the KEYWORDS table and
return the identifier with which the keyword is associated.

CATALOGUE_AUTHORS Given the list of authors associated with a book, extracts
each author, calls the AUTHORS_NAME function and then
the KEYWORD_ID function. Finally, creates a link between
each name and the book in the AUTHORS table.

ADD_TITLE Procedure to insert the base details for a book into the
database, updating a number of tables.
Inserts against the DETAILS view.

SEARCH Result set procedure that searches the Book 'database' for
matches based on the supplied title and author (surname,
forename).
The author 'Christie, Agatha' will provide a number of
matches.
Demonstrates a different method of searching.

TITLE_DETAILS Result set procedure that returns book details for a given
item identifier.
Given the result from a search this would allow the user to
'drill down' into the displayed information.

194 Appendix B The Example Environment
The MIMER_STORE Schema Revisited

Views

Triggers
There are two statement triggers defined against the TITLES table. They are designed to
maintain the entries in the AUTHORS and KEYWORDS tables. The update trigger is written
to show how to use the OLD and NEW table aliases.
There is also an INSTEAD OF trigger defined on the DETAILS view. This is used by the
ADD_TITLE procedure to update the underlying tables on which the view is based. Note
that the INSTEAD OF trigger has to be defined before an insert statement against the view
can be included, otherwise the join is not considered to be updateable.

Idents
Access privileges on the view DETAILS are granted to MIMER_ADMIN_GROUP.
Execute privilege on the PSM routines SEARCH and TITLE_DETAILS is granted to
MIMER_STORE_GROUP.
Synonyms are created by MIMER_STORE for all tables in the MIMER_STORE_BOOK
schema. The synonyms are created with a BOOK_ prefix for the DETAILS view and
TITLES table.

The MIMER_STORE Schema Revisited
A quick return to the base schema to include two PSM routines that are outside the scope
of an introduction to SQL.

PSM Routines

View name Description

DETAILS This view includes the PRODUCT_DETAILS view and is the
equivalent of the DETAILS view in the MIMER_STORE_MUSIC
schema.

PSM routine name Description

ORDER_ITEM Procedure to associate an order for a quantity of a
particular item against an order identifier.

BARCODE Result set procedure that returns the book or music details
for a given EAN.
The intention would be to use this with a POS barcode
reader.

Mimer SQL Version 11.0 195
User’s Manual

The MIMER_STORE_WEB Schema
This schema provides some of the SQL functionality required to create a Web-based
application to order items.
The ident-name in the AUTHORIZATION clause is currently restricted to be the name of
the current ident.
The basic idea behind a Web application would be two tabs, one for Music and the other
for Books. The relevant SEARCH routine provides a list of matches (one of the details
returned is the ITEM_ID). The user would then have the ability to drill down to display
further information (use MIMER_STORE_MUSIC.TitleDetails and
MIMER_STORE_MUSIC.TrackDetails for music items and
MIMER_STORE_BOOK.TITLE_DETAILS for book items.
If an item is selected for purchase (the quantity should be prompted for) and
MIMER_STORE_WEB.ADD_TO_BASKET used to order the item (a blank SESSION_ID
defines a new session). Once a session has been created the basket can be viewed using
MIMER_STORE_WEB.VIEW_BASKET.
When an order has been completed the user needs to be identified by their e-mail and
password (MIMER_STORE_WEB.VALIDATE_CUSTOMER) and then a call should be made
to MIMER_STORE_WEB.PLACE_ORDER.

Tables

PSM Routines

Table name Description

SESSIONS Maps an external session identifier with an internal order identifier.
Keeps track of the date/time that the 'basket' was last accessed.

PSM routine name Description

SESSION_EXPIRATION_PERIOD Function that returns an interval data type that
defines the period in which a basket should be
accessed.

DELETE_BASKET Procedure to delete a specified basket session;
alternatively a session of '*' will delete all
'baskets' that have expired.
Note that the procedure deletes entries in the
ORDERS table and relies on foreign key
definitions in referencing tables to tidy up.

ORDER_ID Function to return the order identifier associated
with a specified session identifier.
Raises an exception if the 'basket' hasn't been
used within the period specified by
SESSION_EXPIRATION_PERIOD.

196 Appendix B The Example Environment
Synonyms

Triggers
There is a statement trigger that will fire after an update to the SESSIONS table. The
trigger is designed to prevent any changes to the values of the SESSION_NO and ORDER_ID
columns. This demonstrates that a trigger can be used to abort an SQL update operation.

Idents
A synonym is created by MIMER_STORE for the SESSIONS tables in the
MIMER_STORE_WEB schema.
A new user ident, MIMER_WEB, is created to allow web-applications execute privilege on
certain of the PSM routines.

Synonyms
A complete set of synonyms is created for the ident MIMER_ADM. This is to simply access
to the tables in the classroom; the synonym can be used in place of the table-names that
would have to be qualified with the schema-name.

VALIDATE_BASKET Function that uses the ORDER_ID function to
validate that the basket is still active.
Uses an exception handler to catch any
SESSION_INVALID exception raised by
ORDER_ID. The exception handler will call
DELETE_BASKET to remove a basket that has
expired.

ADD_TO_BASKET Function to place an order for a quantity of a
specific item. If the session identifier is
provided, then the order is placed against the
relevant order identifier; if the session identifier
is blank, then a new basket is created.
The function returns the current session
identifier.

VIEW_BASKET Result set procedure that lists the items ordered.
Uses a GROUP BY clause. Calls the BARCODE
procedure, which is itself a result set procedure.

VALIDATE_CUSTOMER Function to identify a customer by their e-mail
address and password.

PLACE_ORDER Procedure to order the contents of the basket.
Procedure takes two in parameter: session
identifier and customer identifier.
Returns an order number, total price in euros, the
local currency for the customer and the price in
that local currency.

PSM routine name Description

Mimer SQL Version 11.0 197
User’s Manual

Appendix C

Deprecated
Features

This chapter discusses features and functionality that have been deprecated.

BSQL Commands
The following BSQL commands are deprecated but are supported for backward
compatability.

LOAD
The LOAD command, used to load data from a sequential file into a target table, is now
deprecated. Instead of LOAD, please see the Mimer SQL System Management Handbook,
Chapter 8, Loading and Unloading Data and Definitions.

UNLOAD
The UNLOAD command, used to unload data from a table into a sequential file, is now
deprecated. Instead of UNLOAD, please see the Mimer SQL System Management
Handbook, Chapter 8, Loading and Unloading Data and Definitions.

198 Appendix C Deprecated Features
BSQL Commands

Mimer SQL Version 11.0 199
User’s Manual

Index
Symbols
@ 105, 125

A
access

privileges 120
access control statements 20

GRANT 20
REVOKE 20

access privileges 120
DELETE 120
examples 121
granting 120
INSERT 120
REFERENCES 120
SELECT 120
UPDATE 120

active connection 162
ALL 62
ALTER DATABANK 111
ALTER IDENT 113
ALTER TABLE 111
ANY 62
arithmetic operations 34
AS

for column labels 25
AVG 45

B
BACKUP 119
back-up protection 92
batch jobs 125
Batch SQL 125, 169
BETWEEN operator 32
BSQL 125, 169

batch jobs 125
command-line arguments 127
commands 130
errors in 164
host variables 160
logging in 129

running 125
script jobs 126
syntax descriptions 131
Unix command line 129
variables 160

BSQL commands 130
CLOSE 132
DESCRIBE 133
DESCRIBE options 134
EXIT 142
GET DIAGNOSTICS 142
LIST 143
LOG 146
READ INPUT 147
SET ECHO 151
SET EXECUTE 152
SET EXPLAIN 152
SET LINECOUNT 154
SET LINESPACE 154
SET LINEWIDTH 155
SET LOG 155
SET MAX_BINARY_LENGTH 155
SET MAX_CHARACTER_LENGTH

156
SET MESSAGE 156
SET OUTPUT 156
SET PAGELENGTH 157
SET PAGEWIDTH 157
SET SILENCE 157
SET STATISTICS 158
SHOW SETTINGS 158
TRANSACTIONS 159
WHENEVER 160

C
CASCADE 113, 121
CASE 39
CAST 41
changing connections 162
changing passwords 113
CHAR_LENGTH 37
character set 28
character string comparison 28

200 Index

CHECK
in domain 104

check
conditions 11
option in views 11

check conditions
in tables 102

check option in views 107
client/server 13
collations 75

altering 77
comparison operators 78
concatenation operator 81
CREATE DOMAIN 76
CREATE INDEX 77
CREATE TYPE 76
CREATE/ALTER TABLE 76
DISTINCT 83
dropping 77
GROUP BY 80
IN and BETWEEN 81
INFORMATION_SCHEMA 78
ORDER BY 79
precedence 77
scalar string functions 80
UNION 82
using 76
using - examples 78

column labels 25
comments 110
committing transactions 91
comparison 27
computed values 34
concurrency control 91
connection name 158
connection statements 20

CONNECT 20
DISCONNECT 20
ENTER 20
LEAVE 20
SET CONNECTION 20

constraints
referential 100
unique 100

correlation names 58
COUNT 45
creating

databanks 97
domains 103
modules 105
procedures 105
secondary indexes 108
synonyms 109
tables 98
triggers 105
views 107
views on views 108

cross product 52

D
data definition statements 19

ALTER 19
COMMENT 19
CREATE 19
DROP 19

data integrity 9
data manipulation 85
data manipulation statements 20

CALL 20
DELETE 20
INSERT 20
SELECT 20
SET 20
UPDATE 20

DATABANK 119
databank shadows 14
databanks 13

altering 111
creating 97
dropping 114
system 13
user 13

database 13
definition statements 95
design 95

database administration statements 21
ALTER DATABANK 21
CREATE BACKUP 21
CREATE INCREMENTAL BACKUP

21
RESTORE 21
SET DATABANK 21
SET DATABASE 21
SET SHADOW 21
UPDATE STATISTICS 21

datetime
arithmetic 42
functions 42

default values in domains 104
DELETE 89, 120
delimiting complex statements with @ 105
DESCRIBE

COLLATION 140
DATABANK 134
DOMAIN 135
FUNCTION 138
IDENT 135
INDEX 136
MODULE 137
PROCEDURE 137
SCHEMA 140
SEQUENCE 139
SHADOW 140

Mimer SQL Version 11.0 201
User’s Manual

SPECIFIC 141, 142
SYNONYM 136
TABLE 136
TRIGGER 139
VIEW 137

DISCONNECT 162
DISTINCT 26

in set functions 45
domains 9

check clause 104
creating 103
default values 104
dropping 114

dropping objects 113
DTC 92
duplicate values 26

E
errors

examples 165
illegal BSQL commands 166
messages 166
semantic 164
syntax 165

ESCAPE in LIKE conditions 29
EXECUTE 120
EXISTS

condition 60
NULL values 69

EXLOAD 180
explain 169
EXTRACT 37

F
foreign keys 10, 100
functions 15

G
grant option 18, 117
granting privileges 119
GROUP BY 47
group idents 17

H
HAVING 48
host identifier 161
host variables 160

scope 161
SQL 161
using 161

I
IDENT 119

idents 16, 95
altering 113
dropping 115
group 17
names 96
program 16
structure 118
user 16

IN condition 31
indexes 8
indexing

automatic 8
indicator variable 161
indicator variables

including 161
INSERT 85, 120
inserting NULL values 88
inserting with a subselect 87
inserting with a values list 86
IS NULL 67
isolation levels in transactions 94

J
join

a table with itself 59
condition 51
views 8

joins
outer 54
simple 52

K
keys

foreign 100
primary 100

L
LIKE 29
Linguistic Sorting 14
LIST

COLLATIONS 143
DATABANK 143
DATABANKS 143
DOMAINS 144
FUNCTIONS 144
IDENTS 144
INDEXES 144
MODULES 144
OBJECTS 144
PROCEDURES 144
SCHEMATA 145
SEQUENCES 145
SHADOWS 145
STATEMENTS 145

202 Index

SYNONYMS 145
TABLES 145
TRIGGERS 145
VIEWS 146

LOBs 164
LOG databank option 92
LOGDB 13
logging 92

options 92
logical operators 27
LOWER 37

M
MAX 45
MEMBER 120
messages 166
MIN 45
modules 15

creating 105

N
nested selects 56
NULL databank option 92
NULL values

in EXISTS etc. 69
in SELECT 67
in set functions 45
in variables 161
inserting 88
treated as equal by distinct 26

O
object privileges 18, 120

examples 120
EXECUTE 120
granting 120
MEMBER 120
TABLE 120
USAGE 120

optimizing transactions
READ ONLY and READ WRITE 94

ORDER BY 49
OS_USER 16
outer joins 54
outer references 60

P
passwords 96
pattern conditions 29
POSITION 37
predicates

quantified 62
primary key 100
Primary Keys 8

privileges 17, 117
granting 119
granting and revoking 117
revoking 121

CASCADE 121
RESTRICT 121

system utilities 118
procedures 15

creating 105
procedures and modules

protection against CASCADE effects
115

program idents 16

R
READLOG

functions 147
list definitions 148

list properties 148
log file 148

listing operations 150
all 151
specified tables 150
tables in databank 150

listing restrictions 149
databank 149
ident 149
time interval 149

output format 151
readlog 147
read-set 91
REFERENCES 100, 121
referential integrity 10, 100
RESTRICT 113, 121
result table 23
retrieving data

from multiple tables 51
from single tables 23

revoking privileges 121
routines 15

S
scalar functions 37

using 37
SCHEMA 119
schemas 95, 96
script jobs

security 126
searching for NULL 67
secondary indexes

creating 108
SELECT 120

computed values 34
creating views 107
DISTINCT 26

Mimer SQL Version 11.0 203
User’s Manual

EXISTS 60
GROUP BY 47
HAVING 48
NULL values 67
ordering the result 49
quantified predicate 62
simple form 23
WHERE 27

selecting groups 48
selection process 70
SEQUENCE 120
sequences 12
server name 158
SET

CONNECTION 162
set conditions 31
set functions 45
SET SESSION 94
SET TRANSACTION 93
SHADOW 119
shadowing 14
simple joins 52
SOME 62
source table 23
SQL statements 19

access control 20
connection 20
data definition 19
data manipulation 20
database administration 21
transaction control 20

STATISTICS 119
string concatenation 34
subselects 56

in INSERT 87
SUBSTRING 37
SUM 45
synonyms 13

creating 109
syntax errors 165
SYSADM 118
SYSADM privileges 118
SYSDB 13
system databanks 13
system privileges 18, 119

BACKUP 119
DATABANK 119
examples 119
IDENT 119
SHADOW 119
STATISTICS 119

T
TABLE 120
tables 5

altering 111

base and views 6
check conditions 102
column definitions 100
creating 98
dropping 114

transaction
consistency 94
control options 94
control statements 93
logging 92

options 92
optimization 94
phases 91

transaction control statements 20
COMMIT 20
ROLLBACK 20
SET SESSION 20
SET TRANSACTION 20
START 20

TRANSACTION databank option 92
TRANSACTIONS 159
TRANSDB 13
trigger

creating 105
TRIM 37

U
UNION 63
UNIQUE constraint 10, 100
updatable views 90
UPDATE 88, 121
UPPER 37
USAGE 120
user databanks 13
user idents 16

V
variables 160
version, server 158
views 6

check options 11, 107
creating 107
creating on 108
join 8
restriction 7
updatable 90

W
WHERE condition 27
wildcard characters 29
write-set 91

X
XA 92

204 Index

Mimer SQL

System
Management

Handbook

Version 11.0

Mimer SQL, System Management Handbook, Version 11.0, December 2024
© Copyright Mimer Information Technology AB.

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.

Mimer SQL Web Sites:
https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Mimer SQL Version 11.0 i
System Management Handbook

Contents
Chapter 1 Introduction ... 1

About this Manual ..1
Prerequisites.. 2
Related Mimer SQL Publications.. 2
Acronyms, Terms and Trademarks .. 2

System Management Responsibilities...3
SYSADM.. 3
SQL Statement Execution ... 4

Chapter 2 The Database Environment.. 5
The Data Dictionary ...5
Idents ..6

USER Idents.. 6
PROGRAM Idents... 6
GROUP Idents .. 6
Idents – Access and Authority... 7

Schemas ...7
Databanks...7

Mimer SQL System Databanks... 7
User Databanks .. 8

Databank Options ..9
Creating Idents and a Databank – an Example .. 9

Locating Databank Files..9
Organizing Databank Files..10

Protecting Data Against Loss .. 12
Balanced I/O.. 12
Reserved Directories.. 12
Other Performance Issues... 13

Altering Databank Locations ..13
Accessing Databank Files...14
Databank File Deletion...14
Multifile Databanks ..14

Multifile scenarios ... 16

ii Contents

Transaction Control ...17
Optimistic Concurrency Control.. 17
Transaction Phases ... 18

Database Security ..18
The Role of Idents in Database Security... 19
Guidelines for Structuring Idents.. 19
System, Object and Access Privileges.. 20
Cascade Effects Between Privileges... 22
Restriction Views.. 23

Data Integrity ..23
Domains .. 23
Entity Integrity ... 24
Referential Integrity.. 24
Table Integrity ... 24
View Integrity .. 25

Chapter 3 Creating a Mimer SQL Database ... 27
Registering the Database ..28

Database name recommendations.. 28
The Local Database..28
Accessing a Database Remotely ..29

Client/Server Interface... 30
Mimer SQL License Key ..30
MIMLICENSE - Managing the license key ..32

Syntax.. 32
Command-line Arguments .. 32

SDBGEN - Generating the System Databanks ..34
Setting the Initial Size .. 34
Setting Password for System Administrator ... 35
Syntax.. 35
Command-line Arguments .. 36

Establishing the Ident and Data Structure...36
Managing Database Connections...37

Selecting a Database... 37
Troubleshooting Remote Database Connect Failures .. 39

Executing SQL Statements ...40

Chapter 4 Managing a Database Server ... 43
Mimer SQL Database Servers.. 43
System Performance ... 44

Database Server Memory Areas ...45
Code... 45
Data and Thread Stacks.. 45
Bufferpool .. 45
Communication Buffers ... 46
SQLPOOL ... 46

Mimer SQL Version 11.0 iii
System Management Handbook

Threads ...47
Number of Request Threads ... 47
Number of Background Threads... 47

Network Encryption ...47
Database Server System Requirements ..49

Physical Memory... 49
Virtual Memory .. 49
Global Pages ... 50

MIMCONTROL - Controlling the Database Server ..50
Syntax... 51
Command-line Arguments ... 52
Examples ... 55
Exit Codes.. 56

MIMINFO - System Information...57
Syntax... 57
Command-line Arguments ... 58
The Users List ... 59
The Performance Report ... 59
Bufferpool Report.. 64
SQLPOOL Report ... 64
Version Report .. 64

Database Server Log ...65
Several Installations on One Machine..66

Chapter 5 Backing-up and Restoring Data... 67
Background Information... 67

Database Consistency...67
LOGDB and TRANSDB Importance... 68
Updates Recorded in LOGDB... 69
TRANSDB Considerations... 70
SQLDB Considerations.. 71

Databank Backups...71
System vs. Online Backups... 72
SQL Statements for Backing-up Databanks.. 72
Online Backup Commands.. 72
Online/Offline Commands.. 73
Restore Command.. 73

Backing-up Databanks ..74
Online Backups Using the SQL Statements.. 74
System Backups Using the Host File System... 75

Restoring a Databank ..76
Restoring SYSDB ... 76
Re-creating TRANSDB, LOGDB and SQLDB .. 77

iv Contents

Audit trail with READLOG ...79

Chapter 6 Databank Check Functionality... 81
DBC - Databank Check ..81

Syntax.. 81
Command-line Arguments .. 82
Exit Codes... 83
Authorization ... 83

Result File Contents...83
DBC B*-tree Table Information... 84
DBC Sequential Table Information .. 85
DBC LOGDB Backup Information.. 86
Error Messages .. 86

Internal Databank Check ...88

Chapter 7 DBOPEN - Databank Open ... 89
DBOPEN - Databank Open functionality ..89

Syntax.. 89
Command-line Arguments .. 89
Exit Codes... 91

Functions ..91
Authorization ... 91
Output Example.. 92

Chapter 8 Loading and Unloading Data and Definitions 93
MIMLOAD - Data Load and Unload ...94

Syntax.. 94
Command-line Arguments .. 94
Exit Codes... 95
Examples... 95
Using STDIN/STDOUT/STDERR... 96

LOAD - Loading Data ...98
Syntax.. 98
Usage... 98
Description .. 98
Examples... 100

UNLOAD - Unloading Data ..101
Syntax.. 101
Usage... 101
Description .. 101
Data Escape Mode... 102
Examples... 103
Data Description Headers and Files.. 104
Data Description Header Examples... 105
Escape Character Sequences.. 105
File Format Specifications... 106

Mimer SQL Version 11.0 v
System Management Handbook

Chapter 9 Replication... 107
Requirements .. 107
Restrictions .. 107

MIMREPADM - Replication Administration..108
Syntax... 108
Command-line Arguments ... 109
Replication Setup.. 109
Replication Administration ... 110
CREATE SUBSCRIPTION .. 111
ALTER SUBSCRIPTION ... 112
DROP SUBSCRIPTION... 113
DESCRIBE SUBSCRIPTION.. 113
LIST SUBSCRIPTIONS ... 113
CONNECT SOURCE USER ... 114
CONNECT TARGET USER .. 114
DISCONNECT SOURCE... 114
DISCONNECT TARGET.. 115
ENTER SOURCE ... 115
ENTER TARGET .. 115
LEAVE SOURCE.. 115
LEAVE TARGET... 116
SHOW SETTINGS.. 116
EXIT.. 116

REPSERVER - Replicating the Data ...117
Syntax... 117
Command-line Arguments ... 117
Start the Replication ... 118
Stop the Replication ... 118
Error handling.. 118

MIMSYNC - Synchronizing Tables..119
Syntax... 119

Chapter 10 Mimer SQL Shadowing... 123
About Databank Shadowing ...123

Shadowing Requirements.. 124
SYSDB and Shadowing ... 124
SQLDB and Shadowing ... 124
Creating Shadows... 124
Altering Shadows .. 125
Backups.. 125
Dropping Shadows ... 125

Levels of Data Protection..125
All Databanks on One Disk and No Logging... 125
Logging, with LOGDB and TRANSDB on a Separate Disk from the Data............ 126
Shadowing, with Shadows on a Separate Disk .. 126
Shadowing and Logging .. 127

Creating and Managing Shadows... 128
Privileges.. 128

vi Contents

SQL Shadowing Commands – an Example Session ..128
Creating a Shadow... 129
Setting a Shadow Offline... 129
Backing-up from Shadows .. 129
Setting a Shadow Online... 130
Restoring a User Databank... 130
Restoring Both a User Databank and Its Shadow ... 131
Restoring System Databanks ... 131
Dropping a Shadow ... 131

Shadowing System Databanks ...131
Transforming a SYSDB Shadow to a Master ... 132
TRANSDB and Shadowing ... 133
LOGDB and Shadowing .. 133
SQLDB and Shadowing .. 133
If a Shadow for SYSDB, TRANSDB or LOGDB Is Not Accessible........................ 134

Data Protection Strategy ...134
Configuring Your System ..134
Performance Aspects of Shadowing..135
Troubleshooting ...135

Chapter 11 Database Statistics ... 137
Authorization ..137
The SQL Statistics Statements ...137

Statistics for the Entire Database... 138
Statistics for Specified Idents.. 138
Statistics for Specified Tables .. 138
Secondary Index Consistency.. 138

When to Use the SQL Statistics Statements ...138

Chapter 12 SQL Monitoring on the Database Server 141
SQLMONITOR - SQL Monitoring...141

Syntax.. 141
Command-line Arguments .. 141
Columns .. 144
Examples... 145

Authorization ..146

Chapter 13 DbAnalyzer - index analysis .. 147
Command syntax ...148

Command-line Arguments (Unix):.. 148
Notes.. 150

Mimer SQL Version 11.0 vii
System Management Handbook

Appendix A Executing in Single-user Mode .. 151
File Protection in Single- and Multi-user Mode ...151
Specifying Single-user Mode Access ..151
Accessing in Single-user Mode..152
The SINGLEDEFS Parameter File ... 153

Appendix B The SQLHOSTS File on VMS and Linux 155
The SQLHOSTS File...155

The Default SQLHOSTS File .. 157
Default Section.. 158
LOCAL Section.. 158
REMOTE Section.. 158

viii Contents

Appendix C The MULTIDEFS File on VMS and Linux 161
The MULTIDEFS Parameter File..161
MULTIDEFS Parameters ..163

Appendix D Data Dictionary Tables.. 175
SYSTEM.API_FUNCTION ...180
SYSTEM.AST_CODES..180
SYSTEM.AST_SOURCES...180
SYSTEM.ATTRIBUTES...181
SYSTEM.CHAR_SETS..185
SYSTEM.CHECK_CONSTRAINTS...186
SYSTEM.COLLATE_DEFS ...186
SYSTEM.COLLATIONS ..187
SYSTEM.COLUMNS ...187
SYSTEM.COLUMN_OBJECT_USE..192
SYSTEM.COLUMN_PRIVILEGES ..192
SYSTEM.COMMENTS...193
SYSTEM.DATABANKS...193
SYSTEM.DIRECT_SUPERTYPES ..194
SYSTEM.DOMAINS...195
SYSTEM.DOMAIN_CONSTRAINTS ...199
SYSTEM.EXEC_STATEMENTS ...199
SYSTEM.FIPS_FEATURES ..200
SYSTEM.FIPS_SIZING..200
SYSTEM.HEURISTICS..201
SYSTEM.KEY_COLUMN_USAGE..201
SYSTEM.LEVEL2_RESTRICT ..202
SYSTEM.LEVEL2_VIEWCOL ...203
SYSTEM.LEVEL2_VIEWRES ...203
SYSTEM.LIBRARIES ..203
SYSTEM.LOGINS..204
SYSTEM.MANYROWS..204
SYSTEM.MESSAGE..204
SYSTEM.METHOD_SPECIFICATION_PARAMETERS ...205
SYSTEM.METHOD_SPECIFICATIONS..209
SYSTEM.MODULES..212
SYSTEM.NANO_DATABANKS ..213
SYSTEM.NANO_DESCRIPTORS ...213
SYSTEM.NANO_OBJECTS ..213

Mimer SQL Version 11.0 ix
System Management Handbook

SYSTEM.NANO_ROUTINE_USE ...213
SYSTEM.NANO_USERS ..213
SYSTEM.OBJECT_COLUMN_USE..213
SYSTEM.OBJECT_OBJECT_USE... 214
SYSTEM.OBJECT_PROGRAMS..215
SYSTEM.OBJECTS ..216
SYSTEM.ONEROW...217
SYSTEM.PARAMETERS ..217
SYSTEM.REFER_CONSTRAINTS ... 222
SYSTEM.ROUTINES...224
SYSTEM.SCHEMATA...227
SYSTEM.SEQUENCE_VALUE_TABLE...227
SYSTEM.SEQUENCES...228
SYSTEM.SERVER_INFO..229
SYSTEM.SEVERITY ...230
SYSTEM.SOURCE_DEFINITION..230
SYSTEM.SPECIFIC_NAMES..231
SYSTEM.SQL_CONFORMANCE ...231
SYSTEM.SQL_LANGUAGES...232
SYSTEM.STATEMENT_DESCRIPTORS ...233
SYSTEM.STATEMENT_ROUTINE_USE..233
SYSTEM.SYNONYMS...234
SYSTEM.TABLES...234
SYSTEM.TABLE_CONSTRAINTS ... 235
SYSTEM.TABLE_PRIVILEGES..236
SYSTEM.TABLE_TYPES..237
SYSTEM.TRANSLATIONS ...238
SYSTEM.TRIGGERED_COLUMNS..238
SYSTEM.TRIGGERS...238
SYSTEM.TYPE_INFO ...240
SYSTEM.USAGE_PRIVILEGES...243
SYSTEM.USER_DEF_TYPES ..244
SYSTEM.USERS...248
SYSTEM.VIEWS..249

Appendix E System Limits... 251

Appendix F Deprecated Features.. 253
Export/Import ...253

x Contents

Load/Unload..253
Readlog from UTIL ...253
Backup/Restore from UTIL ..253
Statistics from UTIL ...253
Shadowing Management from UTIL ...254

 Index .. 255

Mimer SQL Version 11.0 1
System Management Handbook

Chapter 1

Introduction
Mimer SQL is an advanced relational database management system (RDBMS) developed
by Mimer Information Technology AB.
Mimer SQL has a number of unique technical solutions to handle some of the more
complicated functionality that a database management system must provide.
For example, Mimer SQL provides a solution to the problem of allowing simultaneous
access to the database without the danger of a deadlock occurring. This greatly simplifies
database management and allows truly scalable performance, even during heavy system
load.
Another significant technical innovation is the data storage mechanism, which is
constantly optimized for the highest possible performance and ensures that no manual
reorganization of the database is ever needed.
Mimer SQL offers a uniquely scalable and portable solution, including multi-core
support. The product is available on a wide range of platforms from small embedded and
handheld devices running for example Android or Linux, to workgroup and enterprise
servers running Linux, Windows, macOS and OpenVMS. This makes Mimer SQL
ideally suited for open environments where interoperability, portability and small
footprint are important.
The database management language Mimer SQL (Structured Query Language) is
compatible in all essential features with the currently accepted SQL standards, see the
Mimer SQL Reference Manual, Chapter 3, Introduction to SQL Standards, for details.

About this Manual
This manual describes how to establish, manage and maintain a Mimer SQL database. It
is a general handbook for system administrators, describing in detail the various areas of
responsibility and procedures to use when administering a Mimer SQL database system.
The information contained in this handbook generally applies to all the platforms
supported by Mimer SQL.
From time to time platform-specific notes appear in the general description, presented as
follows:

Linux: Denotes information that applies specifically to Linux and macOS platforms.

VMS: Denotes information that applies specifically to OpenVMS platforms.

Win: Denotes information that applies specifically to Windows platforms.

2 Chapter 1 Introduction
About this Manual

There are also some appendices at the end of this handbook which contain information
that applies to specific platforms.

Prerequisites
There are no prerequisites for users of this manual. However, it is advisable for the reader
to be familiar with, and have a working knowledge of, the host computer operating
system.

Related Mimer SQL Publications
• Mimer SQL Reference Manual

contains a complete description of the syntax and usage of all statements in Mimer
SQL and is a necessary complement to this manual.

• Mimer SQL User’s Manual
contains a description of the BSQL facilities. A user-oriented guide to the SQL
statements is also included, which may provide help for less experienced users in
formulating statements correctly (particularly the SELECT statement, which can be
quite complex).

• Mimer SQL Programmer’s Manual
describes the usage of SQL embedded in application programs.

• Mimer SQL Platform-specific documents
contain platform-specific information. A set of one or more documents is provided,
where required, for each platform on which Mimer SQL is supplied.

• Mimer SQL Release Notes
contain general and platform-specific information relating to the Mimer SQL
release for which they are supplied.

Acronyms, Terms and Trademarks

Term Description

API Application Programming Interface.

BSQL Facility for using SQL interactively or by running a command
file.

Data source ODBC term for a database.

Databank A databank corresponds to a physical file in the host file system
and is used to store tables. A databank may contain several
tables.

Database A Mimer SQL database consists of the system databanks and a
number of user databanks.

Database home
directory

The directory where the system databank file containing the
data dictionary and some other files that form part of the
database are located.

Mimer SQL Version 11.0 3
System Management Handbook

All other trademarks are the property of their respective holders.

System Management Responsibilities
Installation of a Mimer SQL system and the initial creation of the database environment
is performed by a specially privileged operating system user, referred to as the system
administrator.
In an established system, the system administrator is also responsible for the maintenance
of the installation - system tuning, troubleshooting, backup/restore, and so on. The system
administrator must have a good working knowledge of the host computer operating
system.

SYSADM
In addition to system administration, there are certain management activities which are
performed within the database, i.e. database administration.
A specially privileged Mimer SQL ident called SYSADM is created when a database is
installed and this ident should be used whenever database administration activities are to
be undertaken.
Note: The ident name SYSADM may not be changed.

DCL Digital Command Language.

Embedded SQL The term used for SQL statements when they are embedded in
a traditional host programming language.

JDBC Database connectivity for Java.

MULTIDEFS A file, on Linux and OpenVMS, containing parameters for
controlling the database server for a Mimer SQL database.

ODBC Open Database Connectivity, a specification for a database API
in the C language, independent of any specific DBMS or
operating system.

PSM Persistent Stored Modules (i.e. Stored Procedures).

Shadow A Mimer SQL databank may have one or more shadows. A
shadow is a copy of the original (master) databank and is
continuously updated by Mimer SQL.

SQL Structured Query Language.

SQLHOSTS A file, on Linux and OpenVMS, containing lookup information
for all Mimer SQL databases accessible from the current node.

UNIX UNIX is a trademark registered by the Open Group.

VMS VMS is a trademark registered by Hewlett-Packard.

Windows Windows is a trademark registered by Microsoft.

Term Description

4 Chapter 1 Introduction
System Management Responsibilities

SYSADM Privileges and Access Rights
Some of the Mimer SQL functionality requires privileges and access rights which are
initially granted only to the SYSADM user, but which may be passed on to other Mimer
SQL users.
SYSADM has SELECT access on the internal Mimer SQL data dictionary tables, permitting
direct reading of the meta-data describing the system. In examining the contents of the
data dictionary with the functionality provided, the user ident SYSADM has, by default,
wider access rights than other users.
The user ident SYSADM does not, however, have general access to the contents of the
database. Information stored in user-defined tables may only be accessed by other users
if the creator of the table explicitly grants permission. In this context, SYSADM is treated
just as any other database user.

SQL Statement Execution
At several places in this manual there are guidelines where SQL statements are shown.
These statements can be executed from any ad-hoc SQL query tools, such as Mimer
BSQL, DbVisualizer, etc.

Mimer SQL Version 11.0 5
System Management Handbook

Chapter 2

The Database
Environment

This chapter describes the database environment which is composed of a set of Mimer
SQL system databanks, one or more idents authorized to connect to the database and the
databanks created by the idents. It also describes database security and data integrity.
The objects that are created in the database are described in the Mimer SQL Reference
Manual, Chapter 4, Mimer SQL Database Objects.

The Data Dictionary
The database environment is controlled through a central data dictionary, stored in the
system databank SYSDB and is automatically maintained by Mimer SQL. The data
dictionary contains meta-data describing all the objects in the database. System access to
the data dictionary tables is performed by internal routines and is transparent to the user.
Restricted facilities for examining the contents of the data dictionary are available to all
users through the LIST and DESCRIBE functions in BSQL, see the Mimer SQL User’s
Manual, Chapter 9, Mimer BSQL for a more complete description of these facilities.
In general, a user may read data dictionary information for database objects to which they
have access. The BSQL facilities use pre-defined views on the data dictionary tables to
present the information in a structured form, see the Mimer SQL Reference Manual,
Chapter 13, Data Dictionary Views for documentation on the data dictionary views
available to all users.
The SYSADM user ident may read the contents of the data dictionary tables directly, and
may grant SELECT access on the tables to any other user ident. The organization of the
data dictionary tables is documented in Appendix D Data Dictionary Tables of this
manual.
No individual user, including SYSADM, may update data dictionary tables directly. All
write operations in the data dictionary are performed by internally controlled routines, to
ensure consistency within the dictionary.

6 Chapter 2 The Database Environment
Idents

Idents
An ident in a Mimer SQL system is an authorized user of the system, or the collective
identity of a group of users sharing common privileges.
There are three types of idents: USER, PROGRAM and GROUP idents.

USER Idents
USER idents are authorized to connect to a Mimer SQL database, by using the CONNECT
statement in an application program or by entering the correct ident name and password
in an interactive environment.
Any privileges a user ident holds may be exercised once the ident has logged on. USER
idents are generally associated with specific physical individuals authorized to connect to
the database.
An OS_USER login can be added to a user which allows the user currently logged in to the
operating system to connect to a Mimer SQL database without providing a password. (If
the Mimer USER ident name is the same as the operating system username, its possible
to connect to Mimer SQL without providing username.)
If a USER with an OS_USER login is defined with a password in Mimer SQL, the ident
may connect to Mimer SQL in the same way as any other user ident (i.e. by providing
username and password).

PROGRAM Idents
PROGRAM idents may not initiate a connection to a Mimer SQL database, but may be
entered from within an application program or interactive environment by using the
ENTER statement.
A connection to the database should have been established before the ENTER statement is
used. The ident using the ENTER statement must hold EXECUTE privilege on the PROGRAM
ident.
Entering a PROGRAM ident is analogous to logging on as a USER ident, in that the PROGRAM
ident gains access to the system and any privileges the ident holds become applicable.
PROGRAM idents are generally associated with specific functions within the system, not
with physical individuals.

GROUP Idents
GROUP idents are collective identities for groups of USER or PROGRAM idents.
Any privileges granted to or revoked from a GROUP ident automatically apply to all
members of the group.
Any ident can be a member of as many groups as required, and one group can include any
number of members.
GROUP idents provide a facility for organizing the privilege structure in the database
system. For examples showing the use of a GROUP ident, see the Mimer SQL User’s
Manual.

Mimer SQL Version 11.0 7
System Management Handbook

Idents – Access and Authority
USER and PROGRAM idents are authorized users of the system.
Every PROGRAM ident has a unique ident name and a private password which must be
correctly supplied to the ENTER statement in application programs.
Every USER ident has a unique ident name and an optional private password which must
be correctly supplied to the CONNECT statement in application programs. Alternatively a
USER with an OS_USER login may access the database without explicitly providing a
password on condition that the username for the user currently logged in to the operating
system correspond to the definition of an OS_USER in the Mimer SQL database.
When Mimer SQL is installed, the user ident SYSADM, used for database administration,
is automatically created. The password for SYSADM is defined when the system is
installed, see SDBGEN - Generating the System Databanks on page 34.
All idents in the system belong to a group which is specified by using the keyword
PUBLIC in Mimer SQL statements. Privileges granted to PUBLIC are global to the
system.

Schemas
A schema defines a local environment within which private database objects can be
created. The ident creating the schema has the right to create objects in it and to drop
objects from it.
When a USER or PROGRAM ident is created, a schema with the same name is created by
default, and the created ident becomes the creator of the schema. This happens unless
WITHOUT SCHEMA is specified in the CREATE IDENT statement.
When a private database object is created, its name can be specified in a fully qualified
form which identifies the schema in which it is to be created. The names of objects must
be unique within the schema to which they belong, according to the rules for the particular
object-type.
If an unqualified name is specified for a private database object, a schema name
equivalent to the name of the current ident is assumed.

Databanks
A Mimer SQL database consists of the Mimer SQL system databanks and a number of
user databanks.
Each databank is one or several physical files in the host file system.

Mimer SQL System Databanks
The Mimer SQL system databanks are fundamental to the functioning of a Mimer SQL
database and they are created during the process of installing a database.
System databanks are not used for storing user-defined information and cannot be
updated directly by users.
If any one of the system databanks is damaged or missing, attempts to log on to Mimer
SQL will fail. Backup and restore procedures for the system databanks are described in
Backing-up and Restoring Data on page 67.

8 Chapter 2 The Database Environment
Databanks

The Mimer SQL system databanks are:
• SYSDB

• LOGDB

• TRANSDB

• SQLDB

SYSDB
SYSDB is the most important system databank as it stores the tables that make up the data
dictionary, see The Data Dictionary on page 5.
Among other things, the data dictionary holds information about the other databanks that
make up the database, the tables each user databank contains, the users (idents) that are
known to the Mimer SQL system and the access rights each ident has.
SYSDB is the only databank that must consist of only one file.

TRANSDB
TRANSDB stores information that is vital for keeping the database in a consistent state.

LOGDB
LOGDB records all write operations performed within transactions on SYSDB and user
databanks which have been defined with the LOG option.
The information in this databank is used by the backup and restore facilities, see Backing-
up and Restoring Data on page 67, to restore the contents of a database in the event of a
system failure.
A readlog facility is provided to allow the information in this databank to be examined,
see Mimer SQL User’s Manual, Chapter 9, READLOG.

SQLDB
SQLDB is used by the transaction handling mechanism to store row data read from the
database, see Transaction Control on page 17, and is used by Mimer SQL for temporary
storage of result tables.

User Databanks
User databanks contain the tables in the database created by the users of the system.
Typically these databanks are created by the system administrator and TABLE privilege is
granted to the users of the system.
The CREATE DATABANK statement is used to create user databanks, see the Mimer SQL
Reference Manual, Chapter 12, SQL Statements.
Except at the point when tables are created, the existence of databanks is transparent to
users and application programs. When access is requested to a table, information in the
data dictionary is used by Mimer SQL to locate the table and make it available, if
permissible.
The division of a database into databanks is made on the basis of file handling
considerations from the operating system viewpoint and on the basis of transaction
control considerations from the database viewpoint. The use of databanks allows
considerable flexibility in the physical placement of data on the computer system.

Mimer SQL Version 11.0 9
System Management Handbook

Databank Options
Databanks may be defined with the LOG, TRANSACTION, WORK, or READ ONLY options
which determine transaction handling and logging behavior, as follows:

• LOG
All operations on the databank are performed under transaction control. All
transactions are logged.

• TRANSACTION
All operations on the databank are performed under transaction control. No
transactions are logged.

• WORK
All operations on the databank are performed without transaction control (even if
they are requested within a transaction), and are not logged.

• READ ONLY
Only read only transactions are allowed. No transactions are logged.

• TEMPORARY
This option is SQLDB specific.

Note: Operations performed on databanks with the TRANSACTION or WORK option
cannot be restored in the event of system failure, see Backing-up and Restoring
Data on page 67.

If a databank is dropped from the database, the tables stored in the databank are also
dropped and the physical databank files are deleted from disk.

Creating Idents and a Databank – an Example
In the following example, a databank and two users (idents) are created. The idents are
then given the authority to create tables within the databank:

SQL> CREATE DATABANK DEVELOP SET FILE 'dev.dbf',
 FILESIZE 50 M, OPTION LOG;
SQL> CREATE IDENT DEVUSER AS USER USING 'devuser';
SQL> GRANT TABLE ON DEVELOP TO DEVUSER;
SQL> CREATE IDENT JIM AS USER;
SQL> ALTER IDENT JIM ADD OS_USER 'JIM';
SQL> ALTER IDENT JIM ADD OS_USER 'JAMES';
SQL> GRANT TABLE ON DEVELOP TO JIM;

Locating Databank Files
The system databank SYSDB is always stored in a file located in the directory defined as
the home directory for the database, see The Local Database on page 28. The file
locations of all the other system databanks and the user databanks are stored in the data
dictionary.
The file specification for the databank file is exactly as specified when the databank was
created. If a databank file specification is given in full, it is unambiguously specified and
no variable factors are involved in resolving the location of the file.
If a databank file specification appears in the data dictionary without an absolute directory
name, the database home directory will be used to complete the file specification.

10 Chapter 2 The Database Environment
Organizing Databank Files

This substitution is applied whenever the location of the databank file must be
determined, (i.e. when the databank is created or altered and whenever tables stored in it
are accessed).
Subsequent redefinition of the database home directory or any variables used in the file
specification will, therefore, alter the expected location of such databank files.

The flexibility achieved by not using full databank file specifications must be weighed
against the loss of explicitly specified information from the data dictionary. In addition,
the centralized use of mechanisms such as environmental variables or logical names in a
complex system requires careful and disciplined management.
In particular, it is necessary for the database server process to have access to all relevant
environmental variables and logical names in order to use them when accessing the
databanks.

Organizing Databank Files
There are a number of factors involved in the organization of physical databank files that
are important to database security and the overall performance of the Mimer SQL system.

Allocating Disk Space
Whenever possible, pre-allocate file space for databanks early in the lifetime of the
databank file system.
The databank creation facilities allow the initial size of a new databank file to be specified
in terms of the number of Mimer SQL pages. The size of a Mimer SQL page is
4 kilobytes.

Linux: Databases on Linux platforms may be set up with a directory search path
instead of a single home directory, see The Local Database on page 28.
The first directory in the search path list must be the database home directory,
where SYSDB is located. Other databank files can be located in any of the
directories in the search path list.

VMS: Whenever a databank file is specified without a directory name under
OpenVMS, it must be located in the database home directory.
If a logical name is included in the file specification, this will be recorded in the
data dictionary and will be used whenever the location of the databank file is
resolved.
Any logical names used in databank file specifications must be created as
GROUP or SYSTEM wide logical names so that the database server process has
access to them.

Win: Databases on Windows platforms may be set up with a directory search path
instead of a single home directory, see The Local Database on page 28.
The first directory in the search path list must be the database home directory,
where SYSDB is located. Other databank files can be located in any of the
directories in the search path list.

Mimer SQL Version 11.0 11
System Management Handbook

The size of the databank file will be extended automatically by the database server during
the lifetime of the databank as more space is required for data storage.

An attempt to extend a file will fail if the disk is full, the databank attribute MAXSIZE is
reached, or any imposed disk quota is exceeded.
Having a small file extension size may cause disk fragmentation leading to reduced I/O
performance. In addition, if the databank is growing rapidly, the frequently occurring file
extension operations may have a negative effect on performance.
A databank file which is created with the size it will actually need in production will be
accessed more efficiently than one created with a small initial size and then incrementally
extended.
The SQL statement ALTER DATABANK SET FILESIZE can be used to change the size
of a databank file to a specified size. ALTER DATABANK DROP FILESIZE is used to
shrink the database file as much as possible. The attributes MAXSIZE, MINSIZE and
GOALSIZE can also be used to manage the databank file size. Refer to the Mimer SQL
Reference Manual, Chapter 12, ALTER DATABANK, for details.
Mimer SQL databank files are organized internally into 4, 32 and 128 kilobyte databank
blocks.
Accessing an internal databank block which is physically split over two or more distinct
areas of allocated disk will require two disk read operations.
To avoid the risk of fragmenting the internal databank blocks, ensure that the number of
disk blocks allocated for databank file extensions maps onto a whole number of 128
kilobyte databank blocks.
This will optimize disk I/O efficiency.

Linux: Under Linux, the environment variable MIMER_EXTEND can be set to the
number of Mimer SQL pages by which all databank files will be extended. The
default setting is 128.

VMS: By default, under OpenVMS, databank files will be extended by 1000
OpenVMS blocks at a time. The extend size for a databank file can be altered
by using the following DCL command:
$ SET FILE/EXTENSION=extensionsize file.DBF

The databank file must not be in use by the database server (or accessed in single
user mode), when this command is used.

Win: Under Windows, the number of Mimer SQL pages by which all databank files
will be extended is determined by the Mimer SQL system and is not
configurable.

VMS: Disk blocks under OpenVMS are 512 bytes in size, therefore a disk cluster size
which is a multiple of 8 will avoid fragmenting the 4 kilobyte databank blocks.
The cluster size is set when formatting a disk.
Use the following command to check the cluster size of a disk that is already
formatted:
$ SHOW DEVICE/FULL

12 Chapter 2 The Database Environment
Organizing Databank Files

Protecting Data Against Loss
For data security reasons, in case of a disk failure, it is strongly recommended that LOGDB
is located on a disk unit that is physically separate from that on which the other databanks
are located. See Background Information on page 67 for more information.
Ideally, TRANSDB and LOGDB should always be located on different physical disks which
are served by separate disk controllers and no other databank files should be located on
either disk.
The ordinary maintenance procedures for any computer system must involve backup and
restore. A strategy, structure and procedure must be set up to include the Mimer SQL
databases in the system backup routines. See Backing-up and Restoring Data on page 67
for a detailed discussion of backup and restore.
Note: A system without a complete and valid backup and restore procedure runs the

risk of losing valuable data.

Balanced I/O
If several physical disk units are available, the various databanks should be distributed
across the available disk units in order to balance the system I/O load.
To optimize the distribution of I/O across disks, place databanks on physical disks in such
a way that databanks which are likely to be accessed at the same time are on different disk
units.
It is generally the case that TRANSDB will be accessed at the same time as other databanks
during a transaction.

Reserved Directories
The structure of the databank file system and procedures such as backup and restore are
generally simplified if databank files are placed in directories reserved solely for that
purpose. The system administrator should create and maintain a directory structure that
best suits the local system.
It is very common practice to reserve entire disks for databanks to allow for the ultimate
size of the files.

Win: On Windows machines, disk clustering effects are hardware dependent and are
not configurable.
Disks are typically configured in terms of an even number of 512 byte or 1024
byte disk blocks and will therefore always work efficiently with Mimer SQL
databank files.
Use of disk defragmentation utilities may improve performance for large block
I/Os.

Mimer SQL Version 11.0 13
System Management Handbook

Other Performance Issues
The placement of databanks on physical disk units will depend on exactly how they will
be used when the database system is in operation.
The following issues generally have a more significant effect on database performance
than the disk I/O factors relating specifically to physical layout of the Mimer SQL
database:
• the amount of virtual memory paging
• the speed of the disk
• the involvement of unnecessary network communication.
For example, to enhance performance, frequently accessed databanks such as TRANSDB
may be placed on separate, high performance disks and sufficient memory should be
allocated to avoid paging.

Altering Databank Locations
User databanks may be relocated by moving the physical file using operating system
commands and then changing the file location stored in the data dictionary by using the
ALTER DATABANK statement to specify the new file specification, see the Mimer SQL
Reference Manual for the statement syntax.
The ALTER DATABANK statement may only be issued by the owner of the databank.

Example 1
1 Disconnect the databank from the system.

SQL> SET DATABANK databank_name OFFLINE;

2 Move or copy/delete the databank file to its new location.
3 Alter the databank filename in the data dictionary and reconnect the databank to

the system.
SQL> ALTER DATABANK databank_name SET FILE 'new_filename';
SQL> SET DATABANK databank_name ONLINE PRESERVE LOG;

Example 2
By adding a new file and then deleting the original file, the databank tables will be
available to users during the process.
1 Add a new file to the databank.

SQL> ALTER DATABANK databank_name ADD FILE 'new_file';

2 Drop the original databank file.
SQL> ALTER DATABANK databank_name DROP FILE 'old_file';

Facilities for changing the file specifications stored in the data dictionary for the system
databanks, other than SYSDB, are provided by the BSQL program when a system
databank is inaccessible, see Re-creating TRANSDB, LOGDB and SQLDB on page 77.
SYSDB must always be located in the home directory for the database.
The location of a databank cannot be altered while the database server is accessing it or
while it is being accessed in single-user mode.

14 Chapter 2 The Database Environment
Accessing Databank Files

Note: You cannot move databanks between databases by copying the databank file
and using the facilities to alter the databank location recorded in the data
dictionary. You must use the LOAD command. See Chapter 8, Loading and
Unloading Data and Definitions.

Accessing Databank Files
The databank files in a Mimer SQL database are accessed by the database server
regardless of the user running the applications. The operating system privileges that apply
to accessing the databank files are associated with the database server.
If a Mimer SQL database is accessed in single-user mode, see Executing in Single-user
Mode on page 151, the user must have the appropriate operating system level privileges
in order to access the databank files.
Ownership of the databank files should not be confused with the creator of the databanks,
which is internal to the Mimer SQL data dictionary. It is quite possible that a user who
has created databanks is denied direct access at the operating system level to the files for
those databanks.

Databank File Deletion
If a databank or shadow is dropped, the corresponding file will also be deleted from disk.
Remember that dropping a Mimer SQL ident will also drop all objects, including
databanks, that the ident has created.
When a databank is dropped, all shadows of the databank will also be dropped.
Note: If the databank is OFFLINE when it is dropped, the databank file (and any

shadow files) will remain on disk in the file system and must be manually
deleted.

Multifile Databanks
Tables and indexes reside in a databank. In the past a databank has been equivalent to a
file in the file system. Now, a databank may consist of one or several files. If the files are
placed on separate drives, both read and write performance is increased. This is because
it is possible to both read and write to blocks in parallel on separate drives.
When there are several files, the database system will distribute the data evenly between
the files automatically. In a b*-tree, blocks in one file may point to blocks in the same or
other files in the databank in any fashion.
If a file is added to an existing databank, the file is added without moving any data.
However, whenever new blocks are needed, the new file will be used and eventually the
new file and the old one will hold equal amounts of data.

Linux: Databases on Linux platforms may be set up with a directory search path
instead of a single home directory, see Locating Databank Files on page 9.
A databank created without specifying the directory in the file specification
may be moved between any of the directories in the search path list without the
need to alter anything in the data dictionary. Before being moved, the databank
should be set offline to ensure that the file is not locked by the database server.

Mimer SQL Version 11.0 15
System Management Handbook

Any databank in the system can be a multifile databank except SYSDB. This means that
the system databanks TRANSDB, LOGDB, and SQLDB may use the multifile support.
It is possible to add and drop files while a databank is in use. When a drop operation is
done all the data in the dropped file is reallocated in the remaining files in the databank.
This may take a long time if there is significant amount of data in the file. If the command
is canceled, the operation is aborted and whatever data has been moved will remain in its
new location. The file will in this case be active and new data will be stored in it.
Only one add or drop operation is allowed per databank concurrently. An error message,
“databank locked” (error code -16172) is given if this is tried.
Tip: If you have a databank that you want to move to another location, for example,

another disk drive this can be done by first doing ALTER DATABANK ADD FILE
in the new location, followed by ALTER DATABANK DROP FILE for the old
location. This will effectively move all the data in the databank to the new
location/drive. Since both of these commands can be done on while the data is use,
it can actually be done on a live system with no impact for applications except some
extra I/O activity as the data is relocated.

Multifile databanks are very easy to both add and drop. However, there are some things
to consider when using multifile databanks.
Since the files in a multifile databank have block references back and forth it means that
all files in a multifile databank have a strong bond. It is, for example, not possible to
replace one of the files. If this is done inadvertently the system will detect this and will
give error message “One of the files for databank <%> does not match the other files in
databank file set”, with error code -16264.
For multifile databanks there exist two sets of commands which may at first appear
similar. They are:

ALTER DATABANK x ADD FILE 'filename'

and
ALTER DATABANK x ADD FILENAME 'filename'

The first command, ADD FILE, is used on a live system when the databank is accessible
and we want to concurrently add a new file to the multifile set.
The second command, ADD FILENAME, is used when the data dictionary is out of date.
If, for example, a backup has two files that we want to bring back. But if we have dropped
one of the files since the backup, then in this case the data dictionary only has information
about a single file. ADD FILENAME adds the file to the data dictionary.
So ADD FILE creates a new multi-file in a healthy system. ADD FILENAME is a data
dictionary operation only, and is used to correct situations when we want to add existing
files to a databank.
The corresponding DROP operations are also available.

ALTER DATABANK x DROP FILE 'filename'

and
ALTER DATABANK x DROP FILENAME 'filename'

The first command, DROP FILE, is used on a live system to migrate the data away from
the file and then remove the file from the file system and the data dictionary.

16 Chapter 2 The Database Environment
Multifile Databanks

The second command, DROP FILENAME, is used when the data dictionary is out of date.
If, for example, a backup has a singe file that we want to bring back. But if we have added
a file since the backup, then in this case the data dictionary has two files. DROP
FILENAME removes the filename from the data dictionary.
So DROP FILE removes a file from a multifile databank in a healthy system. DROP
FILENAME is a data dictionary operation only, and is used to correct situations when we
want to remove references to files that no longer exists.
It can be noted that we want the data dictionary to have the correct number of files in the
correct location. Each backup file may be placed in any of the locations pointed to by the
data dictionary. I.e. copying file a1 to location /dev2/dbfiles/xx, and file b1 to
location /dev1/dbs/yy works just as well as copying a1 to /dev1/dbs/yy, and b1 to
/dev2/dbfiles/xx. I.e. the system will sort out the actual contents as long as the files
belong together. (In this example, the data dictionary filenames are /dev1/dbs/yy and
/dev2/dbfiles/xx for the databank.)
To be able to use the ALTER DATABANK commands the database server must be up and
running. This means that all the system databanks must be available. Since the system
databanks, except for SYSDB, may also consist of several files we must have a way to
handle these. Any errors for the system databanks are handled with the batch SQL utility
(bsql). When running bsql you will be guided along for each system databank in turn. It
allows ALTER and DROP FILENAME operations to be performed. In addition, the
databanks may be recreated from scratch or in some cases by reinitializing existing files.
For these operations to be allowed you must log in as SYSADM. Some cases are covered
in the later scenarios below.

Multifile scenarios
Here we describe a number of possible scenarios that may occur for multifile databanks.

Scenario 1
Let us assume you have a multifile databank with two files, each on its own disk. Let us
also assume you have the same number of backup files.
One of the files is accidentally deleted. In this case you cannot bring back only the deleted
file. You have to bring back BOTH files since they are strongly bonded. After both files
are present the ALTER DATABANK x RESTORE USING LOG command is used to apply
the changes since the backup. The restore will use both files automatically. RESTORE will
only find data to restore if databank option LOG is used (see CREATE DATABANK or ALTER
DATABANK command.)

Scenario 2
Let us assume you have a multifile databank with two files, each on its own disk. Let us
also assume you have the same number of backup files.
One disk crashes and this disk is no longer accessible. Again, you have to copy BOTH of
your backup files to the file system. One of the files overwrites the undamaged, remaining
file, and the other file now needs to be placed in a new location. The SYSDB databank
holds the data dictionary. The data dictionary points to the old location of the file on the
device that is no longer available.
This location is now changed using the ALTER DATABANK x ALTER 'oldloc.dbf'
SET FILE 'newlocation.dbf' command.

Mimer SQL Version 11.0 17
System Management Handbook

Next, the ALTER DATABANK x RESTORE USING LOG command is used to apply the
changes since the backup.

Scenario 3
Let us assume you have a multifile databank with two files. You have taken an online
backup of the databank. Online backups are currently always in a single file.
One of the files is accidentally deleted. In this case we want to bring back the backup.
However, the data dictionary has two files and we only have a single file now. We remove
one of the file references from the data dictionary with ALTER DATABANK x DROP
FILENAME 'filenametodel.dbf'.
The dictionary only has a single file now for the databank. We can now copy the backup
to the remaining file's location.
Next, the ALTER DATABANK x RESTORE USING LOG command is used to apply the
changes since the backup.

Scenario 4
You have a multifile databank consisting of three files. You accidentally delete one the
files and you have no backup of the databank.
In this case the entire contents of the databank is lost. There is no way to find the data
without the missing file. If you have a databank with one file that is accidentally deleted
the result is the same.

Scenario 5
Let us assume you have a multifile databank with two files. You have a backup of, among
other files, the system databank SYSDB.
The file system with SYSDB is corrupted. You have to reinitialize it. You then bring in
your backup of SYSDB. The SYSDB needs to be restored. This is done using the batch SQL
utility. Batch SQL will prompt you for confirmation that you want to restore SYSDB
(provided you have logged in as SYSADM).
In this case your SYSDB with its data dictionary will have the correct contents and should
correspond to the other files present on the system.

Transaction Control
Transaction control provides a means of protecting the database from corruption which
might arise from two users attempting to the change the same information at the same
time and also provides the basis for ensuring database consistency, see Database
Consistency on page 67.

Optimistic Concurrency Control
Mimer SQL transaction management uses Optimistic Concurrency Control (OCC),
which is described in the Mimer SQL Programmer’s Manual, Chapter 9, Transaction
Handling and Database Security.

18 Chapter 2 The Database Environment
Database Security

This type of concurrency control overcomes many of the problems that can occur with
conventional locking techniques (e.g. deadlocks and locks being retained by defunct
connections). Superior performance is achieved because there is no need for the overhead
of a deadlock detection mechanism, since deadlocks cannot occur.

Transaction Phases
A transaction is an atomic operation. Atomic means that all the changes that form the
transaction are applied to the database, or none of them are applied.
Three transaction phases exist: build-up, during which the database operations are
requested, prepare, during which the transaction is validated, and commitment, during
which the operations performed in the transaction are written to disk.
The transaction begins by taking a snapshot of the database in a consistent state.
During build-up, changes requested to the contents of the database are kept in a write-set
and are not visible to other users of the system. This allows the database to remain fully
accessible to all users. The application program in which build-up occurs sees the
database as though the changes had already been applied. Changes requested during
transaction build-up become visible to other users when the transaction is successfully
committed.
During build-up, a read-set records the state of the database as seen at the time of each
operation (including intended changes). If the state of the database at commitment is
inconsistent with the read-set, a conflict is reported and the transaction is rolled back (i.e.
the write-set is erased and no changes are made to the database). This can happen if, for
instance, a transaction asks to update a row which is deleted by another user after build-
up has started but before the transaction is committed. The application program is
responsible for taking appropriate action if a transaction conflict occurs.
Transaction control behavior in application programs and a number of the system
facilities, notably Backup and Restore – see Backing-up and Restoring Data on page 67,
is controlled at the databank level by setting the option (LOG, TRANSACTION, WORK or
READ ONLY) for the databank.
Only operations performed in databanks set up with the LOG option are logged in the
Mimer SQL system databank LOGDB. Write operations against tables in LOG and
TRANSACTION databanks must be performed under transaction control (i.e. within a
transaction).
Refer to the Mimer SQL Programmer’s Manual, Chapter 9, Transaction Handling and
Database Security for more information.

Database Security
Mimer SQL supports a sophisticated system of access rights and privileges, which permit
detailed control of database security.
The main components of the database security system are:
• idents
• system, object and access privileges
• restriction views.
• PSM routines

Mimer SQL Version 11.0 19
System Management Handbook

The Role of Idents in Database Security
Access to the Mimer SQL system as a whole is managed through the use of idents and
privileges.
Careful advance planning of the hierarchical structure of idents in the database is vital to
the long-term viability of the system. A poorly planned ident structure can easily become
impossible to follow and control after a relatively short period of system use.

SYSADM
The Mimer SQL installation process creates one user ident, for use in database
administration, with the name SYSADM.
The SYSADM ident has all the system privileges (BACKUP, DATABANK, IDENT, SCHEMA,
SHADOW and STATISTICS – see System, Object and Access Privileges on page 20, with
the ability to grant these privileges to other idents, i.e. the privileges are held with the
WITH GRANT OPTION.
The SYSADM ident also has SELECT access on all tables in the data dictionary, again, with
the WITH GRANT OPTION. The SYSADM user is ultimately responsible for the structure
of the whole system.
Re-creating system databanks can only be done by SYSADM, however, in other respects
SYSADM is just an ordinary USER ident in the system.
It is quite possible, and may be advisable, especially in large systems, that SYSADM does
not have access to the actual contents of the database; the database administration role
should be concerned with objects in the system, not the actual data.

Public Group
All idents created in the system automatically belong to a logical group (specified using
the keyword PUBLIC in Mimer SQL statements) which is intended to be used for granting
global privileges.

Guidelines for Structuring Idents
The following general recommendations are made for structuring the idents in a system:
• Create PROGRAM idents for functional roles within the system. These are not

coupled to any physical individual or group of individuals and thus have a lifetime
independent of the turnover of personnel. (Database administration is an example
of a functional role, but it is represented by a user ident rather than a program ident
for practical purposes – see Idents on page 6 for details on idents).

• Create USER idents for physical users of the system. These may be dropped when
the person concerned should no longer have access to the database. Do not grant
privileges directly to user idents, other than membership to groups. Create the user
idents WITHOUT SCHEMA. Administration is much simpler if privileges are granted
through groups.

• Use GROUP idents to represent logical classes of users in the system. Grant
privileges to groups rather than to individuals. This makes the granting of access
rights to the system easier to organize and a clearer overview of the privilege
structure within the system is maintained. It also means that new idents can be
granted suitable privileges efficiently through membership in one or more groups.

20 Chapter 2 The Database Environment
Database Security

• Grant the privilege to create objects (DATABANK, IDENT and TABLE privileges) to
program idents only. In this way, individual USER idents may be dropped with no
cascade effects (see Cascade Effects Between Privileges on page 22). (Creation of
domains requires no special privilege and may thus be performed by any ident with
a schema. Creation of views requires only SELECT access to the table on which the
view is based).

• Use the WITH GRANT OPTION sparingly and try to minimize the number of levels
in the ident hierarchy. This reduces the risk of cascading revocation of privileges,
see Cascade Effects Between Privileges on page 22.

If these recommendations are followed, the maintenance of the ident structure in the
system will be much more straightforward. Access to the contents of the database will be
granted to relatively few GROUP idents instead of many individual program or user idents.
When a physical individual should no longer have access to the database, the
corresponding USER ident can be dropped with no cascade effects.

System, Object and Access Privileges
Each ident is given privileges within the system which determine the operations the ident
is permitted to perform.
Note: In addition to holding any relevant privilege(s), an ident must also be the

creator of at least one schema before the ident is able to create private database
objects (i.e. domains, functions, indexes, modules, procedures, sequences,
synonyms, tables, triggers, types and views) - see Schemas on page 7.

Privileges may be granted either directly or by making the ident a member of a GROUP
ident. The privileges are classified as follows:

System Privileges
System privileges give the right to create global objects in the database. There are the
following system privileges:

System privileges are granted to SYSADM at installation time and may be passed on to
other idents with or without the WITH GRANT OPTION.
An ident receiving a privilege with the WITH GRANT OPTION may pass the privilege on
to another ident.

System Privilege Description

BACKUP gives the right to perform backup and restore operations

DATABANK gives the right to create databanks

IDENT gives the right to create idents and schemas

SCHEMA gives the right to create schemas

SHADOW gives the right to create shadows and perform shadow control
operations

STATISTICS gives the right to execute the UPDATE STATISTICS statement.

Mimer SQL Version 11.0 21
System Management Handbook

Object Privileges
Object privileges give rights associated with certain specified objects in the system. There
are the following object privileges:

Object privileges are initially, automatically, granted only to the creator of the object (e.g.
the creator of a databank automatically has TABLE privilege on the databank).
The privileges may be passed on to other idents with or without the WITH GRANT
OPTION.

Access Privileges
Access privileges give rights of access to the contents of a specified table or view. There
are the following access privileges:

In addition to the five access privileges listed above, the keyword ALL may be used as a
shorthand method of specifying all the privileges possessed by the granting ident. For
example, if an ident has only SELECT and UPDATE privileges on a table and ALL is
granted on that table to a new ident, the new ident will only be given SELECT and
UPDATE.
Access privileges are initially granted to the creator of the table with the WITH GRANT
OPTION. The privileges may be passed on to other idents with or without the WITH
GRANT OPTION.

Object Privilege Description

TABLE gives the right to create tables in a given databank

SEQUENCE gives the right to create sequences in a given databank

EXECUTE gives the right to execute a function, procedure or per-compiled
statement, or the right to enter (become) a specified program
ident

MEMBER makes an ident a member in the specified GROUP

USAGE gives the right to specify the nameddomain where a data type
would normally be specified (in contexts where use of a domain
is allowed), or the right to use a specified sequence or collation.

Access Privilege Description

SELECT gives the right to read the table contents

INSERT gives the right to add new rows to the table (this privilege may
be limited to specified columns within the table)

DELETE gives the right to remove rows from the table

UPDATE gives the right to change the contents of existing rows in the
table (this privilege may be limited to specified columns within
the table)

REFERENCES gives the right to use the primary or alternate keys of the table
as a foreign key from another table (this privilege may be
limited to specified columns within the table).

22 Chapter 2 The Database Environment
Database Security

Certain operations are not controlled by explicit privileges, but may only be performed
by the creator of the object involved. These operations include ALTER (with the exception
of ALTER IDENT, which may be performed by either the ident itself or by the creator of
the ident), DROP and COMMENT. Privileges may only be explicitly revoked by their
grantor, however cascade effects may go wider.

Cascade Effects Between Privileges
Dropping an object from the database or revoking a privilege from an ident may have
cascade effects on other objects and idents, depending on the way the database is
organized.
The keywords CASCADE and RESTRICT may be used in the DROP and REVOKE
statements.
When using RESTRICT (the default), the operation will fail with no changes being made
if any cascade effects result from it.
When using CASCADE, the following operations have the consequences described:
• If an ident is dropped, all objects created by the ident are dropped and all privileges

granted by the ident are revoked.
• If a databank is dropped, all tables in the databank are also dropped.
• If a table is dropped, all views and synonyms based on the table are dropped. Also,

triggers and routines that references the table are dropped.
• If a privilege with the WITH GRANT OPTION is revoked from an ident, all

instances of that privilege granted to other idents under the authorization of that
WITH GRANT OPTION are also revoked. The WITH GRANT OPTION can be
revoked separately.

• If SELECT privilege on a table is revoked from an ident, views created by the ident
under the authorization of that SELECT privilege are dropped.

If DATABANK privilege is revoked from an ident, existing databanks created under that
privilege are not dropped.
The cascade effects of revoking privileges only occur when the last instance of the
privilege is revoked (a new instance of the privilege is created each time the privilege is
granted to the same ident on the same object). An ident grants privileges, creates views
and so on under the authorization of the most recently received valid instance of the WITH
GRANT OPTION, SELECT or other relevant privilege.
The data dictionary keeps a record of the specific instance of an authorization under
which an operation was performed. The cascade effects apply only to privileges granted
or objects created under the specific instance of the authorization which is being revoked.
This is illustrated in the example cases that follow:

CASE 1
1 A grants with grant option to M

M grants to X
2 B grants with grant option to M

M grants to Y

Mimer SQL Version 11.0 23
System Management Handbook

3 A revokes from M
Both X and Y keep privileges

4 B revokes from M
Both X and Y lose privileges

CASE 2
1 A grants with grant option to M
2 B grants without grant option to M

M grants to X
M grants to Y

3 A revokes from M
M loses grant option
Both X and Y lose privileges

4 B revokes from M
M loses privilege

Restriction Views
Views are a powerful tool for restricting user access to specific parts of the database and
they complement the use of access privileges in maintaining database security.
By defining restriction views (i.e. views based on one table but restricted only to specific
rows and/or columns in the table), access may be provided to a subset of the contents of
a table without affecting the physical database structure. In this way, the database may be
designed optimally according to the relational model, while user access can be defined
according to actual data retrieval requirements.

Data Integrity
The following facilities are available for ensuring the integrity of a Mimer SQL database:
• domains
• entity integrity (non-null primary keys)
• referential integrity (foreign keys)
• table integrity
• view integrity

Domains
Domains define sets of permissible values. By assigning a table column to a domain when
the table is created or altered, the values which the column may contain are restricted to
those defined in the domain. Any number of columns may use a given domain.
The ident defining a table column must hold USAGE privilege on any domain used.
A default value may also be defined for a domain. The domain default value is inserted
into a column defined using the domain when data is inserted without an explicit column
value being specified.

24 Chapter 2 The Database Environment
Data Integrity

If the default value for the domain is defined outside the range of restriction values for the
column, attempts to store the default value in a column using the domain will fail. In such
a case an explicit value must always be specified when inserting data into the column.
The use of domains in table definitions is recommended, since this can provide an
automatic check on the validity of data inserted into the column. However, domain
definitions should be carefully planned, since a domain definition cannot currently be
altered after it has been defined.

Entity Integrity
Entity integrity refers to the requirement that every row in a table must be uniquely
identified and that no row in a table may be identified by null (i.e. by an unknown value).
Entity integrity can only be enforced if a primary key constraint or unique constraints are
applied.
All primary key columns in tables created by Mimer SQL are defined as NOT NULL, thus
ensuring entity integrity. Other (i.e. non-primary key) columns may also be defined as
NOT NULL as required.

Referential Integrity
Referential integrity refers to the requirement that data entered into a table in the database
must already be present in another table (e.g. a component may not be entered in a parts
list if it does not already exist in the set of known components in the database).
Mimer SQL supports referential integrity through the FOREIGN KEY clause in the
CREATE TABLE statement.
The properties of a FOREIGN KEY are as follows:
• The columns defined as a foreign key must correspond exactly in number and data

type to the primary key or unique key columns in the referenced table.
• Data inserted into the foreign key columns (by either INSERT or UPDATE

operations) must either already be present in the primary key or a unique key of the
reference table or include at least one null column.

• A primary or unique key value that is referenced by a foreign key must not be
removed by an update operation. It may be possible to remove such a value with a
delete operation provided the ON DELETE rule is used to update the referencing
table in a way that preserves the referential integrity.

Note: Referential integrity constraints are effectively checked at the end of the
INSERT, DELETE or UPDATE statement. Both the table containing the foreign
key reference and the referenced table must be stored in a databank with either
the TRANSACTION or LOG option.

Table Integrity
Table integrity refers to the facility in Mimer SQL of defining CHECK clauses in a table
definition, whereby the contents of one column is checked against the contents of one or
more other columns in the same row of the table.
Data may only be entered into the table if the CHECK constraint is not violated.

Mimer SQL Version 11.0 25
System Management Handbook

View Integrity
View integrity refers to the facility in Mimer SQL of including a WITH CHECK OPTION
clause in a view definition. If a view is defined with a WITH CHECK OPTION, data which
violates the definition of the view may not be entered into the view by INSERT or UPDATE
operations.
When a view is defined with a CHECK OPTION, any views defined on that view will
inherit the CHECK OPTION.

26 Chapter 2 The Database Environment
Data Integrity

Mimer SQL Version 11.0 27
System Management Handbook

Chapter 3

Creating a Mimer
SQL Database

Once the Mimer SQL software is installed, the database environment must be created.
This involves the following activities:
• registering the name of the database on each node in the network from which it is

to be accessed.
• generating the Mimer SQL system databanks SYSDB, TRANSDB, LOGDB and SQLDB

as well as the database administration ident called SYSADM.
• creating idents and data objects in the database using the data definition statements

in Mimer SQL.

Linux: On Linux and macOS the provided dbinstall command performs all
necessary installation steps to create an initial database and getting it up and
running. The options available in dbinstall give opportunities to control and
carry out the following:

– Deciding a database home directory
– Registering the database
– Deciding the SYSADM password
– Creating the system databanks, including the data dictionary
– Deciding owner of the database
– Setting up the networking environment
– Setting up autostart procedure
– Setting up a data source definition for ODBC use
– Creating an example database
– Creating a basic development setup with an OS_USER
– Creating the default database configuration file
– Starting the database created

Many of these tasks are described in a more general and detailed manner further
on in this chapter.

Note: On macOS the dbinstall command is complemented with a Graphical
User Interface.

28 Chapter 3 Creating a Mimer SQL Database
Registering the Database

3.1 Registering the Database
In a network environment, the name of a database must be registered on each node from
which it is to be accessed.
A database is created as a local database on the node where it resides and it is defined as
a remote database on each other node in the network from which access to it is required.

3.1.1 Database name recommendations
When selecting the database name there are some guidelines to be considered. The most
recommended names are those built on ordinary letters, possibly combined with digits
and dash/underscore. The case of letters used is not significant.

Please regard the following:
• Avoid having a database name that contains digits only. A database named as a

number can get syntactical problems when used in commands, for example where
optional numerical parameters can be given.

• Avoid using question marks and asterisks, since they can be treated as wildcard
characters in some situations.

• Avoid using white space in the name, since this will make the use of the name more
complex, requiring use of quotes or escape characters.

• Avoid using quotes in the database name, since this will be confusing and hard to
use.

3.2 The Local Database
A local database is one that resides on the machine where its database server executes (i.e.
the system databank file containing the data dictionary exists on a local disk).
A local database definition registers the database by specifying a name (which is not case
sensitive) and a home directory for the database.

Linux & VMS: On Linux, macOS and OpenVMS nodes, the name of a database is
registered by creating an entry for it in the SQLHOSTS file. See The
SQLHOSTS File on VMS and Linux on page 155 for details about this
file.
All users must have read access to the SQLHOSTS file on the machine
they are using in order to run applications and utilities accessing Mimer
SQL databases.

Win: On a Windows node, the name of a database is registered by running the Mimer
Administrator. The Mimer Administrator adds information about Mimer SQL
databases to the Windows registry. Refer to the Windows help provided with the
Mimer Administrator for details on how to use it.

Mimer SQL Version 11.0 29
System Management Handbook

It also involves specifying various parameters which configure the database server that is
started for the database.

A fully created local database, complete with its Mimer SQL license key, see Mimer SQL
License Key on page 30, Mimer SQL system databanks, see SDBGEN - Generating the
System Databanks on page 34, user databanks and the ident and data structure contained
in them, see Establishing the Ident and Data Structure on page 36, constitutes a Mimer
SQL database.
A completely created local database can only be accessed from the machine on which it
resides. If the database is to be accessed from a remote node, connected to the local
machine via a network connection, a remote database definition for the database must be
created on the remote node.

3.3 Accessing a Database Remotely
In order to access a database that resides on another network node, the database must be
created as a local database on the node it resides on and a remote database definition must
be set up on the node from which the database is to be accessed.
The purpose of the remote database definition is to define a link with a database that
resides elsewhere on the network. The name used for the remote database definition must
be the same as that given to the local database it represents.

Linux & VMS: The definition of a local database under Linux and OpenVMS involves
specifying the database name and the database home directory in the
SQLHOSTS file, see The SQLHOSTS File on VMS and Linux on
page 155.
Parameters that control the database server are specified in the
MULTIDEFS file which is located in the database home directory, see
The MULTIDEFS File on VMS and Linux on page 161 for details about
this file and the parameters it contains.
The MULTIDEFS file is automatically created with appropriate default
values for all parameters when the database server is first started.

Win: The definition of a local database under Windows is created by running the
Mimer Administrator and specifying the required parameters, including those
that control the database server, which are stored in the Windows registry.
Windows help is provided with the Mimer Administrator to guide you through
the creation of a local database. Default values are supplied for all parameters
except the database name and home directory.

30 Chapter 3 Creating a Mimer SQL Database
Mimer SQL License Key

The definition for the remote database contains the communication parameters required
for accessing the database over the network.

3.3.1 Client/Server Interface
Once the remote database definition has been set up and provided that the Mimer SQL
client/server communications have been established correctly, access to a database that
resides on a remote machine is performed transparently.
The Mimer SQL client/server communications interface is integrated into the database
server. The database server process manages all connections.
All Mimer SQL applications may use the client/server interface without having to make
any special provision in the application code. The client/server interface is automatically
activated whenever a remote database is targeted.
The Mimer SQL client/server protocol is identical on all Mimer SQL platforms. This
means that a Mimer SQL client on any machine type may access a Mimer SQL server for
a remote database on any of the platforms on which Mimer SQL is implemented.

3.4 Mimer SQL License Key
To start the database server and to establish connections to the database, a license key is
required. (A key valid for development and evaluation only is included in the Mimer SQL
distribution.)
Whenever a user connects to a Mimer SQL database, the computer identification and the
license key will be checked by the database server to determine access rights. If access is
denied, the connect attempt will be aborted and an error message will be shown.

Linux: The definition of a remote database under Linux involves creating an entry in
the /etc/sqlhosts file, see The SQLHOSTS File on VMS and Linux on
page 155 for information on the parameters involved.
On the database server computer, the mimer service should be defined in
/etc/services and a port dispatcher should be defined in
/etc/inetd.conf.
This is usually done automatically by the dbinstall command. For details, see
the Linux Getting Started G.

VMS: The definition of a remote database under OpenVMS involves creating an entry
in the SQLHOSTS file, see The SQLHOSTS File on VMS and Linux on page 155
for information on the parameters involved.

Win: The definition of a remote database under Windows is set up by running the
Mimer Administrator and specifying the required parameters. Windows help is
provided with the Mimer Administrator to guide you through the creation of a
remote database.

Mimer SQL Version 11.0 31
System Management Handbook

The Mimer SQL license key contains the following (encrypted) information:
• The maximum number of users that may use the database servers running on the

same computer node at any one time.
• The maximum number of network users that may use the database servers running

on the same computer node at any one time.
• The node name of the computer (in the case of a specific key) or a lifeboat key

which is valid for any computer of the platform type for which it was issued (e.g.
any Linux machine).

• Version number.
• Expiration date for the key.
The key data is case insensitive and space characters are ignored.

The Mimer SQL license key is provided by your Mimer SQL distributor.
In order to be able to generate the key, your Mimer SQL distributor must know the node
name, or serial number (depending on platform) of the computer on which the database
server will run. On non-Windows platform, use mimlicense to retrieve this information:

mimlicense --cpuid

Or, VMS-style:
MIMLICENSE/CPUID

When the number of Mimer SQL users is increased or new Mimer SQL functionality is
added to the site, a new Mimer SQL license key will be provided.
The Mimer SQL license key uses the node name of the computer to link Mimer SQL to
the computer it is authorized to run on. This allows for hardware replacement in the event
of a failure in the computer system. If a replacement computer is given the same node
name as the one it is replacing, the Mimer SQL license key remains valid for the new
hardware.

Linux & VMS: The mimlicense application is used to administrate the license key
file. See MIMLICENSE - Managing the license key on page 32 for
information on how to use MIMLICENSE.

Win: The Mimer Administrator is used to enter the Mimer SQL license key. The key
is distributed in a .mcfg file.
When you double-click on a .mcfg file, the Mimer Administrator is
automatically invoked to install the key.
Refer to the Windows help provided with the Mimer Administrator for details
on how to manually enter the Mimer SQL license key.

Win: When the dialog box which is used to enter a Mimer SQL license key is opened
in the Mimer Administrator, the node name of the computer will be displayed.
Refer to the Windows help provided with the Mimer Administrator for details
on how to open the dialog box.

32 Chapter 3 Creating a Mimer SQL Database
MIMLICENSE - Managing the license key

3.5 MIMLICENSE - Managing the license key

The mimlicense application is used to administrate the license key file. Keys may be
added, removed or updated by using mimlicense. mimlicense may also be used to list
and describe the contents of the key file.
Note that the database server must be restarted for the key changes to apply.

3.5.1 Syntax
The mimlicense program is controlled by flagged information specified on the
command-line.
The overall syntax (expressed in long form Unix-style) is as follows:

mimlicense [-a hexcode | -c | -d keyid | -f file | -l | | -r | -i |-c | -n]

mimlicense [--add=hexcode | --combined | --delete=keyid | --filename=file |
--cpuid | --list | | --nologo | --remove]

mimlicense [-v|--version] | [-?|--help]

3.5.2 Command-line Arguments

Linux & VMS: The mimlicense application is currently available on Linux, macOS
and OpenVMS.

Win: On Windows, the Mimer Administrator is used to administrate the license keys.

Unix-style VMS-style Function

-a hexcode

--add=hexcode

/ADD=hexcode Add a license key.

-c

--combined

/COMBINED Describe what the combined keys
permits.

-d keyid

--delete=keyid

/DELETE=keyid Delete the specified key.

-f filename

--file=filename

/FILE=filename Add a license key from a .mcfg file.

-i

--cpuid

/CPUID Show the computer's CPU id.

-l

--list

/LIST List the contents of the key file.

-n

--nologo

/NOLOGO Silent mode, i.e. execution with no
output.

-r

--remove

/REMOVE Remove keys.
mimlicense will prompt for each key
if it is supposed to be removed or not.

Mimer SQL Version 11.0 33
System Management Handbook

-v

--version

/VERSION Show mimlicense version
information.

-?

--help

/HELP Show help text.

Linux: The Unix-style command-line flags must be used on a Linux or macOS
machine. Both short form arguments (e.g. -r) and long form arguments (e.g.
--remove) are supported.
The name for the key file is:
/etc/mimerkey

VMS: Either the Unix-style or the VMS-style command-line flags may be used on an
OpenVMS machine – see the Mimer SQL VMS Guide for more details.
The name for the key file is:
SYS$SPECIFIC:[SYSMGR]MIMERKEY.DAT

Unix-style VMS-style Function

34 Chapter 3 Creating a Mimer SQL Database
SDBGEN - Generating the System Databanks

3.6 SDBGEN - Generating the System Databanks
The Mimer SQL system databanks SYSDB, TRANSDB, LOGDB and SQLDB are generated
by the SDBGEN program.
SDBGEN will load the system tables, see Data Dictionary Tables on page 175, and defines
the data dictionary views detailed in the Mimer SQL Reference Manual.
Note: A databank created for one SYSDB cannot be accessed by using a different

SYSDB even if identical data dictionary definitions are created in it.

3.6.1 Setting the Initial Size
The initial size for each of the Mimer SQL system databanks can be specified.
The size for the databanks is specified in Mimer SQL pages. The size of a Mimer SQL
page is 4 kilobytes.

Linux: A local database is set up on a Linux or macOS node by running the
dbinstall command (see the dbinstall man-page) and SDBGEN is started
automatically when required.
The databank files are by default created in the database home directory which
is not the ideal arrangement from a security and performance point of view, see
Re-creating TRANSDB, LOGDB and SQLDB on page 77 for guidelines
relating to placement and organization.
If there is more than one disk available on the system, it is recommended that
directories be created on those disks specifically for locating databanks. When
created, the LOCAL definition for the database should be updated in the
/etc/sqlhosts file by changing the single home directory path to a directory
path list that includes these directories. The list is colon separated as can be
seen in the following example, where the database is called “hotel”:

hotel /usr/db/hotel:/extra/db/hotel:/extra2/db/hotel

After this update is made, the database server can be stopped and the selected
databank files can be moved from the database home directory to their new
locations. When moved, the database server can be started again.

VMS: In order to create the Mimer SQL system databanks for a local database on an
OpenVMS node, an entry for the database must be specified in the SQLHOSTS
file. SDBGEN should then be executed to create the actual database. See Syntax
on page 35 for information on how to run SDBGEN.

Win: You set up a local database on a Windows node by running the Mimer
Administrator. The Mimer Administrator invokes the SDBGEN program in order
to create the system databanks when required.
The system databanks are distributed automatically, depending on the number
of disks available. Windows help is provided with both the Mimer
Administrator and SDBGEN to guide you through setting up a local database.

Mimer SQL Version 11.0 35
System Management Handbook

3.6.2 Setting Password for System Administrator
The database administration ident SYSADM is also created and a password (passwords are
case-sensitive) must be specified for this ident. It should be chosen carefully and changed
at appropriate intervals the ALTER IDENT statement.

3.6.3 Syntax

The SDBGEN command has two purposes. Either to create a new set of system databank
files, or to upgrade database files created in an earlier version of Mimer SQL to the
current version.
The SDBGEN program is controlled by flagged information specified on the command-
line.
The syntax (expressed in Unix-style) for creating databank files is as follows:

sdbgen [-p pass] [database [syssz [trafn [trasz [logfn [logsz [sqlfn
[sqlsz]]]]]]]]

sdbgen [--password=pass] [database [syssz [trafn [trasz [logfn [logsz
[sqlfn [sqlsz]]]]]]]]

sdbgen -u|--upgrade [database]

sdbgen [-v|--version] | [-?|--help]

Caution: Care should be taken to safeguard the SYSADM password, because if it is lost
it cannot be retrieved from the system and it is not possible to set a new one.

Linux: On Linux or macOS, the dbinstall utility is used to create the system
databanks.

Win: On Windows, the Mimer Administrator is used to create the system databanks.

36 Chapter 3 Creating a Mimer SQL Database
Establishing the Ident and Data Structure

3.6.4 Command-line Arguments
When creating databanks files:

If the password parameter is omitted, the SDBGEN command will prompt for all
parameters that are missing, including the password for the SYSADM user.
If the password parameter is given, the SDBGEN command will not prompt for any missing
parameters, but use default values.
If the database parameter is missing, the environment variable MIMER_DATABASE is
used to determine which database the databank files should be created for.

3.7 Establishing the Ident and Data Structure
Once the local database environment has been created for a Mimer SQL database
(database name, server parameters, system databanks, the SYSADM ident plus the system
tables and views), the data structure for the database (idents, user databanks, tables, and
so on) can be created using Mimer SQL data definition statements.
Mimer BSQL allows the execution of a sequential file which can then be used as a
permanent record of the CREATE statements used to create the database objects, see the
Mimer SQL User’s Manual, Chapter 9, Mimer BSQL.

Unix-style VMS-style Function

-p password
--password=password

/PASSWORD=password Password for SYSADM

-u
--upgrade

/UPGRADE Initiate a database upgrade.

-v
--version

/VERSION Display version information.

-?
--help

/HELP Display help text.

database database Database name

syssz syssz Size of SYSDB, 4K pages (prompted
for if omitted.)

tfn tfn Filename for TRANSDB

tsz tsz Size of TRANSDB, 4K pages
(prompted for if omitted.)

lfn lfn Filename for LOGDB

lsz lsz Size of LOGDB, 4K pages (prompted
for if omitted.)

sfn sfn Filename for SQLDB

ssz ssz Size of SQLDB, 4K pages (prompted
for if omitted.)

Mimer SQL Version 11.0 37
System Management Handbook

Mimer BSQL also supports the saving of input and/or output to a log file (using the LOG
command), so this facility could be used to create a permanent record of an interactive
Mimer BSQL session which could be run again at a later date. Mimer BSQL, however,
only has limited support for error handling.
An application program using embedded SQL (ESQL), JDBC or ODBC can also be used,
but this requires more work on the part of the programmer and it provides a less concise
record of the ident and data structure in the database.
Third party SQL tools are also available which may be used to create the database data
structure.
Caution: A sequential file intended for non-interactive execution in Mimer BSQL can

include username and password information relating to any CONNECT
statements used. For security reasons, such a file should be well protected in
the operating system, preferably with any username and password edited out
of any permanent copy of the file.

An example database is delivered with Mimer SQL. See Mimer SQL User’s Manual,
Chapter B, The Example Environment.

3.8 Managing Database Connections
This section describes how users connect to a database and how several simultaneous
connections from an application can be handled.
The following SQL statements are used for connection management:
• CONNECT

• DISCONNECT

• SET CONNECTION

See the Mimer SQL Reference Manual, Chapter 12, SQL Statements for details.

3.8.1 Selecting a Database
Applications establish database connections with the CONNECT statement, which
specifies the database by name.
An application may connect to any of the databases which have been made accessible
from the node where the application is running, see Registering the Database on page 28.
Some applications which are part of the Mimer SQL distribution allow the database name
to be specified as a command-line argument.
The database may be located on the same machine as the application program (a local
database), or on a remote machine accessed over a network (a remote database). The
network connection is handled by the Mimer SQL software and this is completely
transparent to the application program, see Client/Server Interface on page 30.
A database is normally accessed by one or more users via the database server. It is also
possible for one user to access a local database directly in single-user mode, provided the
database server for it is not running and the operating system user has the appropriate
access rights to the database files, see Executing in Single-user Mode on page 151.

3.8.1.1 The Default Database
The default database will be used if the CONNECT TO DEFAULT statement is used, or if
the database name in the CONNECT statement is specified as an empty string.

38 Chapter 3 Creating a Mimer SQL Database
Managing Database Connections

The default database can be any of the local or remote databases that are accessible from
the node the application program is running on.
The database that is actually selected by a default connection depends on whether a node-
specific or user-specific default database is defined at the time the connection is
attempted.
Programs supplied as part of the Mimer SQL distribution (e.g. Mimer BSQL) will use the
default database when database is not specified on the command line.

3.8.1.2 Defining a Node-specific Default Database
One default database can be defined for each node in a network.

3.8.1.3 Defining a User-specific Default Database
There may be times when an individual user may wish to override the default database
defined for the local machine. This is done by defining a user-specific default database,
which will be chosen in preference to the node-specific one.

Linux & VMS: The default database for Linux, macOS and OpenVMS nodes is
defined by specifying the name of the database in the DEFAULT section
of the SQLHOSTS file, see The SQLHOSTS File on VMS and Linux on
page 155.

Win: The default database for a Windows node is defined by using the Mimer
Administrator to create a System Wide Mimer ODBC Data Source with the
name default and associating it with the selected database.
Refer to the Windows help provided with the Mimer Administrator for details
on how to create System Wide Mimer ODBC Data Sources.

Linux & VMS: A user-specific default database is defined under Linux, macOS and
OpenVMS by setting the environment variable or logical name called
MIMER_DATABASE to be the name of the required local or remote
database, as stated in the SQLHOSTS file.
If the MIMER_DATABASE variable is set, all default connections will be
made to the database it identifies.
If the MIMER_DATABASE variable is not set, default connections will be
made to the node-specific default database for the local machine.

Win: A user-specific default database is defined under Windows by using the Mimer
Administrator to create a User Specific Mimer ODBC Data Source with the
name default and associating this with a database selected by the user. Refer
to the Windows help provided with the Mimer Administrator for details on how
to create User Specific Mimer ODBC Data Sources.
When a User Specific Mimer ODBC Data Source exists with the same name as
a System Wide Mimer ODBC Data Source, the user-specific one takes
precedence.

Mimer SQL Version 11.0 39
System Management Handbook

3.8.2 Troubleshooting Remote Database Connect Failures
If an attempt to connect to a remote database fails, the client/server connection can be
tested by starting Mimer BSQL on the client node and attempting to connect to the
database on the server node.
In the event of a connect failure, the following should be checked:
• If the connect was attempting to access the default database, check that a user-

specific or node-specific default database is correctly defined on the client node,
see The Default Database on page 37 for details on how this is done.

• Check that the database been correctly set up as a local database on the server
node, see The Local Database on page 28, and as a remote database on the client
node, see Accessing a Database Remotely on page 29, and that the name of the
remote database is the same as that of the local database.

• Check that the operating system user who is trying to establish the connection can
access all required files etc. on the client node.

• Check that the operating system user who is trying to establish the connection has
all the required operating system privileges

• If the TCP/IP protocol is being used, check that the server node is reachable from
the client node over the network by using the ping command:
ping server_node

• If the TCP/IP protocol is being used, try to telnet to the TCP/IP port. You should
get a connection and when <CR> is entered, the connection should be closed by the
server:
telnet server_node 1360

Linux: Verify that the inetd daemon is listening to the mimer TCP/IP service by
using the netstat -a command.

Linux & VMS: Check that the operating system user has read access to the SQLHOSTS
file on the client machine.

VMS: Check that an operating system user who is trying to use DECNET has TMPMBX
and NETMBX privileges enabled.

40 Chapter 3 Creating a Mimer SQL Database
Executing SQL Statements

3.8.2.1 NAMED PIPES

3.9 Executing SQL Statements
To execute SQL statements you can use DbVisualizer or BSQL, both included in the
Mimer distribution.
The Mimer BSQL program supports a number of command-line arguments. See
Mimer SQL System Management Handbook, Chapter 9, Mimer BSQL for a detailed
description.
The syntax for Mimer BSQL (expressed in Unix-style) is as follows:

bsql [-u[username]] [-p[password]] [-s|-m] [-qquery] [database]

If neither -s nor -m is specified for the optional mode flag, the way the database is
accessed will be determined by the setting of the MIMER_MODE variable, see Specifying
Single-user Mode Access on page 151, or, if this is not set, it will be accessed in multi-
user mode.

Win: If using NamedPipes, the operating system user must have an account set up on
both the local machine and on the machine where the remote database resides.
Both accounts must be set up with the same password.
If using NamedPipes to connect a Mimer SQL version 7.3 client to a Mimer
SQL database server version 8 or later, it will be necessary to take certain steps
to enable network communication.
Under version 7.3 the expected Service name was MIMER, but since version 8
the expected Service name is the name of the database.
Therefore, one of the following must be performed before a version 7.3 client
can communicate with a newer remote database server:
1) On each version 7.3 client node, the Service parameter in the remote database
definition must be changed to be the name of the database instead of the name
MIMER.
Or
2) On the server node, start a NamedPipes server which listens to service
MIMER so that it can redirect communications to the correctly named database
server.
If using NamedPipes to connect a Mimer SQL client version 8 or later to a
Mimer SQL version 7.3 database server, the Service parameter in the remote
database definition on the client node must be changed to the name MIMER
instead of the name of the database.

Mimer SQL Version 11.0 41
System Management Handbook

Arguments containing more than one word should be enclosed in ". Note that VMS
translates arguments to lower case when Unix-style syntax is used.
.

Linux: The Unix-style command-line flags must be used on a Linux or macOS
machine.

VMS: Either the Unix-style or the VMS-style command-line flags may be used on an
OpenVMS machine – see the Mimer SQL VMS Guide for more details.

Win: The Unix-style command-line flags can be used from a command prompt
window.

42 Chapter 3 Creating a Mimer SQL Database
Executing SQL Statements

Mimer SQL Version 11.0 43
System Management Handbook

Chapter 4

Managing a
Database Server

The database server enables one or more users to access a database. Each database may
have one database server running against it and the server runs on the machine where the
database resides.
The parameters which control a database server and which can be tuned to optimize
performance are specified as part of the definition of a local database.
The MIMCONTROL functionality provides facilities for managing the operation of a
database server (e.g. starting, controlled shutdown, etc.).
The MIMINFO functionality provides facilities for getting system management
information from a Mimer SQL database server, such as:
• listing details for the users on the system
• monitoring performance parameters
• dumping data for trouble-shooting analysis by Mimer support personnel.
• listing SQLPOOL parameters
Operational and error messages generated by a database server are recorded in the
database server log, see Database Server Log on page 65.

Mimer SQL Database Servers
A database, with its set of databank files, can be operated by different types of database
servers. The database server most commonly used is the standard Mimer SQL Experience
database server called mimexper. The following are some server types that may be
available, depending on the Mimer SQL product installed:
• mimexper - Standard Mimer SQL database server program.
• miminm - In-memory Mimer SQL database server program.
To select database server for a specific database, the ServerType parameter found in the
database configuration option is used (see The Local Database on page 28).

Mimer SQL Experience Database Server
The Mimer SQL Experience server is the standard version for the new generation of
Mimer SQL database servers with many innovative and fundamental improvements. See
Release Notes provided with each distribution and the Technical Description for Mimer
SQL version 11 (or later), found on the Mimer SQL developer site, for the details.

44 Chapter 4 Managing a Database Server

Mimer SQL In-memory Database Server
For systems where a relational database and extreme performance is looked for, the
Mimer SQL In-memory database server is the choice. This database server works in
memory only, thus providing a huge throughput.
To save a database state to continue from at a later stage an online backup (see Online
Backup Commands on page 72) can be executed. An online backup will, while the system
is running, produce a complete and consistent database file setup written to disk - a set of
files that the in-memory database server can use to start from at next start-up.
Please note that because all data is stored and managed exclusively in main memory, all
data will be lost when the server is stopped, and upon a process or server failure.
Thus it is recommended having a procedure of doing Mimer SQL Online Backups if start-
up data should be maintained.

System Performance
In a Mimer SQL system there are a number of system-wide parameters that have a major
impact on the overall system performance.
The most important parameters are the bufferpool size and the number of request and
background threads.

Mimer SQL Version 11.0 45
System Management Handbook

Database Server Memory Areas
The database server memory requirements include the following components:
• Code
• Data and thread stacks
• Bufferpool
• Communication buffers
• SQLPOOL

Code
The server code requires usually a few Mb, but it depends on the platform.

Data and Thread Stacks
As a rough guideline, assume about 500 Kb data plus 400 Kb for each thread started (the
total number of threads started is the number of background threads plus the number of
request threads), the actual figures, however, depend on the operating system being used.

Bufferpool
The bufferpool is the main primary memory cache used by the basic data access routines
in the Mimer SQL database management and contains data pages from the databank files.
It is a local memory area in the database server process.
The bufferpool does not grow dynamically, so whenever the bufferpool is full and access
to a new page is required, space is released in the bufferpool by swapping out the least-
recently-used resident page.
Frequent page replacement operations detract from the overall system performance since
access to disk is relatively slow. The best Mimer SQL performance is thus obtained by
having as large a bufferpool as possible without exceeding the amount of main memory
available. In practice, it is always necessary to find a suitable compromise between
allocation of memory to the Mimer SQL bufferpool and keeping memory available for
user applications and operating system tasks.
The size of the bufferpool depends on the parameters Pages4K, Pages32K and
Pages128K which are specified as part of the local database definition, see The Local
Database on page 28.
The amount of memory used by the database buffers can be calculated by:
buffer space in kilobytes = Pages4K*4 + Pages32K*32 + Pages128K*128
Note: The bufferpool contains a variety of other data, therefore the total bufferpool

size will be at least 10% greater than the space needed for the database buffers.
The default initial bufferpool size for a database server is based on the memory available
on the machine.
Fine tuning of the bufferpool is performed manually by adjusting the parameters in the
local database definition, see The Local Database on page 28, after the Mimer SQL
system is fully installed and has been functional for a period of time. The fine tuning
should be repeated whenever there is a significant change in the computer workload
distribution.

46 Chapter 4 Managing a Database Server
Database Server Memory Areas

Since the Mimer SQL bufferpool size affects the performance of both Mimer SQL and
other applications (because it reserves memory for a Mimer SQL database server), it is
advisable to perform regular routine checks on the bufferpool statistics in an operational
system by generating a Performance report, see The Performance Report on page 59.
Note: The Windows NT performance monitor can also be used to monitor a database

server running on any platform. Refer to the documentation supplied by
Microsoft for the Windows NT operating system for details.

Bufferpool Tuning Guidelines
Some general guidelines for bufferpool tuning are:
• Whenever main memory is available, it should be allocated, if possible, to the

bufferpool.
• Ensure that the bufferpool is not subject to system paging or swapping, since the

paging algorithms used by Mimer SQL and the operating system usually differ, and
forced cooperation between the two will often detract considerably from Mimer
SQL’s performance.

• If more than about 2% of all Mimer SQL page requests result in a page fault, the
bufferpool is too small. Statistics for page requests and faults are presented in the
Performance report, see MIMINFO - System Information on page 57.

• It is important to take note of the page fault statistics for each region in the
bufferpool to ensure that the most appropriate allocation has been made in each.
The Mimer SQL system decides which page size is most appropriate for each task
to be performed. For example, 32K pages are currently used for transaction data
(this may change in the future) and therefore allocating too few 32K pages may
currently adversely affect performance even though generous allocations have been
made in the other bufferpool regions.

Communication Buffers
Each communication buffer is about 70 Kb, it varies slightly depending on platform.
There is one communication buffer for each user as defined by the Users parameter in the
local database definition, see The Local Database on page 28.
All communication buffers reside in shared memory.

SQLPOOL
The SQLPOOL area contains information about opened tables and databanks, compiled
SQL programs, etc.
The initial size (in Kb) of the SQLPOOL is determined by the SQLPool parameter in the
local database definition, see The Local Database on page 28.
The SQLPOOL area grows dynamically when the database server needs more space. The
local database parameter MaxSQLPool controls the maximum size (in Kb) of the
SQLPOOL.
The value for MaxSQLPool is 2000*(Users+RequestThreads) by default.

Mimer SQL Version 11.0 47
System Management Handbook

The SQLPOOL area is never locked in physical memory. This allows the SQLPOOL to
grow dynamically and it may become larger than the physical memory allocated to the
server process. The operating system generally manages this situation by page-faulting.
The page-faults will not affect bufferpool performance if that area is locked in physical
memory.
If the amount of operating system page-faulting observed in a database server becomes
excessive, it is an indication that the memory required by the server process is much
greater than the amount of physical memory allocated to it. In this case, either more
memory must be installed on the machine or the local database parameters controlling
memory allocation must be adjusted to reduce the memory required by the database
server process.

Threads
The Mimer SQL database server process supports a number of separate request threads
and background threads, running simultaneously under the operating system.

Number of Request Threads
The amount of concurrency that the database server can support is dependent on the
number of available request threads. If there are more concurrent requests than threads,
the database server will start scheduling requests to improve response times. Increasing
the number of request threads in a situation like this may improve performance.
The number of request threads in a database server is defined at system start-up. A change
to the number of request threads requires that the system be stopped and re-started.
The maximum number of concurrent request threads is limited by the size of the
bufferpool.

Number of Background Threads
The background threads in a Mimer SQL database server perform tasks such as:
• Recording transactions in LOGDB.
• Updating master and shadow databanks.
• Securing data on disk.
• Online backup.
See Background Threads on page 62 for information relevant to fine-tuning the number
of background threads.

Network Encryption
With network encryption enabled, Mimer SQL uses AES-GCM (Advanced Encryption
Standard with Galois/Counter Mode) to encrypt network communication between the
database server and its clients. Communication over TCP/IP is encrypted, while
communication using other protocols is unaffected.

48 Chapter 4 Managing a Database Server
Network Encryption

AES-GCM provides authenticated encryption (confidentiality and authentication) by
encrypting the network communication packages and by creating a MAC tag over the
encrypted data. The authenticity of the data is provided by the MAC tag, which ensures
that the data has not been altered or tampered with during transmission.
Network encryption is enabled by setting a parameter named NetworkEncryption in
the database server.

Network encryption is available from version 11. In the case of an older Mimer SQL
database server being upgraded to version 11, a password change is needed for IDENTS
created before the version 11 upgrade, to be able to use encrypted communication over
TCP/IP.
The command miminfo -V can be used to see the network encryption status of
connected clients.

Linux + VMS: NetworkEncryption is a MULTIDEFS parameter. For details, see
MULTIDEFS Parameters on page 163.

Win: The NetworkEncryption parameter can be set in Mimer Administrator.

Mimer SQL Version 11.0 49
System Management Handbook

Database Server System Requirements
From the point of view of the operating system, a database server requires the system
resources described in the following sections.

Physical Memory
The amount of physical memory used by the database server process is determined by
parameters in the local database definition, see The Local Database on page 28, whose
initial default values are determined by looking at the amount of installed memory.

Virtual Memory
The amount of virtual memory that the database server process can use is limited by the
operating system.

VMS: For a database server running on an OpenVMS node the amount of physical
memory used by the database server process will vary between the OpenVMS
process parameters WSQUOTA and WSEXTENT.
The WSQUOTA parameter is calculated by MIMCONTROL and is set large enough
to include the bufferpool, initial SQLPOOL, communication buffers, code, and
stack data.
The WSEXTENT parameter is set to the SYSGEN parameter WSMAX (the maximum
amount of physical memory a single process may have).
For large buffer pools, it is recommended that a resident memory reservation
created in VMS. Please see the Mimer SQL OpenVMS Guide.

Linux: The virtual memory handling on Linux platforms is platform specific – refer to
the documentation for the specific Linux operating system you are using.
(Often a paging file used).

VMS: The MIMCONTROL command sets the paging file quota of the database server so
that it is large enough to contain all memory areas, including the bufferpool and
an SQLPOOL that has grown to MaxSQLPool kilobytes.
It may be appropriate to create larger page files to increase the amount of virtual
memory available to the database server.
Note that if the buffer pool does not use the page files if it is placed in a resident
memory reservation.

Win: If you get a message saying the system is running out of virtual memory you
may need to increase the size of your paging file. This done by using the Virtual
Memory option in the Performance section of the System control panel.

50 Chapter 4 Managing a Database Server
MIMCONTROL - Controlling the Database Server

Global Pages

MIMCONTROL - Controlling the Database Server
MIMCONTROL functionality is supplied on all platforms as a complete administration tool
for managing database servers.

VMS: The database server creates a global section for its communication buffers. This
global section resides on the page file. The amount of memory a global section
may take from a page file is generally controlled by an operating system
parameter. If this limit set by the operating system is exceeded, the
MIMCONTROL/START command will fail with the message:
%SYSTEM-E-EXGBLPAGFIL, exceeded global page file limit

If this happens, the OpenVMS SYSGEN parameter called GBLPAGFIL, which
limits the amount of memory that global sections may take from the page files,
should be increased.

Linux: The database servers on a Linux node can be controlled using the mimadmin
command (see the mimadmin man-page). This command invokes the
MIMCONTROL program, and other programs, as required. The MIMCONTROL
command can also be used directly under Linux.
A database server on Linux can be administered by the owner of it or by the
superuser root. To change ownership of a database the mimdbfiles command is
used (see the mimdbfiles man-page).
When a database server on a Linux machine is started for the first time,
MIMCONTROL will create a default multidefs file containing appropriate default
parameter values, based on the amount of memory installed on the machine.
Refer to The MULTIDEFS Parameter File on page 161 for details.
Database server performance can be fine-tuned later by adjusting the
parameters as required.

VMS: The database servers for the local databases on an OpenVMS node are
controlled by using the MIMCONTROL command directly (as described in this
section).
When a database server on an OpenVMS machine is started for the first time,
MIMCONTROL will create a default MULTIDEFS file containing appropriate
default parameter values, based on the amount of memory installed on the
machine. Refer to The MULTIDEFS Parameter File on page 161 for details.
Database server performance can be fine-tuned later by adjusting the parameters
as required.

Mimer SQL Version 11.0 51
System Management Handbook

Syntax
MIMCONTROL is controlled by flagged information specified on the command-line.
The overall syntax for MIMCONTROL (expressed in short form Unix-style) is:

mimcontrol [-bcdegkAL] [-l chan] [-s [secs]] [-t [secs]] [-w [secs]] [-r type]
[database]

mimcontrol [--dcl] [--status] [--disable|--enable] [--generate] [--kill]
[--mcs] [--logout chan] [--start[=secs]] [--stop[=secs]] [--wait[=secs]]
[--dump] [--report=type] [database]

mimcontrol [-v|--version] | [-?|--help]

If MIMCONTROL is invoked without any options, it displays help options on the command-
line.

Win: The Mimer Administrator can be used to control database servers on Windows
platforms.
Database servers are also controlled by using the Mimer Controller utility. Refer
to the Windows help provided with the Mimer Controller for further details.
You must belong to the administrators group to control database servers.
It is also possible to use the Windows commands NET START, NET STOP, etc.
to control database server processes.

52 Chapter 4 Managing a Database Server
MIMCONTROL - Controlling the Database Server

Command-line Arguments
Unix-style VMS-style Function

-b
--dcl

/STATUS/DCL Output status information about the
specified database server as a single-line list
suitable for use in a script.
For details about the output string resulting
from this option, see Database Server
Status on page 54.

-c
--status

/STATUS Output status information about the
specified database server.
This option can be combined with the
-s option, see Examples on page 55.

-d
--disable

/DISABLE Disable new user connections to the
database server. Users already connected
are not affected.
This option can be combined with the
-s, -t and -w options, see Examples on
page 55.

-e
--enable

/ENABLE Enable new user connections to the database
server.

-?
--help

/HELP Show help text.

-k
--kill

/KILL Kill the database server immediately. This
should only be used in emergency situations
when a normal stop using the -t option
does not work.
The next time the database is started, all
databanks that were open at the time the
server was killed will be automatically
checked. Connected users will receive an
error the next time they attempt to access the
database.

-l chan
--logout=chan

/LOGOUT=chan Force logout of the specified channel
number.
Use channel numbers displayed by the
USERS option of the MIMINFO command,
see The Users List on page 59.

-g
--generate

/GENERATE Generate a default multidefs file.
Win: This switch is not available in the

Windows environment.

Mimer SQL Version 11.0 53
System Management Handbook

-s [timeout]
--start[=timeout]

/START[=timeout] Start the database server.
If the server does not become operational
within the specified number of seconds, the
server will be killed.
Default timeout is 600 seconds.
This option can be combined with the
-c and -d options, see Examples on
page 55.

-t [timeout]
--stop[=timeout]

/STOP[=timeout] Stop a database server. Any remaining users
will be logged out.
If the server does not stop within the
specified number of seconds, the server will
be killed.
The default timeout is 120 seconds. This
option can be combined with the
-d and -w options, see Examples on
page 55.

-w [timeout]
--wait[=timeout]

/WAIT[=timeout] Wait for all connected users to log out.
If there are still users connected after the
timeout period expires, the command fails.
The timeout period should be given in
seconds. If no timeout period is specified
wait will be performed without any timeout.
This option can be combined with the
-d and -t options, see Examples on
page 55.

-A
--dump

/DUMP Create a dump directory and produce dumps
of all internal database server areas to files
in that directory.
The files produced can be examined by
using the MIMINFO -f command, see
MIMINFO - System Information on
page 57.

Unix-style VMS-style Function

54 Chapter 4 Managing a Database Server
MIMCONTROL - Controlling the Database Server

Database Server Status
The mimcontrol -b (MIMCONTROL/STATUS/DCL) command is a special form of the
mimcontrol -c (MIMCONTROL/STATUS) command which returns the database server
status information in the form of a single string containing a comma-separated list which
is useful when writing scripts.

-h
--hold

/HOLD VMS: The command
MIMCONTROL/START starts a
database server. Adding the /HOLD
qualifier will cause the
MIMCONTROL command to wait for
the started server to stop before
returning control to the DCL
prompt. This simplifies writing
scripts for automatic server restart.
When the /HOLD qualifier is used,
the MIMCONTROL command will
exit with the final status code of the
stopped database server process.

[database] [database] Specifies the name of the database to access.
If a database name is not specified, the
default database will be controlled.
The default database is determined by the
setting of the MIMER_DATABASE
environment variable.
The DEFAULT setting in SQLHOSTS is not
used for MIMCONTROL.

Linux: The Unix-style command-line flags must be used on a Linux machine. Both
short form switches (e.g. -s), and long form switches (e.g. --start) are
supported.

VMS: Either the Unix-style (short or long form) or the VMS-style command-line flags
may be used on an OpenVMS machine – see the Mimer SQL VMS Guide for
more details.

Win: The Unix-style command-line flags can be used from a Command Prompt
window. Both short form switches (e.g. -s), and long form switches (e.g.
--start) are supported.

Unix-style VMS-style Function

Linux: On Linux, the string returned from mimcontrol -b can be piped and
processed as required. The Linux command cut can be used to extract the list
elements, e.g. the following command which will print the second list element:
mimcontrol -b | cut -f2 -d ','

Mimer SQL Version 11.0 55
System Management Handbook

Status String Components
The status string has the following components:
server-state,logins,db-directory,connections,server-pid,start-date,bpool-size

Each component is described below:

Note: If the database server is not operational, the status string will contain empty
fields.

Examples
The parameter options can be combined in the following ways, examples are given in
both VMS-style and Unix-style:
• Start a database server, but disallow new logins immediately:

MIMCONTROL/START/DISABLE db_server_name
mimcontrol -sd db_server_name
mimcontrol --start --disable db_server_name

VMS: On OpenVMS, the MIMCONTROL command is silent and sets the DCL symbol
MIMER_STATUS to the value of the status string.
The lexical function F$ELEMENT() can be used to extract the list elements, e.g.
the following command will extract the second list element:
$LOGINS=F$ELEMENT(1,”,”,MIMER_STATUS)

Win: On Windows, the string returned from mimcontrol -b can be piped and
processed as required, depending on the script language being used.

Component Description

server-state The server-state value shows the state of the database server.
The value is one of: stopped, starting, running, stopping or
crashing.

logins The logins value is either: enabled, if new logins are permitted,
or disabled, if the server has been ordered to reject new logins.

db-directory The db-directory field shows the home directory for the
database.

connections The connections field shows the number of clients connected to
the server.

server-pid The server-pid field gives the process id of the database server
process.

start-date The start-date field gives the date and time when the database
server was started.

bpool-size The size of the buffer pool (in bytes).

56 Chapter 4 Managing a Database Server
MIMCONTROL - Controlling the Database Server

• Start a database server and output a status message for the newly started server:
MIMCONTROL/START/STATUS db_server_name
mimcontrol -sc db_server_name
mimcontrol -start --status db_server_name

• Disable new user connections, then wait for up to three minutes for all users to log
out.:
MIMCONTROL/DISABLE/WAIT=180 db_server_name
mimcontrol -dw 180 db_server_name
mimcontrol --disable --wait=180 db_server_name

The exit code from the MIMCONTROL command is success if all users logged out
within the three minute timeout period.
If the timeout period expires and there are still users logged in on the system, the
MIMCONTROL command will exit with a warning status code.

• The following command will wait for all users to log out of the system:
MIMCONTROL/WAIT/STOP db_server_name
mimcontrol -wt db_server_name
mimcontrol --wait --stop db_server_name

When all users are logged out, the system will be stopped. If the wait timeout period
expires, the MIMCONTROL command will exit with a warning status code without
stopping the system.

• The following command is similar to the previous one, but will ensure that no new
users log in to the system while waiting for all users to log out:
MIMCONTROL/DISABLE/WAIT/STOP db_server_name
mimcontrol -dwt db_server_name
mimcontrol --disable --wait --stop db_server_name

Exit Codes
MIMCONTROL returns a status code to the environment executing the command. The status
code can be examined by scripts.

The following return codes are used:

VMS: On OpenVMS, the status codes correspond to the OpenVMS condition code
severity levels.
Use the $SEVERITY symbol in DCL command procedures.

Linux/Windows VMS Usage

0 (success) 1 (success) This code is used when the MIMCONTROL
command has executed all options with no
problems.

1 (warning) 0 (warning) The warning code is used when there was a
timeout in one of the options. The complete
sequence of options may not have been executed.

Mimer SQL Version 11.0 57
System Management Handbook

MIMINFO - System Information
MIMINFO is used to obtain information from a Mimer SQL database server which is
useful for system control, system tuning and trouble-shooting analysis.
Information can be generated from an active Mimer SQL database server as well as from
the SQLPOOL and bufferpool dump files produced by using MIMCONTROL, see
MIMCONTROL - Controlling the Database Server on page 50.
The output from MIMINFO can be displayed on the screen and may also be directed to a
file.
The following reports may be obtained from MIMINFO (further details on each report can
be found in the sub-sections that follow):

Syntax
The MIMINFO program is controlled by flagged information specified on the command-
line.
The overall syntax for MIMINFO (expressed in short form Unix-style) is:

miminfo [-o file] [-m [-b bcbs]] | -p | -s | -u [-f | database]

miminfo [--output=file] [--mimdump [--bcblimit=bcbs]] | --performance |
--sqlpool | --users [--file | database]

miminfo [-v|--version] | [-?|--help

> 1 (error) 2 (error) The error code is used when the specified
command could not be executed at all. For
instance, if there was an illegal combination of
options, or if the specified database name was not
found.
If an error status code is returned, an informational
error message will also be produced.

Linux/Windows VMS Usage

Report Description

Users list this lists details of all the users currently connected.

Performance report this provides information useful for monitoring performance
parameters (MIMSERV).

Bufferpool report this produces a report which is useful to Mimer SQL support
personnel when investigating system problems (MIMDUMP).

SQLPOOL report displays SQLPOOL parameters

Version report displays version related information for a started server and its
client connections

58 Chapter 4 Managing a Database Server
MIMINFO - System Information

Command-line Arguments

Unix-style VMS-style Function

-b bcbs

--bcblimit=bcbs

/BCBLIMIT=bcbs Limits the displayed bcb list. Used
together with the --mimdump
option.

-f

--file

/FILE Take information from a dump file
(for a users list, a dump file called
sqlpool.mdmp is expected to exist
otherwise a dump file called
bpool.mdmp is expected to exist)

-m

--mimdump

/MIMDUMP Produce Bufferpool report
(MIMDUMP)

-o file

--output=file

/OUTPUT=file Send output to the specified file
instead of to the screen

-p

--performance

/PERFORMANCE Produce Performance report
(MIMSERV)

-s

--sqlpool

/SQLPOOL Display SQLPOOL parameters

-u

--users

/USERS Display users list

-V

--version

/VERSION List version information.

-?

--help

/HELP Show help text.

database database Take information from the specified
database.
If a database name is not specified,
the default database will be accessed,
see The Default Database on
page 37.

Linux: The Unix-style command-line flags must be used on a Linux machine. Both
short form arguments (e.g. -u), and long form arguments (e.g. --users) are
supported.

VMS: Either the Unix-style or the VMS-style command-line flags may be used on an
OpenVMS machine – see the Mimer SQL VMS Guide for more details.

Mimer SQL Version 11.0 59
System Management Handbook

A detailed description of each of the MIMINFO reports follows.

The Users List
A users list can be generated from an active database or from a dump file produced using
MIMCONTROL.

miminfo [--output=file] --users [database] | --file

The users list shows the name of each ident connected to the database, the channel number
used by the connection, the state of the connection, transaction number, the name of the
operating user, the network communication protocol (or ‘local’) and node identification
information for connected machine.
The channel number may be used in conjunction with MIMCONTROL to kill a user.
The following is an example of a users list report:

Username Channel State Trans. no OS user Prot From
============ ========== ===== ========== ============ ====== ====
SYSADM 16387 Busy 3 TCP 204.71.200.67
SYSADM 16388 Busy STELLA Local 00019120

Total of 2 users

The Performance Report
The performance report can be used by the system administrator to monitor performance
parameters during Mimer SQL use. The Performance report can be generated from an
active database or from a dump file produced using MIMCONTROL.

miminfo [--output=file] --performance [database] | --file

The performance report presents five kinds of statistical information which may be useful
for system tuning (statistics for page management, transactions, background threads,
databank and table usage).
Note: When a performance report is used as an aid to system tuning, it is important

that the report is generated when the database is in full use. The output from
several executions over a period of a few hours or days can provide valuable
information on fluctuations in system usage.

The performance report contains the following information:
• General Statistics
• Page Management Statistics
• Transaction Management Statistics
• Background Threads
• Databank Statistics
• Table Statistics

Win: The Unix-style command-line flags can be used if the miminfo program is run
from a Command Prompt window. Both short form arguments (e.g. -u), and
long form arguments (e.g. --users) are supported.
The shortcut Mimer Info can also be used to run the program and interactive
selections can then be made in the program.

60 Chapter 4 Managing a Database Server
MIMINFO - System Information

General Statistics
The following table lists the general statistics information available. Where applicable,
we have provided a detailed description

Page Management Statistics

Statistics Description

Current date and time When the statistics was generated.

Current MIMER/DB version Mimer server version.

Starting date and time When the Mimer server was started.

Current hardware and operating
system

Computer hardware and OS information.

System status If the database server is in an error state, a
database dump is usually made automatically.
It can be made manually by using the -A option
with MIMCONTROL. The dump directory created
should be saved for use by Mimer SQL support
personnel. The database server can then be
restarted.
The database server log, see Database Server
Log on page 65, should also be inspected to
help find the cause of the failure.

Error count Number of errors that have been written to the
database server log. This value should
normally be zero.

No. of request threads Number of request threads started, see Number
of Request Threads on page 47.

No. of background threads Number of background threads started, see
Number of Background Threads on page 47.

No. of I/O threads Number of I/O threads (typically zero on most
machines where separate threads are not
needed for I/O processing).

Statistics Description

No. of pages written to
disk

An indication of the frequency of disk update operations.

No. of file extend
operations

The total number of times databank files have been
dynamically extended since the latest startup. The value
should preferably be as low as possible for performance
reasons.
It is possible to check databank size usage with the
DESCRIBE command in Mimer BSQL. A databank can
be extended by using the commands:
ALTER DATABANK ADD … or ALTER SHADOW ADD ….

Mimer SQL Version 11.0 61
System Management Handbook

The following information is given for each region:

Transaction Management Statistics

Buffer size 4K (32K,
128K)

The bufferpool is divided into a region with 4K buffers,
one region with 32K buffers, and one region with 128K
buffers.

Statistics Description

No. of page buffers This is the number of page buffers allocated to this
bufferpool region.

No. of page buffers per
sorter

Total number of Mimer SQL pages that a request thread
performing a sort operation may utilize.

No. of remaining sorters The initial value specifies the number of concurrent
sort/merge steps that are allowed.

No. of page partitions Each region in the bufferpool is divided into separate
partitions. Each partition can be accessed concurrently by
the Mimer SQL request threads. In tightly coupled multi-
processor systems it is desirable, for performance
reasons, to have at least as many partitions as there are
CPUs. The number of partitions may be increased by
increasing the region size.

No. of page requests Total number of access operations to pages in the buffer
region since the latest system start-up.

No. of page faults Total number of page access requests that resulted in disk
read operations. If this value is more than about 2% of the
total number of page requests, performance may be
improved significantly by increasing the bufferpool size.

No. of pages swapped out Total number of pages which were written to disk when
they were swapped out of the buffer region.

Statistics Description

Statistics Description

No. of transaction commits Total number of successful read/write transaction
commits since the latest system start-up.

No. of read commits Total number of successful read-only transaction
commits since the latest system start-up.

No. of transaction checks A high proportion of transaction checks in relation to
the total number of transactions may indicate ill-
designed application programs, with long transactions
that are more likely to give rise to transaction conflicts.

No. of transaction aborts Total number of transactions aborted by the optimistic
concurrency protocol since the latest system start-up.
User requested transaction aborts are not counted.

62 Chapter 4 Managing a Database Server
MIMINFO - System Information

Background Threads

Databank Statistics

No. of pending restarts This is an indication of how much information is stored
in TRANSDB. Number of restarts is counted for each
databank used in a transaction. This figure grows larger
when shadows are set offline. If all databanks have been
accessed and there are no offline shadows there should
not be any pending restarts.

Statistics Description

Statistics Description

SWA Background thread identifier.

State State of the background thread. If the background
thread is currently working with a transaction, active
is displayed.
If the background thread is not doing anything,
inactive is displayed. I/O processing means that
the background thread is flushing one or more
transactions to disk.
unused means that the background thread is allocated
but not currently running (i.e. the thread is not started or
closed down).

Trans-no The number of the transaction currently being
processed.

Trans-count The number of transactions processed by the
background thread.

Pending background thread
requests

This indicates how many transactions have not yet been
processed by the background threads. If there are too
few background threads this value will grow.

Application waiting for
trans-no

For certain operations (SET DATABANK OFFLINE, for
example) the application has to wait for the background
threads to complete their operations.
If there are too few background threads, it may take
some time before this operation is complete. By
comparing this trans-no with the trans-no being
handled by the background threads it is possible to see
how many transactions are left before the operation is
completed.

Statistics Description

Name The name of the databank or shadow.

Mimer SQL Version 11.0 63
System Management Handbook

DBANKID, SEQNO Databank identification. These two values correspond
to the columns DATABANK_SYSID and
DATABANK_SEQNO in the data dictionary table
SYSTEM.DATABANKS.

Type The databank option WORK, TRANSACTION, LOG, or
READ ONLY. See Re-creating TRANSDB, LOGDB and
SQLDB on page 77.
The SQLDB databank has the type TEMPORARY, and
shadows have the type SHADOW.

Users Internal user count.

Access Access mode by which the databank was opened. The
possible values are: Read, Write, Shared and
Exclusive.
If the databank is open but not referenced by any active
statement, None is displayed.

DB-Check The DB-Check field indicates the progress of a
databank check. The possible values are Init,
Working (foreground processing, typically index
check), Wait B. (foreground ready, waiting for
background entrance), Backgr. (background
processing), Aborting, Aborted or Complete.
After the DB-Check field, a field for additional
information may show up. The values here can be the
shadow state: offline, or the online backup states:
backup in progress or backup completion.

No. of databanks currently
open

A count of both databanks and shadows opened in the
system.

Max number of databanks
open concurrently

This is defined by a parameter in the local database
definition, see The Local Database on page 28, or
possibly by a limit in the operating system.

Databank verification count Databank verification is automatically performed when
a databank is re-opened without having been correctly
closed. Each time this happens a log entry is written to
the database server log. When a databank is verified the
databank verification count is incremented. The count is
cleared when the system is started, and a databank is
only verified once per session.

Running background
verifications…

Indicates the number of active databank verifications.

Pending background
verifications…

Indicates the number of active databank verifications.

Statistics Description

64 Chapter 4 Managing a Database Server
MIMINFO - System Information

Table Statistics

Bufferpool Report
The Bufferpool report is used by Mimer SQL support personnel for trouble-shooting
when database problems are reported by customers.

miminfo [--output=file] --mimdump --file

SQLPOOL Report
SQL pool memory allocated is the amount of memory allocated from the operating
system for the SQLPOOL. A part of that memory is in use by the server and is displayed
on the row SQL pool memory used.

miminfo [--output=file] --sqlpool [database] | --file

The following is an example of an SQLPOOL report:
SQLPOOL report
==============
SQL pool memory allocated (KB): 1656
SQL pool memory used (KB): 554

Version Report
A version report can be generated from an active database or from a dump file produced
using MIMCONTROL. The report is generated using the following command:

miminfo [--output=file] --version [database] | --file

The version report displays information about the server and about each connected client.
The server information includes server type, version and platform.
The client information includes channel number, database API, version, network
encryption and node identification information for the connected machine.
The channel number can be used to identify the connection when it appears in other
reports.

Databank verification is
only done on index pages…

Indicates the databank verification mode as defined in
the local database definition, see The Local Database
on page 28

Databank verification is
performed on all pages…

Indicates the databank verification mode as defined in
the local database definition, see The Local Database
on page 28

Statistics Description

Statistics Description

No. of tables currently open This shows the number of tables open in both master
and shadow databanks. Also included are the read and
write sets used by each user.

Max number of tables open
concurrently

This number is set as a parameter in the local database
definition, The Local Database on page 28.

Mimer SQL Version 11.0 65
System Management Handbook

The following is an example of a version report:
miminfo --version
M I M E R / M I M I N F O
Version 11.0.4A Sep 5 2020

Server type: Mimer SQL Experience
Server version: 11.0.4A
Server platform: Windows x64

Channel Client interface Version Platform Encrypt Prot From
======= ================ ======= ======== ======= ===== ====
1327109 ODBC 11.0.4A Windows x64 none Local 00001E2C
32772 Embedded SQL 11.0.4A VMS Itanium AES/GCM TCP Freke

Total of 2 users

Database Server Log
The database server log lists startup and shutdown messages for the database server. It
may also contain warning and error messages if such situations have been detected by the
database server.

Linux + VMS: A log file called mimer.log is created when the database server is
started for the first time. This file is located in the database home
directory.
In addition, you can set the Oper parameter in the MULTIDEFS file to
send e-mails containing serious database server messages to relevant
people. These messages always go to the system log as well.
For more information, see Appendix C The MULTIDEFS Parameter
File.

Win: Database server events are logged in the EventLog which may be examined
using the Windows event viewer.

66 Chapter 4 Managing a Database Server
Several Installations on One Machine

Several Installations on One Machine
Linux: Under Linux, a host computer may have several Mimer SQL installations, of

the same and different versions, installed simultaneously.
If several Mimer SQL version 10 installations are available, only one of them
can be linked to /usr/lib and /usr/bin at the same time.
To access an installation that is not linked to these locations, the environment
variables PATH and LD_LIBRARY_PATH (or corresponding to located shared
libraries) must be used explicitly.
For more information on environment variables, see Mimer SQL - Getting
Started on Linux.

VMS: Under OpenVMS, a host computer may have several Mimer SQL installations,
of the same and different versions, installed simultaneously.

Win: Only one Mimer SQL installation can exist on a computer running Windows.

Mimer SQL Version 11.0 67
System Management Handbook

Chapter 5

Backing-up and
Restoring Data

This chapter discusses backup and restore of Mimer SQL databanks. Two types of backup
procedures are described:
• System Backup, i.e. backing up the databank files from the host operating system.

When using host operating system tools for doing databank file backup, the
database server must be stopped in order to keep the database consistent.

• Online Backup, i.e. using the SQL system management statements. The main
advantage of online backup is that the database server can continue to operate
(backup operations are performed in the background).

Some of the discussion in this chapter refers to shadowing databases, see Mimer SQL
Shadowing on page 123, which is an optional Mimer SQL module that allows one or more
copies of a databank to exist on different disks. Shadowing provides a high level of
protection from disk failure because the system will automatically use a databank shadow
if the master databank is lost, thus allowing normal database activity to continue without
interruption. Databank shadows also allow a copy of a databank to be temporarily set
offline (e.g. to be backed-up) without interrupting normal system use.
Several references to transaction handling are made in this chapter. If you are not familiar
with transaction handling in Mimer SQL see the Mimer SQL Programmer’s Manual,
Chapter 9, Transaction Handling and Database Security.

Background Information
A Mimer SQL database consists of a collection of databanks (each in a separate operating
system file) containing tables with data used by the applications. The SYSDB system
databank contains a data dictionary describing the different objects in the database.
Note: Backup protection for SYSDB is particularly important for protecting the

database, since SYSDB contains all information describing the database
structure. If SYSDB is lost, the system must be rebuilt from scratch.

Database Consistency
Database consistency is handled on two levels: physical and logical.
Physical consistency means that the tables are readable by Mimer SQL. This is ensured
as long as the databank file is not physically damaged.

68 Chapter 5 Backing-up and Restoring Data
Database Consistency

Logical consistency means that the tables contain valid data. This is ensured by Mimer
SQL’s transaction handling. All transactions are saved in the TRANSDB databank during
build-up and are applied to the databanks when they are committed. To use transaction
handling, the databank must be created with the TRANSACTION or LOG option.
Transaction handling makes it possible to ensure that a user cannot commit a read write
transaction which has read data that is being concurrently updated by another user. If a
transaction is successfully committed then all operations in the transaction are performed.
If the transaction is aborted due to a conflict, none of the operations in the transaction are
performed.
The tables may be logically inconsistent if Mimer SQL is stopped before all operations in
a committed transaction have been performed. At some time after the system is restarted,
all uncompleted transactions will be read from TRANSDB for automatic completion. This
happens in the background on a per-databank basis, after a databank is first accessed
following the restart. Transactions that were not committed before the stop are aborted.
The DBOPEN facility, see DBOPEN - Databank Open on page 89, can be used to open all
databanks in one operation and thus achieve transaction consistency quickly.

LOGDB and TRANSDB Importance
Important: The information stored in TRANSDB is vital to keep the database consistent
in all circumstances, not only in case of failure.
The LOGDB information will contain data on all the changes made to the databank from
the time the backup copy of the databank was taken until the time of the disk crash. This
information is used if a backup copy of a databank file is to be restored.
Note: Data changes that are not logged cannot be restored by this process, therefore it

is important to consider the issue of transaction logging carefully.
If a databank becomes unavailable (because the Mimer SQL system is stopped
deliberately or by a system failure) during the commitment of a transaction, information
is retained in the TRANSDB system databank and used to complete the transaction when
the databank becomes available again.
This is only true for databanks with the TRANSACTION or LOG option. Once information
has been successfully written to both LOGDB and the databank file, it is removed from
TRANSDB.
It is recommended practice to back up all the databanks of the database at the same time,
and to ensure that LOGDB is always backed up whenever other databanks are backed up,
because the LOGDB information provides the transaction data which links the previous
backup copy of a databank with the databank as it exists at the current point in time.
Thus, when restoring a databank it should be brought to a state consistent with the latest
backup. This is done either by using the latest backup copy of the databank or by using
backed up LOGDB information with an older backup copy of the databank.
The current LOGDB system databank is then used to restore the final changes made
between the time of the latest backup and the time the databank was lost.

Mimer SQL Version 11.0 69
System Management Handbook

Example

The graphic above describes a scenario which ends up in a system crash.
To recover from this situation the common operation is to start from the most recent
backup (T2) and then use the current LOGDB to recover data up to the state at T3.
When the system is restarted, the current TRANSDB is used to automatically recover up to
the moment of the crash.
If the most recent backup cannot be used, an older backup has to be brought in (T1). This
backup is restored up to the consistent state at T2 by using the LOGDB stored in the backup
at T2.
Then the current LOGDB and TRANSDB are used to restore the transactions committed after
the backup at T2.
Note: Wherever possible, LOGDB should be stored on a different disk unit, with a

separate disk controller, from the other databanks in order to minimize the risk
that a disk crash or damaged disk controller destroys both the log and the other
databanks.
LOGDB and TRANSDB should always be located on different physical disks
which are ideally served by separate disk controllers and no other databank
files should be located on either disk, since data may be lost if both TRANSDB
and LOGDB are destroyed.
Refer to Organizing Databank Files on page 10, for more details on data
security and databank files.

Updates Recorded in LOGDB
The LOGDB system databank contains logged update information for each databank with
LOG option.
It is recommended that all databanks, including LOGDB, are backed up at the same time
and that LOGDB is cleared after backup by resetting the log. Thus, the backed up LOGDB
will contain the information required to make databanks from the preceding backup
consistent with the current backup.

T3

Backup,
including all

databanks LOGDB TRANSDB

Time

Transactions

System crash

LOGDBLOGDB

Backup,
including all

databanks

T1 T2

70 Chapter 5 Backing-up and Restoring Data
Database Consistency

This will provide double backup protection by allowing a lost databank to be recovered
in one of the two ways listed below:
• restore the databank from the most recent backup and apply the updates currently

held in LOGDB, or
• restore the databank from an earlier backup, then sequentially use the LOGDB files

from each subsequent backup to make the databank consistent with the most recent
backup, and finally apply the updates currently held in LOGDB.

The records in LOGDB should be cleared after a complete backup, in order to maintain
consistency between the backup and LOGDB. This ensures that LOGDB only contains
information about changes made to a databank since the last backup of it was taken. (It is
possible to backup databanks without clearing LOGDB records, although care must be
taken as this leaves the backup and LOGDB in an inconsistent state).
The ability to restore databank updates from a backup copy of LOGDB replaces the
databank incremental backups which were supported in previous versions of Mimer SQL.
These are still supported for backward compatibility but it is now recommended that
LOGDB backups always be taken to offer the same double protection.

TRANSDB Considerations
TRANSDB requires backup protection since it nearly always contains unfinished
transactions. If TRANSDB is lost before the Mimer SQL system is restarted, the database
will be left in a logically inconsistent state.
Possible effects of losing TRANSDB before the database server is restarted are described
in the following scenarios:
• If TRANSDB is lost, some of the databank updates that apply to the most recently

committed transactions may have been made while others remain unfinished.
The only safe operation to do to avoid a logically inconsistent database is to bring
up the most recent backup copy and restore from LOGDB. In this case, the only loss
is those transactions that were not completely written to LOGDB.

• If both TRANSDB and LOGDB are lost, the restoration, as described in the previous
bullet, cannot be accomplished.

In the case where a restore is not possible, the best solution is to repair the inconsistency
immediately after restarting the database server. This is done by using a tool such as
BSQL for manual verification and update of data. This is usually possible if the user who
initiated the interrupted transaction can be identified and contacted. (Many applications
maintain a parallel audit log file for tracking purposes which can be used as
a basis for repair work).

Caution: If, for any reason, the LOGDB databank is lost, no problems will be
encountered immediately. All changes will have been properly recorded in
the application databanks. A new, empty, LOGDB can simply replace the log
that was lost.
However, a backup of the entire database must be taken immediately. The
new LOGDB will be empty, and therefore in a state consistent with a backup
of all databanks having just been taken and all LOGDB records cleared.
If a backup is not taken immediately, a later attempt to restore a databank is
likely to fail because the restore operation will expect to find information in
LOGDB that was lost when LOGDB was destroyed.

Mimer SQL Version 11.0 71
System Management Handbook

An alternative solution if both LOGDB and TRANSDB are lost, is to start over from the most
recent backup of your databanks and reprocess all transactions since that time. This may
be a costly operation.
Keeping TRANSDB and LOGDB on separate disks under separate disk controllers will
minimize the risk that both databanks are lost at the same time.
A TRANSDB shadow is another possible security enhancement, see Mimer SQL
Shadowing on page 123.
Note: The TRANSDB system databank must never be deliberately deleted, because

uncompleted transactions nearly always remain saved in the databank even if
the database server is currently stopped.
If a TRANSDB file containing uncompleted transactions is deleted,
inconsistency will occur because the information required to complete those
transactions when the database server is re-started will have been lost.

SQLDB Considerations
The contents of SQLDB is transient, so this databank does not need backup protection.
However, it may be convenient to have SQLDB included in the backup so that a complete
system can be restored easily, without any additional operations to recreate an empty
SQLDB.
Some data retrieval requests in Mimer SQL may require large work areas or transaction
handling areas for intermediate processing of the data (for instance, requests to sort or
group large result sets will require large work tables in SQLDB). This is particularly
relevant when ad-hoc queries may be submitted with little thought for the processing
requirements or performance of the query. In systems where files expand automatically,
the file for SQLDB can become very large as the result of one badly-planned query.
The databank attributes GOALSIZE and MAXSIZE are to manage databank file sizes. See
Mimer SQL Reference Manual, Chapter 12, CREATE DATABANK.

Databank Backups
A databank backup is a copy of the databank file.
A databank backup is the starting point for any restore operation, and should be stored in
a safe place separate from the working databank files (copied to a different disk or
preferably written to backup media and removed from the machine).
The backup can be taken either by using the Mimer SQL system administration
statements for online backup, see Online Backups Using the SQL Statements on page 74,
or by using the host file system utilities in a system backup, see System Backups Using
the Host File System on page 75.
After a backup is taken, the updates logged for the databank in question should be cleared
from LOGDB. This will be done automatically when the SQL system management
statements for online backup are used.
The DBC program, see Databank Check Functionality on page 81, should be executed
for each databank in the backup operation in order to validate the physical consistency of
the databank.

72 Chapter 5 Backing-up and Restoring Data
Databank Backups

For a system backup, the backup copies of the databanks should always be taken when
the system is closed and the databanks are in a logically consistent state. That is, no
uncompleted transactions should exist and all databanks should be backed up at the same
time to safeguard database consistency.

System vs. Online Backups
The main advantage of online backup is that all databanks, including the system
databanks, can be backed up while the system can remain operational. The backup is
initiated and executed by use of SQL statements only. The disadvantage can be that there
must be enough disk space available to copy the complete database.
If the disk space is limited, a system backup can be preferable. For a system backup, the
database server must be stopped. A system backup needs certain SQL statements (such as
set online/offline) to be used together with operating system commands for file copying,
etc.

SQL Statements for Backing-up Databanks
Refer to the Mimer SQL Reference Manual, Chapter 12, SQL Statements for a detailed
description and syntax definition of the SQL system management functions. A brief
description of the purpose of each function appears here.

Online Backup Commands
The SQL system management statements that can be used to take backups are:

To use these statements to take a databank backup, the user must either be the creator of
the databank, or have BACKUP privilege.
When the SQL statements are used to take a backup of a databank, the entire process of
taking a databank backup is handled automatically.
The use of a backup transaction ensures that the backups taken within the transaction are
consistent with one another, as each backup is effectively taken at the same point in time.
Log records are cleared for successfully backed up databanks when the backup
transaction is committed. If LOGDB is included in the backup transaction all log records
are cleared.

Command Description

START BACKUP starts a backup transaction.

CREATE BACKUP creates a backup within a backup transaction. By default an online
backup is created, but optionally an exclusive backup can be
initiated, which will lock the databank from other users.

COMMIT BACKUP commits a started backup transaction.

ROLLBACK BACKUP aborts a backup transaction and ensures that all log records are
preserved.

Mimer SQL Version 11.0 73
System Management Handbook

Online/Offline Commands
The SQL system management statements (typically used when taking databank backups
using the host file system) that can be used to set a databank, shadow or the whole
database online or offline are:

A user setting the database online/offline, must have BACKUP privilege and must be the
only user accessing the database.
A user setting a databank or a shadow online/offline, must either be the creator of the
databank or have BACKUP privilege.

Restore Command
The SQL system management statement used to recover a databank in the event of it
being damaged or destroyed is:

A user using this function to restore a databank must be the creator of the databank or have
BACKUP privilege.

Command Description

SET DATABASE OFFLINE sets all non-system databanks offline, and makes the
database unavailable.
If one of the databanks cannot be set offline (e.g. because it
is being used), the command will fail.

SET DATABASE ONLINE sets all databanks online, optionally clearing all records from
LOGDB and makes the database available.

SET DATABANK OFFLINE sets a databank offline and the databank pages are updated
with all changes made by committed transactions so far.
The databank file is closed (except SYSDB, which always
remains open as long as the database server is running) so
the file can be copied, and it becomes unavailable to
database users.

SET DATABANK ONLINE sets a databank online, making it available, optionally
clearing records from LOGDB.

SET SHADOW OFFLINE sets a list of shadows offline, making them unavailable.

SET SHADOW ONLINE sets a list of shadows online, making them available,
optionally clearing records from LOGDB.

Command Description

ALTER DATABANK RESTORE used to restore a databank from a backup copy by using a
LOGDB backup and/or the information currently in the
LOGDB system databank.

74 Chapter 5 Backing-up and Restoring Data
Backing-up Databanks

Backing-up Databanks
This section describes procedures for taking databank backups and for restoring a
databank in the event of it being damaged or destroyed.

Online Backups Using the SQL Statements
The procedure for taking databank backups using the SQL system management
statements is detailed below.
A CREATE BACKUP statement is executed for each databank to be backed up and
databank consistency is ensured by starting a backup transaction using the START
BACKUP statement.
The backup transaction is committed by using the COMMIT BACKUP statement, which will
perform the backup and clear the relevant LOGDB records. The ROLLBACK BACKUP
statement can be executed to abort the backup transaction, which will preserve LOGDB.
Note: The databank check functionality (the DBC program) should be run before

archiving the backup copies of the databank files (e.g. copying them to
CD/RW) to verify the physical integrity of the databank files.

To backup databanks online, do the following:
1 Perform SQL statements for initiating and executing the backup.

SQL> START BACKUP;
SQL> CREATE BACKUP IN 'backup-file-name' FOR DATABANK databank-name;
 .
 . (repeat for each databank to be backed up)
 .
SQL> CREATE BACKUP IN 'backup-file-name' FOR DATABANK logdb;
SQL> CREATE BACKUP IN 'backup-file-name' FOR DATABANK sysdb;
SQL> CREATE BACKUP IN 'backup-file-name' FOR DATABANK transdb;
SQL> CREATE BACKUP IN 'backup-file-name' FOR DATABANK sqldb;
SQL> COMMIT BACKUP;
SQL> EXIT;

2 Verify the backup copies from the operating system command line using the DBC
program.
dbc backup-file-name report-filename sysdb-file-name
.
. (repeat for each backup file created above)
.

3 Archive the verified backup copies (e.g. copy to DVD/CD).
The START BACKUP statement will start a backup transaction which will ensure that all
the backups taken are consistent with one another (they are effectively backed up at the
same point in time).
The CREATE BACKUP statement will only create an empty backup copy file. The entire
contents of the specified databank file is copied to the specified file by COMMIT BACKUP.
(If any of the backups fail, the ROLLBACK BACKUP statement can be executed to ensure
that the log records are preserved.)
The COMMIT BACKUP statement will clear all the LOGDB records that apply to the
databanks backed up in the backup transaction.
Databank backup filenames are subject to the same restrictions that apply to the SQL
statement CREATE DATABANK - see the Mimer SQL Reference Manual.

Mimer SQL Version 11.0 75
System Management Handbook

System Backups Using the Host File System
The procedure for taking databank backups using the host file system is detailed below.
We recommend that you always take a backup of all databanks, including SYSDB, LOGDB,
SQLDB and TRANSDB.
Note: The database server must be stopped in order to close the SYSDB databank file

for a host system backup. This unlocks SYSDB and ensures that no operations
are performed between taking copies of the databanks and dropping the log.
However, if using shadowing, databank shadows allow a copy of a databank to
be temporarily set offline, e.g. to be backed up, without interrupting normal
system use.

To backup databanks using the system backup method:
1 Set the database offline using the following command:

SQL> SET DATABASE OFFLINE;

2 Stop the database server so that the system databanks are closed and can therefore
be backed up
mimcontrol -t database

3 Run the DBC program on each databank to verify the physical integrity of the
databank files
dbc backup-filename report-filename sysdb-filename

4 Perform the backup, e.g. copy all databank files to tape (including the system
databanks SYSDB, LOGDB, TRANSDB and SQLDB).

5 Start the database server
mimcontrol -s database

6 Set the database online again using the following command to clear all log records:
SQL> SET DATABASE ONLINE RESET LOG;

The RESET LOG option removes all records written to LOGDB since the last backup.
This is essential to maintain consistency between the log and the backup. If the backup
fails, the PRESERVE LOG option should be used when setting the databank online to leave
LOGDB unaltered.
It is essential that all databanks are backed up at the same time to ensure logical
consistency between them.
It is also important that transactions are in a consistent state which is ensured by using the
SET DATABASE OFFLINE statement. The statement will not return until the database has
been brought into a consistent state prior to going offline. In particular, setting the
database offline will ensure all background processing done by the database server has
completed.

76 Chapter 5 Backing-up and Restoring Data
Restoring a Databank

Restoring a Databank
Restoring a databank after it has been damaged or destroyed will typically involve both
the host file system and SQL statements.
Note: Data need not be restored in the event of a power failure or system shut-down

that does not damage the databank files, since any transactions that were
committed but not completed at the time of the failure are automatically
completed when the databank involved is next accessed.

Any databank restore operation must start with a backup copy of the databank file that is
not damaged or corrupt. This is generally the copy taken during the last backup, either
taken by the host operating system or by using the SQL system management statements
for online backup.
Usually, the host file system is used to copy the backup file from the backup media to
disk. The file is generally placed in the normal location for the databank file (as recorded
in the data dictionary, SYSDB). However, in certain circumstances it may be necessary to
place it in an alternative location, e.g. if the disk is unavailable.

The procedure for restoring a databank is as follows:
Note: Step 2 and 3 are only required during certain circumstances:
1 Bring a valid backup copy of the databank from the backup media to disk.
2 If the file has been placed in a location that is different to the location of the

original databank file, alter the databank to reference the new file location using
the following command:
SQL> ALTER DATABANK databank-name INTO 'new-file-name'

3 If restoring from an older backup, i.e. not the latest one, information should be
restored from the LOGDB included in the following backup (that was taken after the
time the backup restored in step 1 was taken).
For each LOGDB backup file, the information recorded in it should be applied to the
databank using the following command:
SQL> ALTER DATABANK databank-name RESTORE USING 'logdb-backup-file-name'

4 Finally, apply the updates made since the most recent backup(s) restored in the
preceding steps were taken. These updates are currently recorded in LOGDB and
they are restored using the following command:
SQL> ALTER DATABANK databank-name RESTORE USING LOG

Restoring SYSDB
If SYSDB is lost, a backup copy of SYSDB must be restored to allow Mimer SQL to start
again. No Mimer SQL-based application can be used before this is done.
If SYSDB is lost or corrupted, a backup copy should be copied to the same file location as
the original SYSDB. The contents of SYSDB may then be brought completely up to date by
restoring LOGDB information. This is done using the backup and restore functionality in
the BSQL program.
Start BSQL and login as SYSADM, or another user with BACKUP privilege. A message is
displayed saying that you have an old version of SYSDB that must be restored. Answer Y
to the question Restore SYSDB to restore the copy of SYSDB.

Mimer SQL Version 11.0 77
System Management Handbook

Since SYSDB always has the LOG option, this will restore SYSDB to the state it had before
it was lost.
Example, assuming a backup of SYSDB has been copied to the original location:

MIMER/DB fatal error -16159 in function CONNECT
 Old version of the databank SYSDB cannot be accessed without
 restoring the databank with the backup and restore utility

 -- Restore databank --

Restore SYSDB?[Y]: Y

Databank SYSDB restored from log

Re-creating TRANSDB, LOGDB and SQLDB
No Mimer SQL applications can be run if LOGDB, TRANSDB or SQLDB is missing. In this
event, starting the BSQL program and logging in as SYSADM will give you an opportunity
to re-create the missing databanks with the same filenames as the lost databanks, or to
alter the recorded filenames in the case where the physical files were moved.
The following example shows how to re-create LOGDB for a database where this system
databank is missing:

Mimer SQL command line utility, version 11.0.1A
Username: SYSADM
Password:
2017-06-17 23:15:16.94 <Error>
MIMER/DB kernel error -16142 in function DKOPD1
Databank LOGDB, filename logdb.dbf
File not found, OS error message:
'%SYSTEM-W-NOSUCHFILE, no such file'

-- Redefinition of system databank --

-- Description of databank name and file --

DATABANK
FILENAME
==
LOGDB
logdb.dbf

Redefinition of LOGDB? [Y]: y
CREATE new file or ALTER filename for LOGDB? (C/A): c
Size [1000] : 5000
Databank LOGDB redefined

These databanks (at least TRANSDB and LOGDB) are vital to the system consistency, so we
strongly recommend that these files are kept intact whenever possible. A complete
backup of the entire database should be made before any system databanks are recreated.
If a database has been operational for some time, a situation may arise where one or more
of the system databanks LOGDB, TRANSDB or SQLDB has grown very large. In those cases
the ALTER DATABANK DROP FILESIZE statement can be used to shrink the file sizes.
The following sections describe how to re-create each of the respective system databanks.

78 Chapter 5 Backing-up and Restoring Data
Restoring a Databank

Creating a New LOGDB
1 Shut down the database server (if not already stopped).
2 Run the DBC tool (Databank Check Utility) on SYSDB and all the user databank

files to ensure that none are corrupted.
3 Take a valid backup of the whole database.
4 Archive a copy of the LOGDB databank file and delete the original file from disk.
5 Start the database server.
6 Start the BSQL program, logging in as SYSADM, and when prompted, select the

CREATE option and specify a path name and a size for the new LOGDB databank
file.

Creating a New TRANSDB
Note: Do only perform this operation in case of emergency. Important information

may be lost and database consistency can not be guaranteed.
1 Shut down the database server (if not already stopped).
2 Ensure that all pending transactions have been flushed to the user-databank files on

disk by successful execution of DBOPEN in single-user mode.
3 Archive a copy of the TRANSDB databank file and delete the original file from disk.
4 Start the database server.
5 Start the BSQL program, logging in as SYSADM, and when prompted, select the

CREATE option and specify a path name and size for the new TRANSDB databank
file.

Creating a New SQLDB
1 Shut down the database server (if not already stopped).
2 Delete SQLDB from disk.
3 Start the database server.
4 Start the BSQL program, logging in as SYSADM, and when prompted, select the

CREATE option and specify a size for the new SQLDB databank file.

Mimer SQL Version 11.0 79
System Management Handbook

Audit trail with READLOG
READLOG is a BSQL function which enables you to read the contents of LOGDB so that
you can check logged operations performed on the database since the last backup copy
backup was taken.
You can use READLOG as an audit trail or, in the event of a system failure, to determine
which databanks need to be restored (i.e. which databanks have been altered since the last
backup).
See Mimer SQL User’s Manual, Chapter 9, READLOG.

80 Chapter 5 Backing-up and Restoring Data
Audit trail with READLOG

Mimer SQL Version 11.0 81
System Management Handbook

Chapter 6

Databank Check
Functionality

The DBC program allows investigation of databank files to ensure that the physical
structure is not damaged. The functionality may also be used to examine the internal
organization of a databank file and display statistical information on the databank.
The DBC program traverses every page of a given databank file, and the following are
typical tasks that can be examined and verified:
• index and data page consistency
• free page list consistency
• page checksum
• records being in the correct order
• column value accuracy
Note: The functionality checks only the physical condition of the databank.

Informational errors such as data inconsistency, invalid data format, and data
outside the validation limits of domains are not detected by DBC.

DBC - Databank Check
DBC investigates databank files to ensure that the physical structure is not damaged.

Syntax
The overall syntax for the DBC program is:

dbc [-a] [-e -s file] [-o file] [databankfile [-f file [-f file...]]]

dbc [--all] [--extended --sysdbfile=file] [--output=file]
[databankfile [--filename=file [--filename=file...]]]

dbc [-v|--version] | [-?|--help]

82 Chapter 6 Databank Check Functionality
DBC - Databank Check

Command-line Arguments

If the filenames are not specified on the command-line, the program prompts for the name
of the databank file, a name for the result file and the name of the system databank
(SYSDB) file.
If an error occurs when opening the databank file (e.g. file not found or file locked by
another user), or while creating the result file, an appropriate error message is displayed.
If the SYSDB filename is not specified and it is found that tables in the databank use
collations, these tables are not verified and a warning message is displayed.

Unix-style VMS-style Function

-a
--all

/ALL If a databank file is not closed, the contents
of large objects are by default not checked.
The reason is that TRANSDB may contain
large object updates which affects the
databank state.
When --all is specified, large objects are
checked anyway. The utility can in these
cases report errors that will correct
themselves after restart of the system. It is
therefore recommended to avoid this
option.

-e
--extended

/EXTENDED When extended is specified, the contents
of each row is checked to verify that each
column value conforms to the rules for the
column data type. SYSDB must be present
to do this type of checking.

-f file
--filename=file

/FILE=file Additional filename for multi-file
databank. All files for the databank are
needed, together with the first databank
file given as a separate argument
(databankfile). This option is used once for
each additional databank file.

-o file
-output=file

/OUTPUT Sequential file created by DBC that
contains the result of the verification.

-s file
--sysdbfile=file

/SYSDBFILE Filename for SYSDB used by the databank
to check. This filename is required if any
tables are using collations. If not specified
the correct sort order for such tables is
unknown.

-v
--version

/VERSION Display version information.

-?
--help

/HELP Display usage information.

databankfile databankfile Filename for the databank to check.

Mimer SQL Version 11.0 83
System Management Handbook

If no errors are detected in the databank file, the following message is shown:
No errors found

The result file then contains statistics describing the physical databank organization.
Otherwise, error descriptions (see below) are written to the result file, and the following
message is displayed:

* Errors logged in result file

The result file should be examined to investigate the nature of the errors, see Database
Consistency on page 67.
It should be noted that the DBC program returns an error status (or warning) to the
operating system when an error (or warning) is encountered. This may be useful when
running it from scripts or in batch mode.

Exit Codes
DBC returns a status code to the environment executing the command. The status code can
be examined by scripts.

The following return codes are used:

Authorization
The DBC program operates directly against the databank file, with no reference to the
Mimer SQL database server. The program may not be run on a file which is currently held
open (an error message is displayed in such a case). The system administrator should
arrange for exclusive access to the databank file during DBC operations.

Result File Contents
Any errors detected in the databank file are written to the result file directly after the
identification record for the table affected.
The result file begins with the following information:
• Databank filename.
• Time when the DBC operation was performed.
• Version of Mimer SQL under which the databank was created (if this is not the

same as the current version there will also be a ‘converted to’ message).

VMS: On OpenVMS, the status codes correspond to the OpenVMS condition code
severity levels.
Use the $SEVERITY symbol in DCL command procedures.

Linux/Windows VMS Usage

0 (success) 1 (success) This code is used when the DBC command has
executed all options with no problems.

1 (warning) 0 (warning) Other Error.

2 2 (error) Databank error.

84 Chapter 6 Databank Check Functionality
Result File Contents

• A backup timestamp.
• Structure level.
• System identifier for the databank.
• Databank sequence number (0 = master databank, >0 = a shadow).
• Check flag.
• Number of bitmap pages (starting at 0).
• Root pages (starting at 1).
• Number of pages allocated.
• Number of pages used.
If the check flag indicates that the databank was not properly closed when Mimer SQL is
stopped, there may be an additional message saying:
 * No bitmap checking against databank!

DBC B*-tree Table Information
An identification record is given for each table in the databank. The following
information is shown:

Information Description

Tabid The system identification number of the table. This is the
number used to identify the table in the data dictionary. The
table name is not stored directly in the databank file.

Startp The page number of the start page for the highest index level.
If the number of levels is 1, this is the only data page. If the
start page is 0, the table is empty.

Levels The number of levels in the table storage structure.

Keylen The length of the primary key in bytes.

Reclen The record length (row length) of the table.

Type of table Any of the following values:
Base table
Secondary index table
Collation description table
LOB directory table.

Type of
compression

Any of the following values:
Mimer LZM compression
Mimer LZU compression
Mimer RLE compression
none.

Collation version Displayed if any key part of the table is using collation.

Status of table Resident or Marked for delete.

Index page size Size of the index page in bytes.

Mimer SQL Version 11.0 85
System Management Handbook

DBC Sequential Table Information
The following information is shown:

Data page size Size of the data page in bytes.

Number of index
pages

Indicates how many index pages were checked.

Number of data
pages

Indicates how many data pages were checked.

Required/Allocated
datapages

Gives an approximate measure of the space used in the data
pages.
This is expressed as a percentage, which may be >100% for
data pages having variable-length (i.e. compressed) records
because the required number of pages is calculated based on
uncompressed record sizes.

Reached no of
records

If no errors are reported, the number of records reached is equal
to the total number of records (rows) stored for the table.

Information Description

Information Description

Table name.

Tabid Ordered identification.

Startpage First page in the sequential file.

Endpage Last page in the sequential file.

Type of table Any of the following values:
Sequential table
Collation description table
LOB directory table.

Type of compression Any of the following values:
Mimer LZM compression
Mimer LZU compression
Mimer RLE compression
none.

Status of table Resident or Marked for delete.

Index Page size Size of the index page in bytes.

Data Page size Size of the data page in bytes.

No. of index pages read Number of index pages checked.

No. of data pages read Number of data pages checked.

No. of records read Number of records checked.

86 Chapter 6 Databank Check Functionality
Result File Contents

DBC LOGDB Backup Information
The following information is shown:

Error Messages
The following error situations are described by explicit messages in the result file:

Bitmap Errors

Root Page Errors

Sequential Structure Errors

Information Description

Timestamp page Describes actual timestamps for databanks included in the
log.

Error message Explanation

* Illegal number of free bits in
bitmap

The number of free bits in the bitmap is
marked as a negative number or as a number
greater than the permissible value.

* Illegal pointer to first word
with free bit in bitmap

The pointer to the first word is either negative
or greater than the number of words per page,
or points outside the number of allocated
pages.

Error message Explanation

* Illegal record length in root
page

The record length is not valid for the current
version or for the site.

* Pageno. outside databank: x

* Pageno. not marked as used: x

The reference to the page number (x) is
invalid. (Applies only where there is more
than one root page.)

Error message Explanation

* Pointer to previous page invalid Error in page linkage.

* Invalid record length The record length is either not the same as in
the previous page or outside the page limits.

* Record crosses page boundary A record stretches over the page limits.

Mimer SQL Version 11.0 87
System Management Handbook

Table Structure Errors

All table structure errors are followed by a listing of the page numbers passed in the B*-
tree structure on the way to the error. In the example below a y-value indicates the byte
position in the page (corresponding x-value) where the record holding the reference to the
next level starts:

B*-tree
Page no: x1 x2 x3 xn
Byte pos: y1 y2 y3 yn

If the error occurs at an index level, the following additional message is given, and no
checks are made at lower levels:

Branch is interrupted

Error message Explanation

* Error in root record The value for start page, levels, key length or
record length is outside the legal values for
the site.

* Page has illegal record length: x The record length (x) given in the page is not
the same as that given for the table.

* Page has illegal last-record
pointer: x

The pointer (x) to data within a page is outside
the page limits. The limits are the values of
bytes/header and bytes/page.

* Page has records in wrong order.
Pos: x

The records in the page are not correctly
sorted. The value of x is the byte position
within the page for the start of the wrong
record.

* Page has last-record key > index
key. Pos: x

The records within a page include key values
greater than those in the index level above.
The value of x is the byte position within the
page for the start of the last record.

* Page no. outside databank: x Reference is made to a page number (x) which
is higher than the highest allocated page.

* Page no. referenced twice There are at least two references to the same
page number (x). One of these references
should also give another error, or an error
should have been notified earlier in the file.

* Page no. not marked as used: x
 Bitmap pageno: Word: Bit:

A page that is used is illegally marked as free.
Continued insertion of data in the databank
will result in a double referenced page.

88 Chapter 6 Databank Check Functionality
Internal Databank Check

Internal Databank Check
In addition to the DBC program there is an internal databank check feature within the
database server. When the database server is started, if it is noticed that the system was
closed in a non-proper way, this verification will be triggered. The default check includes
page consistency and checksum validation. If an error is found, the broken databank file
will not be opened and the database will not be fully functional. In a situation like this a
backup, or corresponding, must be used to get the system operational.
On VMS and Linux the internal databank check feature is controlled using the database
server configuration parameter DBCheck, see MULTIDEFS Parameters on page 163.
On Windows the Mimer Administrator is used to control the internal databank check
feature.

Mimer SQL Version 11.0 89
System Management Handbook

Chapter 7

DBOPEN - Databank
Open

The DBOPEN program is used to make sure that the users can open all databanks quickly.
It can take relatively longer to open a databank if it is a large databank that was closed
abnormally (for example if the machine crashed), because a databank check is
automatically initiated following such a situation.

DBOPEN - Databank Open functionality
Multi-user Mode
When DBOPEN is run in multi-user mode, the index pages of the databank are checked
before databank access can proceed, but the bulk of the databank contents (contained in
the data pages) is checked in the background, thus minimizing the delay.

Background Threads
The checking performed by DBOPEN is done by the background threads, see Number of
Background Threads on page 47. Therefore, increasing the number of background
threads will increase the efficiency of the checking.
DBOPEN should normally be run as soon as the database server has been started.

Syntax
The overall syntax for DBOPEN is:

dbopen [-s|-m] [-u user] [-p pass] database

dbopen [--single|--multi] [--username=user] [--password=pass] database

dbopen [-v|--version] | [-?|--help]

Command-line Arguments
Unix-style VMS-style Function

-m

--multi

/MULTI Connects to the database in
multi-user mode.

90 Chapter 7 DBOPEN - Databank Open
DBOPEN - Databank Open functionality

If the optional database name is not specified, the default database will be accessed, see
The Default Database on page 37.
If the username or password arguments are omitted, the program will prompt for these
values.

-p password

--password=password

/PASSWORD=password Specifies the password used
in connecting to Mimer.
If the switch is omitted the
user is prompted for a
password, unless OS_USER
is specified with the
username switch, as
described above.
VMS: Note that in an

Open VMS
environment it might
be necessary to
enclose the
password in
quotation marks as
the value otherwise
is translated to upper
case.

-s

--single

/SINGLE Connects to the database in
single-user mode.

-u username

--username=username

/USERNAME=username Specifies the username used
when connecting to Mimer.
To connect using OS_USER
login, give -u "",
--username="", or
/USERNAME="".

database database Specifies the name of the
database to access.

-?

--help

/HELP Show help text.

Unix-style VMS-style Function

Mimer SQL Version 11.0 91
System Management Handbook

If neither -s nor -m is specified for the optional mode flag, the way the database is
accessed will be determined by the setting of the MIMER_MODE variable, see Specifying
Single-user Mode Access on page 151, or, if this is not set, it will be accessed in multi-
user mode.
.

Exit Codes
The DBOPEN program returns an error status to the operating system when an error is
encountered. This may be useful when running it from scripts or in batch mode.

Functions
The DBOPEN functionality opens all available databanks in a system.
As each databank is opened, the integrity is checked and any transactions that were
interrupted by the abnormal close are completed. (The integrity check is always
performed when opening a databank that has not been closed normally.)
The checks performed when an abnormally closed databank is opened may take some
time, particularly if the databank is large. Running DBOPEN means that the checks are
performed at a time determined by the system administrator, rather than a time
determined by application programs. As a result, users will always have fast access to all
databanks.
The databanks are opened in a randomly determined order. Running several DBOPEN
sessions in parallel may speed up the checking process for the database as a whole.

Authorization
Any user who has SELECT access to the data dictionary table SYSTEM.DATABANKS can
run DBOPEN.

Linux: The Unix-style command-line flags must be used on a Linux machine.

VMS: Either the Unix-style or the VMS-style command-line flags may be used on an
OpenVMS machine - see the Mimer SQL VMS Guide for more details.

Win: The Unix-style command-line flags can be used from a Command Prompt
window.

92 Chapter 7 DBOPEN - Databank Open
Functions

Output Example
The following DBOPEN example shows the output from running dbopen after the system
was shut down improperly:

dbopen -s -usysadm -p******

MIMER Databank Open Utility
Version 11.0.1A

2017-09-15 14:19:12.22 <Information>
MIMER/DB kernel error -16211 in function DKVED0
Databank SYSDB not properly closed, dbcheck initiated

2017-09-15 14:19:22.67 <Information>
MIMER/DB kernel error -16211 in function DKVED0
Databank TRANSDB not properly closed, dbcheck initiated

2017-09-15 14:19:22.71 <Information>
MIMER/DB kernel error -16211 in function DKVED0
Databank LOGDB not properly closed, dbcheck initiated

Opening databank APPDB1

All user databanks opened without errors

Mimer SQL Version 11.0 93
System Management Handbook

Chapter 8

Loading and
Unloading Data and

Definitions
Mimer SQL provides you with flexible methods for loading information to and from
databases using the LOAD and UNLOAD commands and the MIMLOAD program.
LOAD and UNLOAD can be used with Mimer SQL from any ODBC based SQL command
interpreter.
Using the LOAD command, you can:
• load information from one or more files into a Mimer SQL database
• optimize loading for best performance
• select exactly the information you want and place it precisely where you want it

using an SQL statement
• log the load operation.
Using the UNLOAD command, you can:
• customize the information – unload whole databanks or select specific information

using an SQL statement
• log the unloading operation.
Using the MIMLOAD program, you can use LOAD and UNLOAD directly from your operating
system command prompt. Using the STDIN, STDOUT and STDERR options in the
LOAD/UNLOAD syntax, you can enable command line file redirection for input, output and
logging.

94 Chapter 8 Loading and Unloading Data and Definitions
MIMLOAD - Data Load and Unload

MIMLOAD - Data Load and Unload
MIMLOAD enable you to use the LOAD and UNLOAD commands at your operating system’s
command prompt.

Syntax
You control MIMLOAD using flagged information specified on the command-line.
The overall syntax for MIMLOAD (expressed in short form Unix-style) is:

mimload [-s] [-u user] [-p pass] [-e prog] [-i pass]] command [database]

mimload [--single] [--username=user] [--password=pass]
[--program=prog] [--using=pass]] command [database]

mimload [-v|--version] | [-?|--help]

Note: If you are using double quotes in the LOAD/UNLOAD statement, they must be
escaped using the back-slash character \ when Unix-style switches are used.
For VMS-style switches, a double quote " is used as escape character.

Command-line Arguments
You can use the following arguments with MIMLOAD.

Unix/Windows-style VMS-style Function

-e program

--program=program

/PROGRAM=program Specifies an optional
program ident, to be
entered in the connection
phase.
This can be specified more
than once and thus allows
entering deeper entry
levels.

-i password

--using=password

/USING=password Password for the program
ident specified by the
preceding --program
switch.

-p password

--password=password

/PASSWORD=password Specifies the password for
the user.
When connecting using an
OS_USER login, no
password is needed.
Note that in an Open VMS
environment it might be
necessary to enclose the
password in quotation
marks as the value
otherwise is translated to
upper case.

Mimer SQL Version 11.0 95
System Management Handbook

Exit Codes
The following error codes are used:

Examples

Loading Data
The following example loads the file store.sql into the default database.

Unix/Windows-style
mimload --username=user1 --password=UsrPwd "load from 'store.sql' log stderr"

VMS-style
MIMLOAD /USERNAME=USER1 /PASSWORD="UsrPwd" "LOAD FROM 'STORE.SQL' LOG STDERR"

-u user

--username=username

/USERNAME=username Specifies the username
used when connecting to
Mimer.
If not specified, OS_USER
login is assumed.

command command The LOAD/UNLOAD
statement to be used for
data management. Enclose
in double quotes.
See LOAD - Loading Data
on page 98 and UNLOAD -
Unloading Data on
page 101 for details.

database database Specifies the name of the
database to access. If
specified, it must be the last
argument.
If you do not specify a
database name, the default
database will be used.

-?

--help

/HELP Show help text.

Unix/Windows-style VMS-style Function

Linux/Windows OpenVMS Usage

0 (success) 1 (success) This code is used when MIMLOAD has executed
successfully.

> 1 (error) 2 (error) This error code is used when MIMLOAD failed to
execute successfully.

96 Chapter 8 Loading and Unloading Data and Definitions
MIMLOAD - Data Load and Unload

Unloading Data
'The following example unloads all the definitions and data owned by the user
store_adm from the database store to the file store.sql.

Unix/Windows-style
mimload -u store_adm -p StrPwd "unload to 'store.sql' from current user" store

VMS-style
MIMLOAD /USERNAME=STORE_ADM /PASSWORD="StrPwd" "UNLOAD TO 'STORE.SQL' FROM
CURRENT USER" STORE

Using STDIN/STDOUT/STDERR
STDIN, STDOUT and STDERR are short names for the standard input, standard output and
standard error streams, respectively.

Windows/Unix-style Examples
In the commands below, STDIN is denoted by '<' (this is short for '0<', equal to reading
from file descriptor number 0 which is the standard input). STOUT is denoted by '>' (this
is short for '1>', equal to writing to file descriptor number 1 which is the standard output)
and STDERR is denoted by '2>' (equal to writing to file descriptor number 2 which is the
standard error).
In the following example, the generated output from UNLOAD is written to standard
output, which in this case is redirected to the file store_db.unl. The log information is
written to standard error, which is redirected to the file store_db.log.

mimload -u store_adm -p StrPwd "unload to stdout log stderr from databank
store_db" store > store_db.unl 2> store_db.log

In the following example, input to LOAD is taken from standard input, i.e. from the file
store_db.unl, and log information is written to standard error, in this case to the file
store_db_load.log.

mimload -u store_adm -p StrPwd "load from stdin log stderr" store <
store_db.unl 2> store_db_load.log

VMS-style Examples
In the OpenVMS environment, you can use STDIN, STDOUT and STDERR in two ways,
either by defining SYS$INPUT, SYS$OUTPUT and SYS$ERROR or by using pipe mode
which gives the Linux behavior for use of file redirection. Both methods are shown
below.
In the following example, the generated output from UNLOAD is written to standard
output, which in this case is redirected to the file D1:<DATA>STORE_DB.UNL. The log
information is written to standard error, which is redirected to the file
D1:<LOG>STORE_DB.LOG.
Example using SYS$OUTPUT and SYS$ERROR:

DEFINE/USER SYS$ERROR D1:<LOG>STORE_DB.LOG
DEFINE/USER SYS$OUTPUT D1:<DATA>STORE_DB.UNL
MIMLOAD /USERNAME=STORE_ADM /PASSWORD="StrPwd" "UNLOAD TO STDOUT LOG STDERR
FROM DATABANK STORE_DB" STORE

Mimer SQL Version 11.0 97
System Management Handbook

Example using pipe mode:
PIPE MIMLOAD /USERNAME=STORE_ADM /PASSWORD="StrPwd" "UNLOAD TO STDOUT LOG
STDERR FROM DATABANK STORE_DB" STORE > D1:<DATA>STORE_DB.UNL 2>
D1:<LOG>STORE_DB.LOG

In the following example, input to LOAD is taken from standard input, i.e. from the file
D1:<DATA>STORE_DB.UNL, and log information is written to standard error, in this case
to the file D1:<LOG>STORE_DB_LOAD.LOG.
Example using SYS$OUTPUT and SYS$ERROR:

DEFINE/USER SYS$ERROR D1:<LOG>STORE_DB_LOAD.LOG
DEFINE/USER SYS$INPUT D1:<DATA>STORE_DB.UNL
MIMLOAD /USERNAME=STORE_ADM /PASSWORD="StrPwd" "LOAD FROM STDIN LOG STDERR"
STORE

Example using pipe mode:
PIPE MIMLOAD /USERNAME=STORE_ADM /PASSWORD="StrPwd" "LOAD FROM STDIN LOG
STDERR" STORE < D1:<DATA>STORE_DB.UNL 2> D1:<LOG>STORE_DB_LOAD.LOG

98 Chapter 8 Loading and Unloading Data and Definitions
LOAD - Loading Data

LOAD - Loading Data
You load definitions and/or data into a Mimer SQL database using the LOAD statement.

Syntax
The LOAD command has the following syntax:

where file-format-spec is:

Usage
MIMLOAD, or with any ODBC-based SQL interpreter.
For information on MIMLOAD, see MIMLOAD - Data Load and Unload on page 94.

Description
The LOAD command copies definitions and/or data from one or more files. When loading
information from more than one file, the files are read in the order defined. The input
file(s) are expected to form a valid sequence of definitions, data descriptions and data.
Triggers defined against the affected tables are applied when the data is loaded.

About Files
When a file contains data for more than one table, the data for each table must be
contained in a section that is introduced by a data description header. For more
information, see Data Description Headers and Files on page 104.

Mimer SQL Version 11.0 99
System Management Handbook

If the data in the file does not have a data description header, there must be a data
description file that contains the header information.
This means that the file can only contain data from one table. Data description files and
data files can of course be concatenated into a single file containing data for several
tables.
A definition file contains definition statements to create objects. A definition file can, for
example, be divided into two files where one file is place first in the file list; i.e. executed
before any data is loaded, and the other file is placed at the end of the file list, i.e. executed
after the data is loaded.
An example file sequence can be as follows: first in the file list, a file that contains object
definitions; second, a file that describes the data to be loaded (the information in this file
is equal to the corresponding information that can be given as a header in the data file);
third, the data file; and fourth, a second definition file including referential constraints and
triggers.
You can specify the name of the table into which the information shall be loaded in the
data file header(s) or the data description file. The default is the table name from which
the data was unloaded.
When LOAD scans a file, it detects if a field uses a text qualifier by checking if the first
character in the field is a text qualifier. If a text qualifier character is found in the field
data, the character is doubled, i.e if the text qualifier is a double quote, the data ab'c is
equal to the data 'ab''c'.

The STDIN Option
When you use the STDIN option, input is read from the standard input stream. See Using
STDIN/STDOUT/STDERR on page 96.

The AS Option
By using the AS option together with a filename specification, you can specify the
character set used by the file to be loaded.
The character sets available are: LATIN1, UTF8, UTF16, UTF16BE, UTF16LE, UTF32,
UTF32BE and UTF32LE.
UTFxxBE and UTFxxLE means UTFxx format with big or little endian byte order. UTFxx
without endian notion means that the common endian for the current platform is assumed.
The default character set used, if you do not use the AS option, is the default used in your
host operating system.
For more information, see File Format Specifications on page 106.

LOG
You can specify the log file using LOG. This log file will include warnings and progress
information about the load operation. If you do not use the LOG option, logging will be
written to the standard error stream.

The STDERR Option
When you specify LOG STDERR, informational messages are written to the standard error
stream. See Using STDIN/STDOUT/STDERR on page 96.

100 Chapter 8 Loading and Unloading Data and Definitions
LOAD - Loading Data

The WITH SHARED ACCESS Option
LOAD’s default behavior implies that you have exclusive access to the databank being
loaded with data. If you need shared access, you can use the WITH SHARED ACCESS
option. In most cases, this will lead to a slower data load using row-wise insert.
By default, LOAD uses a fast data load facility to increase performance. The alternative is
to insert data row-wise as if using an SQL INSERT statement.
LOAD uses the fast data load facility in most cases, but there are some situations that need
row-wise insertion due to certain referential constraints. In such cases, a warning message
will tell you that fast data load cannot be used and the operation will continue using row-
wise insertions.
When row-wise insertions are performed, loads are recorded in LOGDB (assuming the
databank is defined with the LOG option).

The START AT Option
You can use the START AT option to restart a failed load operation.
The START AT value can be set to a line where a data definition statement is located or a
data descriptor header starts (#data).

The USING Option
The USING option enables you to use an SQL statement to specify the information to be
loaded and the target for the information.
The SQL statements you can use are: INSERT, UPDATE, DELETE or CALL to a procedure
with input parameter markers only.

Examples
The following example is a straightforward import of the input file, using default options:

LOAD FROM 'table_t.data' LOG 'table_t.log';

The following example imports a data file, preceded by a data description file, using the
default options:

LOAD FROM 'table_t.desc', 'table_t.data' LOG 'table_t.log';

The following example imports the first four columns of data in the file to the table named
details from a file in UTF16 format:

LOAD FROM 'table_t.data' AS UTF16
 LOG 'table_t_dataload.log'
 USING INSERT INTO details VALUES (?,?,?,?);

The following example uses an UPDATE statement where the first column C1 and the
second column C2 of the data input file are used:

LOAD FROM 'table_t.data' AS UTF16
 LOG 'table_t_dataload.log'
 USING UPDATE details SET c1=? WHERE c2=?;

The following example uses a DELETE statement where the input data is used to qualify
records to delete:

LOAD FROM 'table_t.data' AS UTF16
 LOG 'table_t_dataload.log'
 USING DELETE FROM details WHERE c2=? AND c3=?;

Mimer SQL Version 11.0 101
System Management Handbook

UNLOAD - Unloading Data
You use the UNLOAD command to unload data and/or definitions from a Mimer SQL
database to a file.

Syntax

where file-format-spec is:

Usage
Any ODBC-based SQL interpreter or with the MIMLOAD program.
For information on MIMLOAD, see MIMLOAD - Data Load and Unload on page 94.

Description
The UNLOAD command generates data and/or definitions and places the result in a file.
If one file is specified in the UNLOAD command, both data and definitions will be placed
in that file. If two files are specified, definitions will be placed in the first file, and data in
the second file. (This makes it easier to change the table name before creating and loading
the table.)

102 Chapter 8 Loading and Unloading Data and Definitions
UNLOAD - Unloading Data

You can use the options ALL (default), DEFINITIONS or DATA to specify the information
you want.
When generating the data and definitions, a data description header is created before
information is written to the file. If information from several tables is generated, a data
description header for each data section is created.
A data description header contains escaping information and column separator
information. For more information, see Data Description Headers and Files on page 104.

Data Escape Mode
UNLOAD generates data in escaped mode. This means that the data description header
includes the data escape mode option.
When using data escape mode, the following characteristics are enabled, from the
UNLOAD perspective:
• Data from a specific table is ended by the escape sequence '_' to mark end-of-

table.
• Null values are indicated by the escape sequence '\-'.
• BLOB and BINARY columns are unloaded in HEX code with a leading '\x' escape

sequence for each byte.
• BLOB, CLOB and NCLOB columns are unloaded so that the value length is given in

front of the value as in the following CLOB example: '11:Abracadabra'
• For CHAR, NCHAR, CLOB and NCLOB columns, the escape sequence '\x' is used only

when there is binary data, such as ISO control codes, new-line characters, etc. in
the data.

• The '\u' escape sequence is used only when Unicode data is to be written to Latin1
files.

For information on escape sequences, see Escape Character Sequences on page 105.

The STDOUT Option
When you use the STDOUT option, generated output is written to the standard output
stream. See Using STDIN/STDOUT/STDERR on page 96.

The AS Option
By using the AS option together with a filename specification, you can select the character
set of the generated file. You can choose: LATIN1, UTF8, UTF16, UTF16BE, UTF16LE,
UTF32, UTF32BE or UTF32LE.
UTFxxBE and UTFxxLE means UTFxx format with big or little endian byte order. UTFxx
without endian notion means that the common endian for the current platform is assumed.
The character set used, if you do not use the AS option, is UTF8 with BOM.
For more information, see File Format Specifications on page 106.

The LOG Option
You can generate a log of the operation using the LOG option. The log file will include
warnings and progress information about the operation. If you do not use the LOG option,
logging will be written to the standard error stream.

Mimer SQL Version 11.0 103
System Management Handbook

The STDERR Option
When you use the LOG STDERR option, informational messages are written to the
standard error stream. See Using STDIN/STDOUT/STDERR on page 96.

The USING and FROM Options
To specify the information to be unloaded, you use the USING or FROM options.
With the USING option, an SQL statement, such as SELECT * FROM T1; or a CALL to a
procedure with parameter markers (?) for output parameters only, can be used to specify
the source.
By using an SQL statement to form the source for the export operation, there are many
possibilities available to format and customize the output.
With the FROM option, one or several databanks, tables or schemas can be used to form
the source for the export operation. If using the FROM CURRENT USER option, the current
ident is exported.
If tables are joined in the SQL statement used, and definitions are generated, a new table
that is a reflection of the result of the join is defined. The default name of the new table
is table1.

Error Management
The UNLOAD command runs until a major error is encountered. Minor problems are
reported as warnings if LOG is enabled. If a fatal error occurs, an error message is
displayed and the operation is aborted.

Examples
The following example will export the table details, with all related definitions, to a
file:

UNLOAD DEFINITIONS TO 'table_t.def' FROM TABLE details;

The following example will export the CREATE statement for table details together
with all data in the table to a file in UTF16 format. A log file is used:

UNLOAD TO 'table_t.all' AS UTF16
 LOG 'table_t.log'
 USING SELECT * FROM details;

The following example will export the CREATE statement for table details to the
definitions file createtable.dat, and its data to another file tabledata.dat:

UNLOAD ALL TO 'createtable.dat', 'tabledata.dat' FROM TABLE details;

104 Chapter 8 Loading and Unloading Data and Definitions
UNLOAD - Unloading Data

Data Description Headers and Files
Data description headers and files are used to describe the data that follows.
The following table describes data description header elements:

As shown in the table above, the characters used to specify column separators, text
qualifiers and null indicators must be enclosed in single quotes. If you use a single quote
to specify a column separator, text qualifier or null indicator, you must enter it twice, for
example, you would specify a single quote as a column separator as ''''.

Element Usage Description

#data Required Data description header start identifier.

escape mode Optional Indicates that the data is escaped, i.e. that
some elements of the data are tagged for
secure recognition at LOAD.
See the table below. When using
UNLOAD, data escape mode is always
used.

column separator 'x' Optional Indicates which character is the column
separator when reading the data.
The default is the comma character (,).
If this option is not used, LOAD assumes
that the comma character is the column
separator.

text qualifier 'x' Optional Indicates which character is the qualifier
for text strings in the data.
The default is the double quote character
(").
If this option is not used, LOAD assumes
the double quote character as the text
qualifier or unqualified data.

null indicator 'x' Optional Indicates which character is the null
value if found in a data field.
If this option is not stated, LOAD assumes
the empty string, i.e. two consecutive
column separators, as a null value.
In data escape mode, '\-' is treated as the
null value.

using insert-statement Optional The SQL INSERT statement that
indicates where, and in what way, data
should be loaded.
This statement is used in the situation
where the LOAD statement itself does not
include a USING clause.

; Required Data description header end identifier.

Mimer SQL Version 11.0 105
System Management Handbook

Data Description Header Examples
For data unloaded from a Mimer SQL database using UNLOAD, the data description header
generated could look as follows:

#data escape mode using insert into t (c) values (?);

The example above implies the following for LOAD:
• The column separator is the comma character (default).
• Text strings are presumed to be unqualified or qualified with the double quote

character.
• Data escaping is assumed (see the table below).
• The USING statement in the header will be used if no USING clause is given in the

LOAD statement.
The following is another example of a data description header where all optional elements
mentioned above, except data escape mode, are used:

#data
column separator ':'
text qualifier '!'
null indicator '§'
using insert into t1 (c1,c2,c3) values (?,?,?);

In the example above, the table t1 and the columns c1, c2 and c3 are supposed to exist
when starting the data load. Specific characters for column separator, text
qualifier and null indicator are defined.

Escape Character Sequences
If data escape mode is specified, the back-slash character (\) is used as the escape
character. The character following the escape character can be one of 'x', 'u', '-' or '_'. See
the following table for a description of valid escape character sequences:

Note: If you do not use data escape mode, end of file is treated as end of table.
This means that such a data file only can contain data for one table.

Escape character
sequence

Usage Description Example

\x (lower case letter 'x') Preceding a hexadecimal byte value. A
HEX value is assumed to be two HEX
value digits, i.e. 0-F.

\x1A

\u (lower case letter 'u') Preceding a unicode value. A Unicode
value is assumed to be eight HEX value
digits, i.e. 0-F.

\u12345678

\- (dash) Null value \-

_ (underscore) End of table, including end of stream or
file

_

106 Chapter 8 Loading and Unloading Data and Definitions
UNLOAD - Unloading Data

File Format Specifications
The default UNLOAD file format is utf8, which LOAD handles without having to specify
it. This means that in most cases you don't need to specify the file format, if you don't do
it at UNLOAD you don't have to do it at LOAD either.
The various file formats that can be used are briefly described in the following table:

File Format Description

latin1 ISO 8859-1, i.e. ISO's 8-bit single-byte coded graphic character
set for Western languages.

utf8
utf16
utf32

Unicode Transformation Formats, standard character encoding
schemes in accordance with ISO 10646.
For more information, see https://www.unicode.org

utf16be UTF16 format with big endian byte order.

utf16le UTF16 format with little endian byte order.

utf32be UTF32 format with big endian byte order.

utf32le UTF32 format with little endian byte order.

https://www.unicode.org/

Mimer SQL Version 11.0 107
System Management Handbook

Chapter 9

Replication
Mimer SQL supports continuous replication of data from a source database to a target
database. The replication is based on triggers that store changes for replicated tables in
log tables. The replication system reads these log tables and carries out the operations on
the target system. The replication system consists of three separate programs,
MIMREPADM, REPSERVER and MIMSYNC.
MIMREPADM is a command line based tool for defining which tables that should be
replicated. It is also used for install and uninstall of the replication dictionary, which is
needed for maintaining information about replicated tables.
REPSERVER handles the actual replication.
The synchronization program, MIMSYNC, performs data manipulation operations to
ensure that source and target tables contain the same rows.
Note: The replication system cannot be used to create tables on the target database. It

is the responsibility of the user to create these tables.

Requirements
These programs use ODBC for database access. The Mimer SQL version of the source
database must be 9.3.5 or later. The Mimer SQL version of the target database must be
9.2.4 or later.
There must be a Mimer license key that allows replication on the source database. No
replication license key is required on the target database.

Restrictions
For a replicated table, the value of a primary key column must not be updated.
Note: If a primary key value is updated, that row will not be replicated. In that case

mimsync can be used to correct the replicated data. See MIMSYNC -
Synchronizing Tables on page 119.

108 Chapter 9 Replication
MIMREPADM - Replication Administration

MIMREPADM - Replication Administration
This section describes how to set up a replication environment.

Syntax
The following options can be specified as command line arguments for the MIMREPADM
program:
mimrepadm -i value|--install=value [source_database]

mimrepadm -u value|--uninstall=value [source_database]

mimrepadm -r pass|--rpassword=pass
[--susername=user] [--spassword=pass]
[--tusername=user] [--tpassword=pass]
[--tdatabase=name] [source_database]

mimrepadm [-v|--version] | [-?|--help]

Mimer SQL Version 11.0 109
System Management Handbook

Command-line Arguments
You can use the following arguments with MIMREPADM.

Replication Setup
The first step in setting up a replication environment is to use the install option of the
MIMREPADM program. This needs to be done on both the source database and the target
database. This is done by running the MIMREPADM program with the following arguments

mimrepadm --install=source [source-database-name]

and
mimrepadm --install=target [target-database-name]

Unix/Windows-style Function

-i value

--install=value

Create the source or target replication dictionary.
Valid values are:
source
target

-r password

--rpassword=password

REPADM password.

-u value

--uninstall=value

Drop the source or target replication dictionary.
Valid values are:
source
target

-u user

--username=username

Specifies the username used when connecting to
Mimer.
If not specified, OS_USER login is assumed.

-v

--version

Display version information.

database Specifies the name of the database to access. If
specified, it must be the last argument.
If you do not specify a database name, the default
database will be used.

-?

--help

Show help text.

--susername=user Source username.

--spassword=pass Source password.

--tdatabase=name Target database.

--tusername=user Target username.

--tpassword=pass Target password.

110 Chapter 9 Replication
MIMREPADM - Replication Administration

If the database name is omitted, the program will prompt for a database name. The
installations must be run as a user with DATABANK and IDENT privilege. The program
will prompt for name and password for such a user.
The installation on the source database consists in creating two users, REPADM and
REP_SOURCE_USER. REPADM is the user that will own the replication dictionary. These
dictionary tables are created in a databank named REPADM that is created by the install
program. REP_SOURCE_USER is the user, which will be used when performing the actual
replication on the source database.
On the target database the installation consists in creating the user REP_TARGET_USER.
This user is used for performing operations on replicated tables on the target database.
The replication environment can be removed by using the uninstall option for the
MIMREPADM program, i.e.

mimrepadm --uninstall=source [source-database-name]

and
mimrepadm --uninstall=target [target-database-name]

Uninstall is not allowed if there are any subscriptions (see next chapter) defined for the
database.
Note: Do not try to remove the replication environment by dropping any users

explicitly. Always use the uninstall option for this.

Replication Administration
A subscription defines which tables that should be replicated for a specific source
database and target database. It is possible to have multiple subscriptions between the
same source and target database, e.g. if tables owned by different users should be
replicated. Subscriptions are defined by using the MIMREPADM program. In this case, the
MIMREPADM program is started with the following options specified

mimrepadm –r password database

where password is the password for the REPADM user and database is the name of the
source database. Before creating a subscription it is required to specify the target database
and the users, which own the tables to be replicated. These values can be specified by
giving arguments to the MIMREPADM program or by using the CONNECT SOURCE USER
and CONNECT TARGET USER statements.
When the MIMREPADM program is started, it will prompt for commands. Since the
program reads from standard input and writes to standard output it is possible to use OS
primitives for piping and redirection. The following sections describe the available
commands.
As a step in the setup process, the target database environment (users, databanks and
tables) must be created. This must be done manually, since the replication system cannot
be used to any target database objects. (Perhaps MIMLOAD can be useful.)

Mimer SQL Version 11.0 111
System Management Handbook

CREATE SUBSCRIPTION
Creates a subscription.

Description
The name of a subscription follows the normal rules for identifiers in SQL (see Mimer
SQL Reference Manual for more details.) When a subscription is created, a log table and
triggers for logging all write operations are created for each table in the subscription.
Since it is only the owner of a table that has the right to create triggers on a table, all tables
in a subscription must be owned by the source user. Further requirements is that there is
a primary key constraint defined for the replicated table and that the table is not located
in a databank having work option. The table used for logging all changes done on the
replicated table is created in the same databank in which the replicated table is located.
The logging will include information about which transaction the operation belongs to.
When a subscription is created, a corresponding table for each replicated table must exist
on the target database. They do not need to have the same name or be located in the same
schema as on the source database but the definition must be the same. Within a
subscription it is possible to define that a table is replicated to multiple tables on the target
database.
Note: There is currently no option for automatically creating the tables in the target

database. It is the responsibility of the user to create these tables.
Since the MIMREPADM program grants delete, insert and update privilege on the specified
tables to the REP_TARGET_USER user, the target user must have these privileges with
grant option for all tables in a subscription.

Example
REPLICATION>create subscription SUB_MIMER_STORE to DUSTPUPPY
REPLICATION& for schema MIMER_STORE as ROC
REPLICATION& interval '10' minute
REPLICATION& commit after 10;

This means that all tables in the schema MIMER_STORE will be replicated to similarly
named tables in the schema ROC on the database DUSTPUPPY. The interval value
specifies at which interval the REPSERVER program will look for data to replicate. The
interval literal must be a short interval, i.e. date fields from day to second can be used.
(The interval literal format is described in Mimer SQL Reference Manual). The value
cannot be negative. The default value is 15 minutes. If a zero interval is given, the
replication will be continuous. The commit after clause tells how many source
transactions should be bundled in a target transaction. The default value is 1.

112 Chapter 9 Replication
MIMREPADM - Replication Administration

REPLICATION>create subscription SUB_MIMER_STORE_MB to CANARDO
REPLICATION& for table MIMER_STORE.MUSIC, MIMER_STORE.BOOKS;

Create a subscription for replication of the table MIMER_STORE.MUSIC and
MIMER_STORE.BOOKS to the database CANARDO using default value for timing and
commit rate. There must exist a schema named MIMER_STORE containing the tables
BOOKS and MUSIC on the database CANARDO.

ALTER SUBSCRIPTION
Alters a subscription.

Description
The alter subscription statement is used to add or drop tables to an existing subscription.
It can also be used to change the default replication interval or the commit rate.
It is not possible to alter a subscription if the REPSERVER program is running for that
subscription.

Examples
REPLICATION>alter subscription SUB_MIMER_STORE
REPLICATION& drop table MIMER_STORE.MUSIC;

The table MIMER_STORE.MUSIC will not be replicated any more. The triggers defined
on this table and the log table will be dropped.

REPLICATION>alter subscription SUB_MIMER_STORE commit after 1;

Change the transaction rate so that each transaction on the source database will be treated
as one transaction on the target database.

Mimer SQL Version 11.0 113
System Management Handbook

DROP SUBSCRIPTION
Drops a subscription.

Description
Drop all information about a subscription from the replication dictionary. It will also drop
triggers and the log table, which were created when the subscription was created.
It is not possible to drop a subscription if the REPSERVER program is running for that
subscription.
Example

REPLICATION>DROP SUBSCRIPTION SUB_MIMER_STORE;

DESCRIBE SUBSCRIPTION
Describes a subscription.

Description
Display information about the specified subscription.

Example
REPLICATION>describe subscription SUB_MIMER_STORE_MB;

Subscription SUB_MIMER_STORE_MB:

Target database: CANARDO
Interval: 600 second(s)
Commit after: 1
SYSTEM_STARTUP: 2010-08-27 18:08:52
TRANSNO: 4711
SEQNO: 12
STOPPING_FLAG: NO

Tables:

Source: MIMER_STORE.MUSIC
Target: MIMER_STORE.MUSIC

Source: MIMER_STORE.BOOKS
Target: MIMER_STORE.BOOKS

LIST SUBSCRIPTIONS
Lists subscriptions.

Description
Lists all defined subscriptions

114 Chapter 9 Replication
MIMREPADM - Replication Administration

Example
REPLICATION>LIST subscriptions;

Subscriptions
=============
MIMER_STORE
MIMER_STORE_MB

CONNECT SOURCE USER
Connects user to source database.

Description
Connect the table owner to the source database.

Example
REPLICATION>CONNECT SOURCE USER MIMER_STORE
REPLICATION& using 'GoodiesRUs';

CONNECT TARGET USER
Connects user to target database.

Description
Specify user on target database.

Example
REPLICATION>CONNECT TARGET to CANARDO
REPLICATION& user MIMER_STORE using 'niTeoW1';

DISCONNECT SOURCE
Disconnects user from source database.

Description
Disconnect the user connected to the source database.

Example
REPLICATION>DISCONNECT SOURCE;

Mimer SQL Version 11.0 115
System Management Handbook

DISCONNECT TARGET
Disconnects user from target database.

Description
Disconnect the user connected to the target database.

Example
REPLICATION>DISCONNECT TARGET;

ENTER SOURCE
Connects a PROGRAM ident to source database.

Description
Connects a PROGRAM ident to the source database.

Example
REPLICATION>ENTER SOURCE 'PgmIdnt' USING 'SecrtPlees';

ENTER TARGET
Connects a PROGRAM ident to target database.

Description
Connects a PROGRAM ident to the target database.

Example
REPLICATION>ENTER TARGET 'PgmIdnt' USING 'SecrtPlees';

LEAVE SOURCE
Leaves a PROGRAM ident from the source database.

Description
The current source PROGRAM ident is left and the saved environment of the previous ident
is restored.

116 Chapter 9 Replication
MIMREPADM - Replication Administration

Example
REPLICATION>LEAVE SOURCE;

LEAVE TARGET
Leaves a PROGRAM ident from the target database.

Description
The current target PROGRAM ident is left and the saved environment of the previous ident
is restored.

Example
REPLICATION>LEAVE TARGET;

SHOW SETTINGS
Shows source and target info.

Description
Display information about source and target user.

Example
REPLICATION>SHOW SETTINGS;

Settings
========
Source database: MOONBASE_ALPHA
Source user: MIMER_STORE
Target database: CANARDO
Target user: MIMER_STORE

Source program: PgmIdnt
Target program: Not connected

EXIT
Exits MIMREPADM.

Description
Exit from the MIMREPADM program.

Example
REPLICATION>EXIT;

Mimer SQL Version 11.0 117
System Management Handbook

REPSERVER - Replicating the Data
The actual replication is performed by running the REPSERVER program. This program
will handle the replication for one subscription. This program connects to source database
as REP_SOURCE_USER and to the target database as REP_TARGET_USER.
MIMSYNC is typically used before replication is first set up, or has been halted for some
reason, to make sure that source and target tables have the same contents. After the
synchronization, the replication functionality ensures that the tables remain identical.

Syntax
repserver [-e|--exit] [-l file|--logfile=file] [-d|--verbose] [--spassword=pass]

[--spassword=pass] [source_database] [subscription]

repserver -t [--spassword=pass] [source_database] [subscription]

repserver [-v|--version] | [-?|--help]

If any required parameter is omitted, the program will prompt for these values.

Command-line Arguments
You can use the following arguments with REPSERVER.

Unix/Windows-style Function

-d

--verbose

More detailed, verbose output.

-e

--exit

Exit option.

-l file

--logfile=file

Multifile, if omitted standard output.

-t

--stop

Terminate replication server.

-v

--version

Display version information.

source_database Specifies the name of the database to access. If specified, it
must be the last argument.
If you do not specify a database name, the default database
will be used.

-?

--help

Show help text.

--spassword=pass REP_SOURCE_USER source password.

--tpassword=pass REP_TARGET_USER target password.

118 Chapter 9 Replication
REPSERVER - Replicating the Data

The REPSERVER program will read the log tables for all tables in the subscription and
perform the same operations on the target database. After each commit on the target
database the data in the log tables will be deleted. Once all operations have been done the
program will sleep for the rest of the interval specified for the subscription. If the interval
for the subscription is set to 0 the program will poll the log tables for any data
continuously.

Start the Replication
To start the replication for a subscription the REPSERVER program can be started with
following command line arguments:
repserver [--spassword=password] [--tpassword=password] [--logfile=logfile]
 [--exit] database [subscription-name]

Note: The REPSERVER program should normally be run as a detached process on
VMS, or as a background process on Linux.

Stop the Replication
To stop the replication the REPSERVER program should be run with the following options
REPSERVER –t [--spassword=password] database subscription-name

This will set the stopping flag in the replication dictionary to ‘YES’ for the specified
subscription. The REPSERVER program will periodically look at this flag, when not
active. This means that it can take some time before the replication is stopped.

Error handling
Most Mimer SQL errors are considered fatal for REPSERVER, with the exception of the
following three:
• Error -10101, INSERT operation invalid because the resulting table will contain a

primary key duplicate
• Error -10110, unique constraint violation
• Error 100, record for update or delete not found
These errors will only result in a warning. This is to make replication possible even if the
target table is not identical to the source table.
If REPSERVER gets a transaction conflict, it will try to execute the transaction once more.
If the second attempt fails REPSERVER considers this a fatal error.

Mimer SQL Version 11.0 119
System Management Handbook

MIMSYNC - Synchronizing Tables
A third component in the replication service is the MIMSYNC program. It is typically run
in batch and operates on pairs of tables, where one table resides in the source database and
the other resides in the target database. Data manipulation operations are performed to
ensure that the two tables contain the same rows. The table in the source database is
considered to be the master, which means that MIMSYNC will only modify
(delete/insert/update) the table in the target database.
Synchronization can in some cases be used instead of replication. If the replication
updates only need to be performed, say, every 24 hours, this could be done by a batch job
running MIMSYNC each night.
The MIMSYNC program supports synchronization between tables in the source and target
database. The program operates on pairs of tables, and compares the contents of the two
tables in a pair and makes both contain the same records. The table in the source database
is considered to be the master, which means that it is the table in the target database that
will be updated. The SQL statements needed to modify the target table are constructed
and grouped into reasonably large transactions (1 000 rows).

Syntax
mimsync -s|--subscription [-n|--noexecute] [-l file|--logfile=file]

[subs-options] [source_database] [subscription]

mimsync -t|--table [-n|--noexecute] [-l file|--logfile=file]
[table-options] [source_database]

mimsync [-v|--version] | [-?|--help]

Options
Unix/Windows-style Function

-l file

--logfile=file

Logfile, if omitted standard output.

-n

--noexecute

Do not update target, verify only.

-s

--subscription

Synchronize a subscription.

-t

--table

Synchronize a table.

-v

--version

Display version information.

source_database Specifies the name of the database to access. If
specified, it must be the last argument.
If you do not specify a database name, the default
database will be used.

120 Chapter 9 Replication
MIMSYNC - Synchronizing Tables

Subs-options

Table-options

If the database, user and/or password switches are not given the program will prompt for
database, user and/or password. The other switches are optional.

Examples
$ mimsync -s --logfile=synclog --spassword=secret --tpassword=secret
 sourcedb subs1

$ mimsync -t --suuser=SrcUsr --spassword=scrt
 --tdatabase=TrgDb --tuser=TrgUsr --tpassword=scrt
 table1 table2 SrcDb

Authorization
When synchronizing a subscription MIMSYNC is run as REP_SOURCE_USER and
REP_TARGET_USER.
When synchronizing a pair of tables MIMSYNC can be run as any user (having SELECT
and INSERT rights).

subscription Subscription name.

-?

--help

Show help text.

Unix/Windows-style Function

Unix/Windows-style Function

--spassword=pass REP_SOURCE_USER source password.

--tpassword=pass REP_TARGET_USER target password.

Unix/Windows-style Function

--stable=table Source table.

--ttable=table Target table.

--susername=user Source user.

--spassword=password Source password.

--sprogram=program Source program.

--susing=password Source program password.

--tdatabase=database Target database.

--tusername=user Target user.

--tpassword=password Target password.

--tprogram=program Target program.

--tusing=password Target program password.

Mimer SQL Version 11.0 121
System Management Handbook

Restrictions
• The tables must have a primary key
• The tables must have the same definition
Note: MIMSYNC may fail to synchronize a table that has a foreign key reference to

itself. Also circular foreign keys may cause problems.

Output
When executing MIMSYNC, it will write execution information to its log file. (If no log file
is specified, standard output will be used.)

Example log file:
2019-11-29 09:33:41.62 <Information>
--
Starting Mimer SQL Synchronization

2019-11-29 09:33:42.74 <Information>
==
Mimer SQL 11.0.1A
Mimer SQL Synchronization
for subscription S on database SOURCEDB STARTED

Synchronizing table SYSADM.T1...
Synchronization of table SYSADM.T1 complete

Synchronizing table SYSADM.T3...
Synchronization of table SYSADM.T3 complete

2019-11-29 09:33:42.98 <Information>
--
Mimer SQL Synchronization for subscription S STOPPED

122 Chapter 9 Replication
MIMSYNC - Synchronizing Tables

Mimer SQL Version 11.0 123
System Management Handbook

Chapter 10

Mimer SQL
Shadowing

Mimer SQL Shadowing makes it possible to create and maintain one or more
simultaneously updated copies of a databank. This allows for a higher degree of data
availability by giving extra protection from disk crashes, etc.
This chapter describes the functions and benefits of databank shadowing, how to use
Mimer SQL Shadowing, and how to handle problems.
Note: Mimer SQL Shadowing is not included in the standard Mimer SQL

distribution. In order to implement shadowing, you must have the correct type
of license. Contact Mimer Information Technology AB for more information.

About Databank Shadowing
Databank shadowing means updating one or more copies of a databank simultaneously.
The master is the ‘normal’ databank file which is accessed for data storage and retrieval.
The copies are called shadows. A databank can have more than one shadow.
Any changes to the master databank are automatically made to the shadow, thus
protecting data from a disk crash or other event that might cause a databank to be lost.
If a master databank is lost, a shadow will automatically take over from the master and
operations can be resumed immediately, assuming the shadow is not also damaged.
A shadow can be transformed to a master databank to permanently replace it and this
process is much faster than restoring a databank from a backup copy.
Using offline shadows provides a straightforward way of backing-up your databanks.
Once you have completed the backup and set the shadow online, all operations performed
on the master databank are applied to the shadow automatically.
Databank shadowing is entirely invisible to an application. This means that shadows can
be added to existing applications. No special handling is needed to access tables in a
shadowed databank.

https://www.mimer.com/contactus/

124 Chapter 10 Mimer SQL Shadowing
About Databank Shadowing

Shadowing Requirements
A databank must support transaction control, see Transaction Control on page 17, to be
shadowed.

Databanks with the WORK option cannot be shadowed, because shadowing requires
transaction handling.
The databank to be shadowed cannot be used by any other users while a shadow is being
created.
The shadow name cannot be the same as the name of the master databank, of any other
shadow, or of any shadow that has been transformed to a master.

SYSDB and Shadowing
Because the SYSDB databank holds all the data dictionary information about your
database, protecting it with shadowing and/or backups is essential.
Otherwise, if SYSDB is lost, the whole database will be unreachable.

SQLDB and Shadowing
Shadowing SQLDB is not allowed, as it is a TEMPORARY databank, and not needed because
SQLDB only contains temporary data.

Creating Shadows
When you create a shadow for a databank, all tables and indexes in the databank are
copied to the shadow.
Creating a shadow for a large databank may take some time, and thus should be carefully
planned.

TRANSDB

Master Shadow

Transactions are
applied to both
the master and
the shadow

Mimer SQL Version 11.0 125
System Management Handbook

Altering Shadows
When you alter a shadow to a master, it only affects the Mimer SQL data dictionary. The
databank filenames are not changed. The databank cannot be used by any other user when
a shadow is being transformed into the master (this is not very likely to happen since this
function is normally used when the master has been lost or damaged).

Backups
We recommend that you take conventional backups as a supplement to databank shadows
to protect data in the event of a crash that destroys both the master and the shadow.
Because operations are not interrupted when shadow-backups are taken, and because
Mimer SQL databanks are automatically reorganized, you get true 24 hour-a-day
operation.

Dropping Shadows
When a shadow is dropped, the file where the shadow is stored is usually deleted from the
file system. If it is not deleted, you can use operating system facilities to delete it.
The databank cannot be used by any other users while a shadow is being dropped.

Levels of Data Protection
Backing-up and Restoring Data on page 67, describes the role of the system databanks
LOGDB and TRANSDB when used in conjunction with backup and restore, in protecting
data against loss.
Databank shadowing provides an even higher level of protection. Listed below are the
different ways in which data can be protected from loss (from the least amount of
protection to the highest).

All Databanks on One Disk and No Logging
If a databank is lost with this level of protection, it is only possible to continue operations
from the last backup copy (all changes since the last backup was taken are lost).
Databanks can be lost due to accidental deletion, disk crashes (which can destroy all files
on a disk), etc. This level of protection is not recommended except for trash databanks
with unimportant contents.

126 Chapter 10 Mimer SQL Shadowing
Levels of Data Protection

Logging, with LOGDB and TRANSDB on a Separate Disk
from the Data

LOGDB and TRANSDB are vital databanks if the system stops or if any databanks are lost.
Because of this, LOGDB and TRANSDB should be stored on separate disks, as shown in the
following figure:

Application data should be stored on the TRANSDB disk if it cannot be stored separately.
If a databank is lost, it can be restored to its original state by applying the transactions in
LOGDB and TRANSDB to a restored backup of the databank.
This may take some time, especially if the databank is large and if there is a lot of
transaction information stored in LOGDB.

This security level gives a high degree of security and is recommended for databanks
containing important data used in a system where the delay before the system is restored
after a crash is not critical.
To assure this high degree of security, backup files should always be stored on separate
removable media (e.g. CD/RW).

Shadowing, with Shadows on a Separate Disk
Shadows should always be stored on a separate disk from the masters to protect them
from a total disk crash that could destroy both the master and shadow databanks.
It is also advisable to use separate disk controllers to assure that a corrupt disk controller
does not destroy the disks holding both the masters and the shadows.
If a databank is lost, its shadow can be transformed into a master and the shadow
automatically takes over with no loss of data.
Since shadows are updated after the master, and operations are saved in TRANSDB until
the shadow is updated, it is important that TRANSDB is consistent when a shadow is
transformed.

Caution: If the databank disk and the TRANSDB or LOGDB disk are handled by the same
disk controller, a disk controller failure may cause both disks to crash.
If this happens, the databanks can only be restarted from the state of the last
backup copy. Therefore, we advise you to use separate disks with separate
disk controllers.

Disk 1

LOGDB

Disk 2

TRANSDB

Disk 3

Databanks

Mimer SQL Version 11.0 127
System Management Handbook

To ensure this, you should shadow TRANSDB. We strongly recommend that TRANSDB and
its shadow are stored on separate disks, as shown in the following diagram:

This arrangement gives a high degree of security and is recommended for databanks
containing important data used in a system where it is vital to be able to get the system
running again quickly after a disk crash.

Shadowing and Logging
Combining shadowing and logging, see Backing-up and Restoring Data on page 67,
gives the highest level of data protection.
If logging is used, the data is protected if both the master and the shadow disks become
corrupted.
And, when shadowing is combined with logging (with LOGDB on a third disk) and
backups are regularly taken to separate media (CD/RW, etc.), then data is always
protected if any two of the disks crash, for example:

Of course, additional disks can be used, just as long as the databanks that are separated
above are not placed on the same disks. If you only have two disk drives available and all
the databanks are shadowed, then logging is of little value. Shadowing LOGDB will not
increase data protection significantly in this configuration.
Different degrees of data security can be used for different databanks, depending on the
importance of the data. It is however important that all inter-dependent databanks
(because of foreign key relationships, etc.) have the same level of protection. Otherwise
logical inconsistencies may result if there is a disk crash.

Disk 1 Disk 2

Masters

TRANSDB

Shadows

Shadow of
TRANSDB

Disk 1

Masters

TRANSDB

Disk 2

Shadows

Shadow of
TRANSDB

Disk 3

LOGDB

128 Chapter 10 Mimer SQL Shadowing
Creating and Managing Shadows

Creating and Managing Shadows
Shadows are managed using the SQL shadowing commands:

CREATE SHADOW – creates a shadow
SET SHADOW – sets shadows on- or offline
ALTER SHADOW – swaps a shadow with its master
DROP SHADOW – drops a shadow.

Note: For shadow information, use the LIST SHADOWS command in BSQL.

Privileges
If you have SHADOW or BACKUP privilege, you can list shadowing information for all
databanks.
Users can always backup and restore, set shadows offline and online, and list shadowing
information for any databank that they have created.
SYSADM is initially granted SHADOW and BACKUP privilege with the WITH GRANT
OPTION.
The following table shows the privileges you need to work with shadows:

*) You must have exclusive use of the databank. This means that no other user can access
the databank until the operation is finished.

SQL Shadowing Commands – an Example Session
In the following sections, we use an example session to show how to:
• create shadows
• set them offline and take backup
• set them online again
• restore both user databanks and shadows
• drop shadows.

Tasks Privilege

Backup Shadow

Create a shadow *) X

Drop a shadow *) X

Transform a shadow *) X

List shadow info X X

Backup and restore X

Set shadow offline X

Mimer SQL Version 11.0 129
System Management Handbook

About the Examples
The examples in the following sections are based on:

We assume that you are the ident BACADM and have connected to the database using
Mimer BSQL, as follows:

SQL> CONNECT;
User: BACADM
Password: Masterp1ece

Creating a Shadow
The following example creates shadows for the user and system databanks:

SQL> CREATE SHADOW TRANSDB_SH FOR TRANSDB IN 'transdb_sh.dbf';
SQL> CREATE SHADOW SYSDB_SH FOR SYSDB IN 'sysdb_sh.dbf';
SQL> CREATE SHADOW LOGDB_SH FOR LOGDB IN 'logdb_sh.dbf';
SQL> CREATE SHADOW ARTICLES_SH FOR ARTICLES IN 'articles_sh.dbf';
SQL> CREATE SHADOW CUSTOMERS_SH FOR CUSTOMERS IN 'customers_sh.dbf';

For information on the CREATE SHADOW command, see the Mimer SQL Reference
Manual, Chapter 12, CREATE SHADOW.

Setting a Shadow Offline
You must set a shadow offline, for example, when backing-up a databank, to ensure that
the databank shadow file is in a consistent state when the backup copy is taken.
The following example sets all the shadows created in the previous example offline:

SQL> SET SHADOW TRANSDB_SH,LOGDB_SH,SYSDB_SH,ARTICLES_SH,CUSTOMERS_SH
OFFLINE;

For information on the SET SHADOW command, see the Mimer SQL Reference Manual,
Chapter 12, SET SHADOW.
Caution: TRANSDB stores all operations carried out while shadows are offline. We

recommend that you always set shadows online as soon as possible. If you do
not, you risk TRANSDB filling disk capacity.

Backing-up from Shadows
You can back-up a databank using its shadow instead of the master databank.
This allows the backup process to proceed without affecting the users working with data
contained in the databank.
When a shadow is set offline, the relevant transactions will be written to the online
databank and remain in TRANSDB until the shadow is set online again and the transactions
can be written to it.

Ident: BACADM

Ident Privileges: DATABANK, SHADOW and BACKUP privileges

User databanks: ARTICLES, CUSTOMERS with the LOG option enabled

System databanks: TRANSDB, SYSDB and LOGDB

130 Chapter 10 Mimer SQL Shadowing
SQL Shadowing Commands – an Example Session

To back-up your database from shadows:
1 Set the shadows offline, as shown in the previous example.
2 Use your operating system’s functionality to copy the shadow files. For example,

on Linux:
$ cp sysdb_sh.dbf sysdb_sh.bac
$ cp transdb_sh.dbf transdb_sh.bac
$ cp logdb_sh.dbf logdb_sh.bac
$ cp articles_sh.dbf articles_sh.bac
$ cp customers_sh.dbf customers_sh.bac

3 Set the shadows online and reset the log, as shown in the next example.
4 Move the backup files to a safe medium, such as CD/RW. Your backup is

complete.

Setting a Shadow Online
When you set databank shadows online, they are automatically updated in the background
to the current state of the master database.
Continuing with the previous example, you can set the shadows online, as follows:

SQL> SET SHADOW SYSDB_SH,LOGDB_SH,TRANSDB_SH,ARTICLES_SH,CUSTOMERS_SH ONLINE
RESET LOG;

Note: To get a backup timestamp, to be able to use the log when restoring from this
backup, the RESET LOG option is used.

For information on the SET SHADOW command, see the Mimer SQL Reference Manual,
Chapter 12, SET SHADOW.

Restoring a User Databank
If an error is encountered on a user databank, the system will continue to operate using
the databank shadow. You can restore the damaged user databank by swapping it with its
shadow using the ALTER SHADOW command.
For example, if the ARTICLES databank has been damaged, you can restore it by
swapping it with its shadow ARTICLES_SH using the ALTER SHADOW command:

SQL> ALTER SHADOW ARTICLES_SH TO MASTER;

Now, the faulty ARTICLES databank is the shadow. However, it has the same name as the
master databank.
To return to our original situation, we must delete (drop) the faulty shadow, create a new
shadow and swap the shadow with the master so that the databanks are correctly named.

SQL> DROP SHADOW ARTICLES;
SQL> CREATE SHADOW ARTICLES FOR ARTICLES_SH IN 'articles.dbf';
SQL> ALTER SHADOW ARTICLES TO MASTER;

The first command deletes the shadow.
The second command creates a shadow for the master with the original name and
location.
The third command swaps the shadow with the master.

Mimer SQL Version 11.0 131
System Management Handbook

Note: If the original situation is not restored as shown above, the shadow name, in
this case ARTICLES_SH, will remain allocated internally which could be
confusing.

For information on the ALTER SHADOW command, see the Mimer SQL Reference
Manual, Chapter 12, ALTER SHADOW.

Restoring Both a User Databank and Its Shadow
If both a user databank and its shadow are lost or damaged, you can restore the data using
the shadow’s backup files and LOGDB.
1 We recommend that you stop the Mimer SQL database server when replacing

databanks.
2 Copy the shadow’s backup file to the position of the damaged databank file, for

example, on a Linux system:
$ cp articles_sh.bac articles.dbf

3 Restart the Mimer SQL database server and use the ALTER DATABANK RESTORE
command to restore the databank:
SQL> ALTER DATABANK ARTICLES RESTORE USING LOG;

Note: The restore command above will automatically recreate the corresponding
shadow databank.

For more information on ALTER DATABANK RESTORE, see the Mimer SQL Reference
Manual, Chapter 12, ALTER DATABANK RESTORE

Restoring System Databanks
You cannot use the ALTER SHADOW command to swap the system databanks SYSDB,
TRANSDB and LOGDB with their shadows in order to restore them. You must alter them
using the BSQL program.
For more information, see:
• Transforming a SYSDB Shadow to a Master on page 132
• Transforming a TRANSDB Shadow to a Master on page 133
• Transforming a LOGDB Shadow to a Master on page 133.

Dropping a Shadow
As seen in a previous example, you can delete a shadow by dropping it, for example:

SQL> DROP SHADOW ARTICLES_SH;

For information on the DROP SHADOW command, see the Mimer SQL Reference Manual,
Chapter 12, DROP.

Shadowing System Databanks
The system databanks (SYSDB, TRANSDB, LOGDB and SQLDB) require special handling in
some situations.

132 Chapter 10 Mimer SQL Shadowing
Shadowing System Databanks

If a problem occurs with these databanks or their shadows, the only permitted login is
SYSADM logging into the BSQL program. The BSQL program will then recognize the
problem and help you correct it.
System databanks are handled in the same way as other databanks, with the following
exceptions:
• If an error is encountered on a user databank, automatic shadowing fail-over takes

place. However, if there is a problem with SYSDB, TRANSDB, SQLDB or LOGDB,
new users cannot login. Users already active will receive an error message when
attempting operations that depend on the affected system databank, while other
operations continue to work. The error state is held until Mimer SQL is stopped
and the error is corrected.

• If there is a problem with SYSDB, TRANSDB or LOGDB shadows, new users cannot
login until the faulty shadow is dropped or suspended, see If a Shadow for SYSDB,
TRANSDB or LOGDB Is Not Accessible on page 134.

• No users can be connected while a shadow for SYSDB, TRANSDB, or LOGDB is
being created, altered or dropped.

• You cannot create a shadow for SQLDB as it is a TEMPORARY databank.

Transforming a SYSDB Shadow to a Master
If SYSDB is lost or corrupt, any existing SYSDB shadow can be altered to become the
master in order to allow Mimer SQL to start again.
The SYSDB shadow file should be renamed and/or moved to the location where the master
SYSDB was. Then the BSQL is started and login is performed as SYSADM. Enter the name
of the shadow to be transformed into the master, and exit.

Example
Mimer SQL command line utility, version 11.0.7A
Username: SYSADM
Password:
MIMER/DB warning -18013 in function CONNECT
 MIMER/DB started from SYSDB shadow. Transform SYSDB shadow to master
 with BSQL, or restart system from master SYSDB

 -- Transform shadow --

DATABANK
SHADOW
OFFLINE
FILE
==
SYSDB
SYSSH
N
SYSDB_S

One shadow found
Name of shadow to transform (<CR> = skip): sysdb_s

Shadow SYSSH transformed to master

If the disk where SYSDB is located becomes inaccessible, it may be more suitable to
redefine the database home directory (to point out the SYSDB shadow) instead of restoring
the original directory structure.

Mimer SQL Version 11.0 133
System Management Handbook

Note: In this case the ALTER DATABANK statement must be used for all databanks
explicitly defined to be located on the halted disk, i.e. with an absolute file
specification in the data dictionary.

Restoring SYSDB
If SYSDB is lost and no shadows exist, a backup copy of SYSDB can be restored to allow
Mimer SQL to start again, an example of how to do this is given in Backing-up and
Restoring Data on page 67.

TRANSDB and Shadowing
Shadowing TRANSDB assures that you can bring your database up-to-date if the TRANSDB
master is lost or damaged.

Transforming a TRANSDB Shadow to a Master
Start the BSQL program and login as SYSADM. A message is displayed saying that
TRANSDB cannot be opened, and a shadow must be transformed to the master, this is
similar to the example in Transforming a SYSDB Shadow to a Master on page 132.
If there are uncompleted transactions they will be completed, as if the original TRANSDB
was still functioning.

LOGDB and Shadowing
If some databanks are not shadowed but backup copies of the databanks exist, then a
shadow of LOGDB is useful since LOGDB, in this case, is even more important from a
restore perspective.

Transforming a LOGDB Shadow to a Master
Start the BSQL program and login as SYSADM. A message is displayed saying that LOGDB
cannot be opened, and a shadow must be transformed to the master, this is similar to the
example in Transforming a SYSDB Shadow to a Master on page 132.
If there are transactions not yet written to the log, they will be written automatically.

SQLDB and Shadowing
Shadowing SQLDB is not necessary because SQLDB only contains temporary data.
However, SQLDB is required when a user logs on to Mimer SQL. If SQLDB is corrupt or
lost, you must recreate it by logging on to the BSQL program as SYSADM. This
automatically recreates SQLDB if the databank is not found.

134 Chapter 10 Mimer SQL Shadowing
Data Protection Strategy

If a Shadow for SYSDB, TRANSDB or LOGDB Is Not
Accessible

If a shadow for SYSDB, TRANSDB or LOGDB is not accessible, SYSADM should login to the
BSQL program.
An error message is given followed by the option to drop the shadow or set it offline. If
the shadow is corrupt or missing, you should drop it. For example:
Mimer SQL command line utility, version 11.0.7A
Username: SYSADM
Password:
MIMER/DB fatal error -16142 in function CONNECT
 Cannot open databank LOGDB_S,
 file logdb_s not found

Inaccessible shadow encountered. DROP or SET OFFLINE? (D/S): D

 -- Drop shadow --

Shadow LOGDB_S dropped

If the shadow is only temporarily unavailable, it may be enough to set it offline for a short
period of time.

Data Protection Strategy
So far, this chapter has described the facilities that are available for a system manager to
maintain the system.
But how do you know that you are using the functionality in the right way, and that you
will be able to get the system running again if something happens?
The answer is planning and practice. When you have planned a data protection strategy,
you should put it into practice by simulating a disk crash and restoring the databanks
according to your strategy.
Check that the contents of all tables are the same as before the simulated crash. Do not
forget to simulate a crash of the system databanks (SYSDB, TRANSDB, LOGDB and SQLDB)
and then restore or recreate them.
Once you have a successful strategy, build command files (scripts) that perform the
correct operations regularly.

Configuring Your System
In Levels of Data Protection on page 125, we discussed various levels of data security.
When you configure your system, there are some additional questions to be answered:

• How do I divide the workload over several disks to get the best performance?
TRANSDB and its shadows should preferably be on fast disks, see Performance
Aspects of Shadowing on page 135.

Mimer SQL Version 11.0 135
System Management Handbook

• How much disk space do I need for shadowing?
A shadow file occupies the same amount of disk space as the master databank file.
In general, you will have problems if TRANSDB or LOGDB run out of disk space.
When this happens the system cannot continue. Therefore, it is important to make
sure that there is enough space for these databanks.
How large TRANSDB grows depends on the number of transactions and how fast the
background threads are able to perform the transactions on the shadows. When the
transactions are performed on the shadows, the space in TRANSDB where they were
stored is released.
How large LOGDB grows depends on whether the LOG option is used and how often
backups are taken and DROP LOG is performed, since DROP LOG clears LOGDB and
releases space (but the file size remain unchanged).
Note: Try and keep the length of time the shadows are offline to a minimum. If

you do not, you risk TRANSDB growing and filling the disk to capacity.

Performance Aspects of Shadowing
In multi-user systems, performance is not noticeably affected by shadowing, even though
the shadowing system needs more machine resources because more files need to be
updated.
Applications do not have to wait for the shadows to be updated as this is done in the
background. Actually, all updates to the disk, even to master databanks, are performed by
background processes (except for updates to TRANSDB and its shadows).
In single-user systems, no background process is used. This means that an application has
to wait for the shadows to be updated.

Troubleshooting
If shadow updating is delayed TRANSDB grows. This can happen for several reasons:
• A shadow has been set offline and forgotten. If this happens, transactions will be

buffered until the shadow is set online again.
To check if a shadow is offline, in BSQL use the LIST SHADOWS command or the
The Performance Report on page 59.

• A shadow is corrupt. Updates to the shadow result in an I/O error, and are buffered
in TRANSDB.
When this happens, the operator is notified by the system. To check, for notification,
use the The Performance Report on page 59 and check your Mimer SQL database
server log, see Database Server Log on page 65.

• There are too few background threads to update the shadows, or they get too little
machine resources.

136 Chapter 10 Mimer SQL Shadowing
Troubleshooting

Mimer SQL Version 11.0 137
System Management Handbook

Chapter 11

Database Statistics
The SQL statistics statements collect statistical information about table and index data in
the database and store this information in the data dictionary.
The information is used by the SQL compiler in optimizing access paths for SQL queries.
The statistical information includes:
• the total number of rows in each base table
• the number of distinct values in each column of a table
• the number of non-null values in each column of a table
• the lowest and highest values in each column of a table

Authorization
The user executing the SQL statistics statements must either have STATISTICS
privilege or be the owner of the table(s) or ident(s) for which statistics are being collected.
The database administration ident SYSADM holds STATISTICS privilege with the
WITH GRANT OPTION, and may thus take responsibility for maintaining statistics for the
whole system or delegate the responsibility to selected idents.
Note: A user with STATISTICS privilege is not necessarily permitted to read the

contents of the databank using data manipulation statements, this privilege
only permits access for the collection of statistics.

The SQL Statistics Statements
The SQL statistics statements UPDATE STATISTICS may be used to collect statistical
information in the areas described below. Also refer to the Mimer SQL Reference
Manual, Chapter 12, UPDATE STATISTICS for details.
Statistics may be collected for the entire database, i.e. all tables in all databanks recorded
in the same SYSDB, for tables owned by specified idents, or for specific tables.
The statement DELETE STATISTICS is used to remove the statistics collected. See
Mimer SQL Reference Manual, Chapter 12, DELETE STATISTICS for details.
Note: The database remains fully accessible while statistics are being collected (or

deleted).

138 Chapter 11 Database Statistics
When to Use the SQL Statistics Statements

Statistics for the Entire Database
To collect statistical data for all tables in the database, use the following function:

SQL> UPDATE STATISTICS;

The user must have STATISTICS privilege.
Note: Even in a database of only moderate size, collecting statistical data for all

tables is time-consuming. We recommend that you run this option in particular
at off-peak times.

Statistics for Specified Idents
To collect statistics for all base tables belonging to schemas owned by a list of specified
idents, use the following function:

SQL> UPDATE STATISTICS FOR IDENT list-of-idents;

A user requesting statistics for tables belonging to a schema owned by an ident other than
himself must have STATISTICS privilege.
To collect statistics for SYSDB, the pseudo-ident SYSTEM may be specified.

Statistics for Specified Tables
To collect statistics for a list of specified tables, use the following function:

SQL> UPDATE STATISTICS FOR TABLE list-of-tables;

The user requesting statistics for the tables specified in the list must either be the owner
of them or have STATISTICS privilege.

Secondary Index Consistency
The update statistics facility includes an automatic function which ensures that all
secondary indexes on tables contained in databanks with the TRANSACTION or LOG
option are in a consistent state.
This function is performed in a way that makes it transparent to other users of the database
and it is only performed on secondary indexes created on tables actually selected by the
UPDATE STATISTICS statement.
It will take some time to verify the consistency of a secondary index. The data dictionary
table TABLE_CONSTRAINTS can be used to determine which secondary indexes are
flagged as not consistent (shown in the column named IS_CONSISTENT).
An index which is in a consistent state will offer optimal performance when used in a
query.
All secondary indexes contained in a databank with the WORK option and those contained
in a databank that has been upgraded from Mimer SQL version 7 or 8.1 will be flagged
as not consistent.

When to Use the SQL Statistics Statements
Mimer SQL collects basic statistics for each table whenever the table is opened. These
statistics may suffice for maintaining high performance in many situations.

Mimer SQL Version 11.0 139
System Management Handbook

If optimal performance is required for an application, the SQL statistics statements should
be used to collect detailed information (this includes information on value distribution
and table size).
When this is the case, statistics should be typically updated in the following situations:
• when the size of a table has changed significantly
• when the maximum/minimum limits on values in a table have altered significantly
• when a databank has been altered from having the WORK option to having the

TRANSACTION or LOG option and contains secondary indexes
• when a databank with the TRANSACTION or LOG option contains secondary

indexes and has just been upgraded from Mimer SQL version 7 or 8.1.
The statistics information in the data dictionary is used only by the Mimer SQL compiler.
Note: Only the performance, not the result, of an SQL statement is affected by

gathering and using the statistical information and by ensuring the consistency
of secondary indexes.

140 Chapter 11 Database Statistics
When to Use the SQL Statistics Statements

Mimer SQL Version 11.0 141
System Management Handbook

Chapter 12

SQL Monitoring on
the Database Server

The SQL monitor program provides functionality for monitoring SQL statement usage on
a Mimer SQL database server. The tool can be used to locate expensive SQL statements,
or to understand which application is using what resources in the database server.

SQLMONITOR - SQL Monitoring
Syntax

SQLMONITOR is controlled by the following command-line parameters:
sqlmonitor [-u user] [-p pass] [-e prog] [-i pass] [-n secs]
[-s loops] [-l id] [-d level] [-o column] [-t rows] [-b]
[-w mode] [database]

sqlmonitor [--username=user] [--password=pass]
[--program=prog] [--using=pass] [--interval=secs]
[--stop=loops] [--sqlid=id] [--detail=level] [--order=column]
[--top=rows] [--benchmark] [--wrap=mode] [database]

sqlmonitor [-v|--version] | [-?|--help]

Command-line Arguments
Unix-style VMS-style Function

-b

--benchmark

/BENCHMARK Control two different snapshots
and compare them. Not
compatible with the interval and
stop switches.

142 Chapter 12 SQL Monitoring on the Database Server
SQLMONITOR - SQL Monitoring

-d level

--detail=level

/DETAIL=level Detail level of output. Valid
options are 1, 2 or 3. If omitted,
defaults to 1, unless at least one
sqlid switch is given, in which
case it defaults to 2.
1 = minimal amount of
information, statements
excluded.
2 = all numerical information,
statements excluded.
3 = all information, statements
included.

-e program

--program=program

/PROGRAM=program Name of a program to enter and
show statistics for. If both this
and the program password
switches are omitted, no program
will be entered and statistics will
be shown for the originally given
ident. If one of the two are given,
the other one is prompted for.

-i password

--using=password

/USING=password Password of a program to enter
and show statistics for.

-l id

--sqlid=id

/SQLID=id ID of one or more specific SQL
statements(s) to show (integer >
0). Multiple switches show
multiple statements. Will show
all statements if omitted. Will
only show a statement if the
given ident is permitted to view
that specific statement.

-n seconds

--interval=seconds

/INTERVAL=seconds The interval with which to
monitor the database, in seconds
(integer > 0). If omitted, a single
snapshot will be taken.

-o column

--order=column

/ORDER=column What column to order the result
by. If omitted, table_ops will be
used.
Valid options are:
table_ops
table_ops_per_sec
prepare_count
execute_count
server_requests
transaction_record_count
elapsed_time
sql_id
sql_statement

Mimer SQL Version 11.0 143
System Management Handbook

-p password

--password=password

/PASSWORD=password Password for ident. If the switch
is omitted the user is prompted
for a password, unless
OS_USER is specified as
described above.

-s loops

--stop=loops

/STOP=loops After how many intervals to stop
monitoring (integer > 0).
If the interval switch is given but
not the stop switch, monitoring
will continue infinitely. If the
stop switch is given but not the
interval switch, interval will
default to 10 seconds.

-t rows

--top=rows

/TOP=rows Use only the top x entries of the
result set (integer > 0). Sorting
occurs first.

-u username

--username=username

/USERNAME=username Ident name to be used when
connecting to database server. If
the switch is not given the user is
prompted for a username.
To connect using OS_USER,
give -u "", --username=""
or /USERNAME="", or leave the
username empty when
prompted.

-v

--version
/VERSION Display version information.

-w mode

--wrap=mode

/WRAP=mode If console output should be
truncated, wrapped or neither. If
omitted, the text will by default
not be altered.
Valid options are:
wrap
none
truncate

-?

--help
/HELP Display usage information and

exit.

[database] [database] Target database name. If
omitted, the environment
variable MIMER_DATABASE
is used if defined, else the default
database in SQLHOSTS is used.

144 Chapter 12 SQL Monitoring on the Database Server
SQLMONITOR - SQL Monitoring

Columns

Table operations
The number of operations that have read, inserted, updated or deleted a row in a table
when running the given SQL statement.
Note that when a secondary index is used there is one operation to retrieve the data from
the index table and one operation from the actual base table. When index lookup only is
used by the SQL optimizer the base table is not accessed.

Prepare count
The number of times the given SQL statement has been prepared for execution. This is
the number of times the SQL statement has been sent to the server to compile. If a
statement has been compiled previously the server will reuse that compilation.

Execute count
The number of times the given SQL statement has been executed. Each select statement
will increase this counter once per result set.

Server requests
The number of requests to the server that have been sent in order to run the given SQL
statement.

Transaction record count
The transaction overhead caused by running the given SQL statement. The count is the
number of rows written to the read and write set during transaction build-up. Note that
read-only transaction do not need to write any rows as the system automatically provides
a consistent view of the database.

Elapsed time
The amount of time (in seconds) the given SQL statement has spent on the server. Elapsed
time is only aggregated if the server has the "timing" setting set to "on". This setting is off
by default, but running SQLMONITOR will turn it on.

SQL ID
A serial number that the server appoints an SQL statement when it is first compiled on
the server. The ID will remain until the server closes the statement when it is removed
from the server's cache of compiled statements.
Multiple seemingly identical SQL statements can appear with different SQL IDs, if they
are run by different users on different tables, as they do not represent the same server
action.

Mimer SQL Version 11.0 145
System Management Handbook

SQL Statement
The actual SQL statement that has been run.
In the following table the effects of a SELECT that are re-opened are modelled:

Examples
The parameter options can be combined in the following ways. Each example below is
given in both VMS-style and Unix-style.
• Take and print a snapshot of the table operations and elapsed time history of all the

SQL statements that have been run by any ident on the database db_name since it
was started and are still in use or in the server's cache:
SQLMONITOR /USERNAME=SYSADM /PASSWORD=sysadm_password db_name

sqlmonitor -u SYSADM -p sysadm_password db_name

sqlmonitor --username=SYSADM --password=sysadm_password db_name

Operation Counter Comment

1 PREPARE (compile)
SELECT

1 server communication
1 prepare count

2 EXECUTE/OPEN Nothing happens here as the
operation is cached until the
first fetch.

3 First FETCH 1 server communication
1 execute
Table operations

4 Subsequent FETCH Nothing or
1 server communication
and table operations

For example, after 200 FETCH
there is one more server
communication and more table
operations.

5 CLOSE statement/cursor This operation is typically
cached. In some circumstances
there is a server
communication.

6 New EXECUTE/OPEN

7 First FETCH Same as 3

8 Subsequent FETCH Same as 4

9 ...

146 Chapter 12 SQL Monitoring on the Database Server
Authorization

• Take and print a snapshot of the table operations and elapsed time history of all the
SQL statements that have been run by the program ExampleProgram on the default
database since the database server was started. SYSADM must have execute
privilege on ExampleProgram:
SQLMONITOR /USERNAME=SYSADM /PASSWORD=sysadm_password
/PROGRAM=ExampleProgram /USING=program_password

sqlmonitor -u SYSADM -p sysadm_password -e ExampleProgram
-i program_password

sqlmonitor --username=SYSADM --password=sysadm_password
--program=ExampleProgram --using=program_password

• Take and print a snapshot with all details of the top 10 most expensive SQL
statements, based on the number of server requests, that have been compiled on the
default database by ident ExampleUser since the database server was started:
SQLMONITOR /USERNAME=ExampleUser /PASSWORD=example_password
/ORDER=server_requests /TOP=10 /DETAIL=3

sqlmonitor -u ExampleUser -p example_password -o server_requests -t 10 -d 3

sqlmonitor --username=ExampleUser --password=example_password
--order=server_requests --top=10 --detail=3

• Monitor and print numerical detail information of the SQL statements run by the
ident ExampleUser, taking a snapshot every 30 seconds and comparing it to the
previous snapshot, for a total of 1 hour (120 intervals). Truncate the console output
when it reaches the console bounds:
SQLMONITOR /USERNAME=ExampleUser /PASSWORD=example_password /INTERVAL=30
/STOP=120 /DETAIL=2 /WRAP=truncate

sqlmonitor -u ExampleUser -p example_password -n 30 -s 120 -d 2 -w truncate

sqlmonitor --username=ExampleUser --password=example_password --interval=30
--stop=120 --detail=2 --wrap=truncate

• Take a snapshot of all the numerical information on the SQL statements with ID 32
and 54 when prompted. Then take another such snapshot when prompted and
compare it to the first one, to monitor activity on the two specific statements
between the first and second points in time. Wrap the console output when it
reaches the console bounds:
SQLMONITOR /USERNAME=SYSADM /PASSWORD=sysadm_password /BENCHMARK /SQLID=32
/SQLID=54 /WRAP=wrap

sqlmonitor -u SYSADM -p sysadm_password -b -i 32 -i 54 -w wrap

sqlmonitor --username=SYSADM --password=sysadm_password --benchmark
--sqlid=32 --sqlid=54 --wrap=wrap

Authorization
The SYSADM ident will always see all SQL statements that are run by any ident, while
other idents will only see the SQL statements that they have run themselves, to prevent
unauthorized access to possibly sensitive information in the compiled SQL statements.

Mimer SQL Version 11.0 147
System Management Handbook

Chapter 13

DbAnalyzer - index
analysis

Mimer dbanalyzer is a tool to provide optimization recommendations for a database
schema, based on the analysis of primary keys, unique constraints and indexes. The
current version provides the following optimization recommendations:
• Remove unnecessary unique indexes that are duplicate with other unique indexes

or primary keys.
• Remove unnecessary unique constraints that are duplicate with any unique

indexes, other unique constraints or primary keys.
• Remove unnecessary indexes that are duplicate with other explicitly defined

indexes and unique indexes, as well as indexes implicitly defined by unique
constraints and foreign keys.

• Suggest primary keys for tables without explicitly defined primary keys, based on
the defined unique constraints and unique indexes.

The tool is also used to report the usage statistics of indexes and tables. For each index
and table, the tool summarizes how many SQL and stored procedure statements have used
the index and accessed the table, since the latest start of the server.
dbanalyzer detects and reports found column default value inconsistencies that might
cause problems in the future. For example a SMALLINT sequence used as default value
for an INTEGER primary key column stops further inserts after 32767 rows, although the
table is far from full according to the primary key. And CURRENT_USER as default for a
CHARACTER column can work fine for years, until a person who has a name with Unicode
characters starts using the system.

148 Chapter 13 DbAnalyzer - index analysis
Command syntax

Command syntax
dbanalyzer is controlled by the following command-line parameters:

dbanalyzer [-m|-s] [-u user] [-p password] [-e program] [-i programpass]
[-c schema] [-t table] [-a] [-g] [database]

dbanalyzer [-v version]

Command-line Arguments (Unix):
Argument Description

-u username

--username=username

Ident name to be used when connecting to database
server. If the switch is not given the user is prompted
for a username.
To connect using OS_USER, give -u "",
--username="", or leave the username empty when
prompted.

-m Run dbanalyzer in multi user mode.

-s Run dbanalyzer in single user mode.

-p password

--password=password

Password for ident. If the switch is omitted the user is
prompted for a password, unless OS_USER is
specified as described above.

-e program

--program=program

Name of a program to enter.

-i programpass

--using=programpass

Password of program to enter.

-c schema

--schema=schema

Name of the schema to be analyzed. If omitted, the
username is used as default schema name.

-t table

--table=table

Name of the table to be analyzed. If omitted, all tables
of the analyzed schema will be analyzed.

-g

--statistics

Report the usage statistics of tables and indexes.

-a

--analysis

Report the schema analysis of tables.
If neither -a nor -g is specified, schema analysis is
performed by default.

-v

--version

Print version information.

[database] Specifies the name of the database. If a database is not
specified, the default database will be monitored.
The default database is determined by the setting of the
MIMER_DATABASE environment variable.

Mimer SQL Version 11.0 149
System Management Handbook

Command examples
The following command analyzes all tables and their indexes in database DBNAME that
user USRNAME with a password USRPASS has access to:

dbanalyzer --username=USRNAME --password=USRPASS DBNAME

The following command reports usage statistics of all tables and their indexes in database
DBNAME that user USRNAME with a password USRPASS has access to:

dbanalyzer --username=USRNAME --password=USRPASS --statistics DBNAME

To include both schema analysis and usage statistics of the above tables and indexes:
dbanalyzer -uUSRNAME -pUSRPASS --analysis --statistics DBNAME

For all tables in a particular schema SCHNAME in the previous example:
dbanalyzer -uUSRNAME -pUSRPASS -cSCHNAME -a -q DBNAME

For a particular table TBLNAME in schema SCHNAME, in database DBNAME, that
user USRNAME has access to:

dbanalyzer -uUSRNAME -pUSRPASS -cSCHNAME -tTBLNAME -a -q DBNAME

One may also analyze the tables and indexes that a program ident PROGNAME with
password PROGPASS has access to:

dbanalyzer -uUSRNAME -pUSRPASS -ePROGNAME -iPROGPASS -cSCHNAME -tTBLNAME -a
-g DBNAME

VMS: On VMS, arguments are converted to lower case by default. To retain upper case
characters, enclose the argument in double quotes, e.g. -p"SecretPwd".

An example with output
Consider the following table created by user SYSADM in database DB:

create table TT (c1 int not null, c2 int not null, c3 int,
constraint TT_U unique (c1, c2));

create index TT_IDX1 on TT (c1, c2);
create index TT_IDX2 on TT (c3);

Note that table TT doesn't have a primary key, and TT_IDX1 is redundant because the
unique constraint TT_U defines the same index implicitly.
Assume that 11 statements have accessed table TT, 2 of them have used index TT_IDX2,
and 4 have used the implicit index created by TT_U.
Each statement may have been executed many times since the server started.
The following command is executed to analyze the table TT and report the usage of the
table and its indexes:

dbanalyzer DB -u SYSADM -p SYSADM -s SYSADM --table=TT --analysis

150 Chapter 13 DbAnalyzer - index analysis
Command syntax

The output of the example command looks as follows:
****Index and unique constraints optimization suggestions*****
Start analyzing table SYSADM.TT
 Used by 11 statements since server started
 Unique constraints:
 Unique constraint TT_U(c1, c2)
 Implicit index used by 4 statements since server started
 No redundant unique constraints are found
 No foreign keys are found
 Indexes:
 Index TT_IDX2(c3)
 Index used by 2 statements since server started
 Redundant index TT_IDX1(c1, c2)
 Index used by 0 statements since server started
 Duplicate with TT_U. To remove it, use the following SQL:
 DROP INDEX TT_IDX1 RESTRICT;
 Primary key is not defined. You may change an existing unique constraint or
index to primary key with the following SQL:
 ALTER TABLE TT DROP CONSTRAINT TT_U;
 ALTER TABLE TT ADD CONSTRAINT PK_TT PRIMARY KEY (c1,c2);

==
Usage statistics report created at 2022-05-12 15:44:01
Indexes are printed following their respective tables
--
Schema Name Object Name Type Use Count

SYSADM TT Table 11
SYSADM TT_U Index 4
SYSADM TT_IDX1 Index 0
SYSADM TT_IDX2 Index 2
==

In this example, dbanalyzer lists the implicit and explicit indexes for the table
SYSADM.TT, and checks if any of them are redundant. It identifies TT_IDX1 as a
duplicate index of the unique constraint TT_U, and provides SQL statements to remove
this index.
dbanalyzer identifies that no primary key is defined for the table. It suggests to use the
columns of an existing unique constraints as the primary key.
The tool reports how many statements have used each table and index. These numbers are
also summarized in a table in the end of the report.

Notes
A user or program ident can only see analysis of tables and indexes which it has SELECT
privilege to. However, the summarized usage statistics of each table/index contain the
statements used by all users and programs.
Only statistics for statements retained by the server is kept.

Mimer SQL Version 11.0 151
System Management Handbook

Appendix A

Executing in Single-
user Mode

Usually, users access a Mimer SQL database via a database server (multi-user mode), but
in some situations it may be necessary to restrict use of a database to a single user.
Any local database can be opened in single-user mode, provided there is no database
server currently running against the database.
Note: An application started in single-user mode will access the databank files

directly from within its own process.
This means that the operating system user who is running the application must
have access, at the operating system level, to all the existing databank files.
All new databank files created in single-user mode will typically be owned in
the operating system by that user.

File Protection in Single- and Multi-user Mode
If a database which has been created in single-user mode is to be used by a database
server, or vice versa, certain precautions must be observed with regard to the databank
files:
• Files created in single-user mode must be accessible for read and write by a

database server if the database is to be subsequently used in multi-user mode, since
databank file access is performed by the database server process. The creator of the
files should change the protection if necessary. Suitably the database server should
have exclusive access to the databank files.

• Conversely, files created in multi-user mode are created by the database server
process and will not be accessible by a specific user who needs to access the
database in single-user mode. The protection on these files can only be changed by
an operating system user who has privileges equivalent to those of the database
server process.

Note: Individual users should not generally have direct access to databank files.

Specifying Single-user Mode Access
If the database is to be accessed in single-user mode by default, the environmental
variable or logical name called MIMER_MODE should be defined as SINGLE, as shown in
the examples that follow.

152 Appendix A Executing in Single-user Mode
Accessing in Single-user Mode

If MIMER_MODE is not defined or is set to MULTI, or the database is a remote one, it will
be accessed in multi-user mode by default.
If MIMER_MODE is set to SINGLE and the default database, see The Default Database on
page 37, is set to point to a local database, the database will be opened in single-user
mode. (Remote databases will be accessible through the client/server interfaces in multi-
user mode).
Note: Many of the programs which are part of the Mimer SQL distribution support

the command-line flags -s and -m (or /SINGLE, /MULTI) which control
whether they access a database in single-user or multi-user mode.

Accessing in Single-user Mode
Mimer SQL applications that connect to a local database server when single-user access
is indicated, will dynamically include a shared library when activated. This library holds
all the functionality that normally is provided by the database server program.

Example
The following example session first connects to the INVENTORY database in single-user
mode and then connects to the STAFF database, administered by a running database
server process.

On Linux:
$ MIMER_DATABASE=INVENTORY
$ MIMER_MODE=SINGLE
$ export MIMER_DATABASE MIMER_MODE
$ bsql
SQL> .
SQL> .
SQL> exit;
$ unset MIMER_MODE
$ MIMER_DATABASE=STAFF
$ export MIMER_DATABASE
$ bsql
SQL> .
SQL> .
SQL> exit;

On OpenVMS:
$ DEFINE MIMER_DATABASE INVENTORY
$ DEFINE MIMER_MODE SINGLE
$ RUN MIMER$EXE:BSQL
SQL> .
SQL> .
SQL> exit;
$ DEASSIGN MIMER_MODE
$ DEFINE MIMER_DATABASE STAFF
$ RUN MIMER$EXE:BSQL
SQL> .
SQL> .
SQL> exit;

Mimer SQL Version 11.0 153
System Management Handbook

On Windows:
C:\> SET MIMER_DATABASE=INVENTORY
C:\> SET MIMER_MODE=SINGLE
C:\> BSQL
SQL> .
SQL> .
SQL> exit;
C:\> SET MIMER_MODE=
C:\> SET MIMER_DATABASE=STAFF
C:\> BSQL
SQL> .
SQL> .
SQL> exit;

The SINGLEDEFS Parameter File
The use of a SINGLEDEFS parameter file is optional.
When a single-user mode connection is established, the SQLPOOL and bufferpool data
areas are dynamically created.
The SQLPOOL area will grow dynamically if more space is needed, see SQLPOOL on
page 46.

--
-- Parameters for single-user system
--
Databanks 100 -- (40-1000) Max number of databanks
Tables 4000 -- (500-1000000) Max number of tables
ActTrans 50 -- (10-1000000) Max number of transactions
Pages4K 8000 -- (22-1000000) Size of 4k bufferpool region (pages)
Pages32K 800 -- (22-1000000) Size of 32k bufferpool region (pages)
Pages128K 96 -- (22-1000000) Size of 128k bufferpool region (pages)

Note: When changing parameters in the SINGLEDEFS file, always change the copy
in the database home directory. Never change the template file in the examples
directory.

Linux + VMS: To change the size of the bufferpool in single-user mode a
SINGLEDEFS file, similar to the MULTIDEFS file, should be
created in the database home directory.
A template of this file, showing the default values for the
relevant parameters, can be found in the examples directory
which is located in the Mimer SQL installation directory.

Win: The use of a SINGLEDEFS is not supported on the Windows platform.

154 Appendix A Executing in Single-user Mode
The SINGLEDEFS Parameter File

Mimer SQL Version 11.0 155
System Management Handbook

Appendix B

The SQLHOSTS File
on VMS and Linux

This appendix applies to the OpenVMS and Linux/macOS platforms only.
It describes the SQLHOSTS file which is used to list all the databases that are accessible to
a Mimer SQL application from the node on which it resides.
For general information on how to make databases accessible, refer to Registering the
Database on page 28.

The SQLHOSTS File
A line of text beginning with the character sequence -- is interpreted as a comment in the
SQLHOSTS file.
The SQLHOSTS file contains three sections, called: DEFAULT, LOCAL and REMOTE.
The names of the local databases on the current node are listed in the LOCAL section, see
LOCAL Section on page 158 and the names of the remote databases accessible from the
node are listed in the REMOTE section, see REMOTE Section on page 158.

Linux: On a Linux node, the path name of SQLHOSTS file is /etc/sqlhosts.
The program called mimsqlhosts can be used to manage the contents of the
SQLHOSTS file instead of editing it manually.
When the dbinstall program is used to install a local database on a Linux
node, an entry for it is automatically added to the LOCAL section, see LOCAL
Section on page 158, of the SQLHOSTS file on that node.
If the file is not found, a default SQLHOSTS file is automatically generated. (See
the mimhosts and sqlhosts man-pages).

VMS: On an OpenVMS node, the SQLHOSTS file can have any name and is located by
translating the logical name MIMER_SQLHOSTS. The MIMSETUP command will
define it to be:
SYS$SPECIFIC:[SYSMGR]SQLHOSTS.DAT

A default SQLHOSTS file is generated by the installation of the Mimer SQL
software.

156 Appendix B The SQLHOSTS File on VMS and Linux
The SQLHOSTS File

One of the local or remote databases can be set to be the default database for the node by
specifying its name in the DEFAULT section, see Default Section on page 158.
Database names may, in general, be up to 128 characters long and are case-insensitive.

VMS: The maximum length for the name of a database on an OpenVMS node is 30
characters.

Mimer SQL Version 11.0 157
System Management Handbook

The Default SQLHOSTS File
When the Mimer SQL system is installed on a node, the following default SQLHOSTS file
is automatically generated:
-- ---
--
-- S Q L H O S T S
-- ===============
--
-- This file contains a list of all databases, local and remote, accessible
-- from the node where the file resides.
--
-- The DEFAULT label
-- -----------------
-- Name of default database. Can be either a REMOTE or LOCAL database name.
-- Can be overridden by setting MIMER_DATABASE to the name of a database.
--
-- The LOCAL label
-- ---------------
-- A list of all local databases on the current node, containing the
-- database name and a directory specification (Path).
-- UNIX Path - database home, and directory path for databank lookup.
-- VMS Path - database home.
--
-- The REMOTE label
-- ----------------
-- A list of all remote databases containing the database name, the database
-- node, the protocol to be used, the protocol interface and the protocol
-- service to be used.
--
-- Protocol, Interface and Service may be defaulted by entering ''.
--
-- Node - network node name for computer on which the database resides.
-- Protocol - currently tcp is supported. (tcp or '' should be specified)
-- Interface - currently not used ('' should be specified).
-- Service - corresponds to the port number used in TCP/IP. The port number
-- Default is 1360, i.e. the port number reserved for MIMER.
-- On UNIX: The port number may either be a number or a name of a
-- service stored in the /etc/services file.
--
-- ===
DEFAULT:
--
-- Database
-- ---
 example_localdb
-- ===
LOCAL:
--
-- Database Path
-- ------------------ --

(Linux) SINGLE .
(VMS) SINGLE SYS$DISK:[]
(Linux) example_localdb /directory
(VMS) example_localdb DISK:[DIRECTORY]

-- ===
REMOTE:
--
-- Database Node Protocol Interface Service
-- ------------------ ------------------ -------- --------- --------------------
 example_remotedb server_nodename '' '' 1360

158 Appendix B The SQLHOSTS File on VMS and Linux
The SQLHOSTS File

Default Section
The DEFAULT section contains a single line that specifies the default database which will
be used by an application that does not explicitly specify a database to connect to, see The
Default Database on page 37.
The default database should be one of those listed in the LOCAL or REMOTE sections.

LOCAL Section
The LOCAL section contains a list of all the local databases residing on the current
machine, see The Local Database on page 28.
Each line under the LOCAL keyword should contain two fields, separated by one or more
blanks or tab characters. The first field specifies the database name.

The Mimer SQL system databank SYSDB will be located in the database home directory
and other databanks will typically be located relative to it, see Locating Databank Files
on page 9.

REMOTE Section
The REMOTE section contains a list of all accessible databases that reside on other nodes
in the network environment, see Accessing a Database Remotely on page 29.
Access to these databases is provided by using either DECNET or TCP/IP to establish a
client/server connection to the remote machine.
Each entry in the REMOTE section contains up to five fields, separated by spaces and/or
tab characters.
The DATABASE field specifies the name of the remote database.
The NODE field should specify the network node name of the remote machine. If the
TCP/IP interface is used, the IP address may be specified here.

The INTERFACE field is currently not used. Specify '' (two single quotation marks) here.

Linux: On a Linux node, the second field may be a colon (:) separated search path
specification.
The first directory in the search path is taken as the database home directory
and the other directories in the search path will be used to locate databank files
which have a file specification stored in the data dictionary without an explicit
directory.

VMS: On an OpenVMS node, the second field specifies a directory which will be the
home directory for the database.

Linux: The PROTOCOL field should specify tcp or two single quotation marks ''.

VMS: The PROTOCOL field may specify DECNET or TCP depending on the type of
network protocol that should be used to create the client/server connection. The
default, specified by two single quotation marks '', is TCP.

Mimer SQL Version 11.0 159
System Management Handbook

If using TCP/IP, the SERVICE field specifies the TCP/IP port number the database server
uses. The default is 1360, which has been reserved by Mimer Information Technology
AB for Mimer SQL client/server communication.

Remote Section Parameters
The remote section parameters are summarized below, depending on the protocol
selected. The character sequence '' is two single quotation marks and specifies the
default value for a parameter:

TCP - Linux

TCP - OpenVMS

Linux: When TCP/IP is used under Linux, the value in the SERVICE field may be the
actual port number, the name of a service stored in the /etc/services file or
two single quotation marks '' for the default value 1360.

VMS: For a Mimer SQL database server using DECNET, the SERVICE field should
contain the database name, which is also the default.
The server listens to the network object using the same name as the database.

Parameter Explanation

DATABASE Remote database name

NODE TCP/IP node name or IP number

PROTOCOL '' or TCP

INTERFACE ''

SERVICE TCP/IP_port_number or TCP/IP service name or ''.
When '' is used to specify the default SERVICE, the TCP/IP
port number 1360 will be used.

Parameter Explanation

DATABASE Remote database name

NODE TCP/IP node name or IP number.
If the name is preceded by an '@' character, a logical name
lookup will be made on the name and the translation will be
used to specify the node name.

PROTOCOL Specify either TCP or two single quotation marks ''.

160 Appendix B The SQLHOSTS File on VMS and Linux
The SQLHOSTS File

DECNET – OpenVMS Only

INTERFACE Specify either a list of connection options, separated by
commas, or two single quotation marks ''.
The connection options are:
IP=4:
Use IPv4 only
IP=6:
Use IPv6 only
MEMBER=node:
Terminate connection whenever the specified node leaves the
cluster. The node name can be preceded by an '@' character
which will cause a logical name lookup to be performed on the
name.

SERVICE TCP/IP port number or TCP/IP service name or ''.
When '' is used to specify the default SERVICE, the TCP/IP
port number 1360 will be used.

Parameter Explanation

Parameter Explanation

DATABASE Remote database name

NODE Decnet node name

PROTOCOL DECNET

INTERFACE ''

SERVICE Decnet network object or ''.
When '' is used to specify the default SERVICE, the value of
remote database name will be used.

Mimer SQL Version 11.0 161
System Management Handbook

Appendix C

The MULTIDEFS
File on VMS and

Linux
This appendix applies to the OpenVMS and Linux (including macOS) platforms only.
It describes the MULTIDEFS file which forms part of a local database definition, see The
Local Database on page 28, for a database residing on an OpenVMS or Linux node.
This file contains operational parameters for the database server for such a database and
these are read when the database server is started. It is not possible to change the
parameters for a running database server.

The MULTIDEFS Parameter File
Comments in MULTIDEFS are introduced by the character sequence --, or by the
character ! or #.
A new MULTIDEFS file can be generated by using the command:

mimcontrol -g

If the MULTIDEFS file is not found when starting a database server, the MIMCONTROL
command will create a new file and fill it with the default values for all parameters.

The actual default values used may vary and may depend on factors like machine type and
the amount of physical memory available on the machine.
The following is an example of the MULTIDEFS parameter file which may be generated
by MIMCONTROL:

Linux: On a Linux node, the MULTIDEFS file is located in the database home directory
and is called multidefs.

VMS: On an OpenVMS node, the MULTIDEFS file is located in the database home
directory and is called MULTIDEFS.DAT.

162 Appendix C The MULTIDEFS File on VMS and Linux
The MULTIDEFS Parameter File

Example of MULTIDEFS File on Linux
-- Mimer SQL version 11.0.5A parameters generated 2021-01-18 10:31
Databanks 100 # Max # of databanks (20-1000)
Tables 4000 # Max # of tables (500-1000000)
ActTrans 20000 # Max # of active trans (500-1000000)
SQLPool 1000 # Initial SQLPool (400-8388607 kb)
RequestThreads 8 # # of request threads (1-100)
BackgroundThreads 3 # # of background threads (1-100)
TcFlushThreads 1 # # of t-cache flush threads (0-20)
Users 100 # Max # of logged in users (1-5000)
DBCheck 1 # DB check, 0=index, 1=all, 2=immediate,

3=im. index, 4=im. all (0-4)
Pages4K 206867 # # of 4K bufferpool pages (11-2147480000)
Pages32K 18784 # # of 32K bufferpool pages (7-2147480000)
Pages128K 2187 # # of 128K bufferpool pages (0-2147480000)
DelayedCommit 0 # Delayed commit, 0=Off 1=On

2=Disabled (0-2)
DelayedCommitTimeout 100 # Delayed commit timeout in milliseconds

(0-60000)
GroupCommitTimeout 2 # Group commit timeout in milliseconds

(0-20)
Oper # Receivers for messages
DumpPath . # Path for dump directory
TCPPort inetd # TCP/IP port
MaxSQLPool 216000 # SQLPool max size (2400-16777215 kb)
NetworkEncryption 1 # Client/server encryption, 0=None

1=Optional, 2=Required (0-2)
MemLock 0 # Lock bpool in memory, 0=No 1=Yes (0-1)
MiniDump 1 # Small bufferpool dump (no page content),

0=No 1=Yes (0-1)
BackgroundPriority 0 # Thread priority, 0=Default, 1=Highest,

40=Lowest (0-40)
AutoStart 1 # Autostart, 0=No, 1=Yes (0-1)
DumpScript ./.dumper.sh %p # Dump Script
ServerType 3 # Server type: 3=mimexper, 7=miminm (3-9)
IOQueue 128 # Max # of concurrent I/O requests

(0-65535)

Mimer SQL Version 11.0 163
System Management Handbook

Example of MULTIDEFS File on OpenVMS
-- Mimer SQL version 11.0.3C Beta Test parameters generated 2020-05-03 22:30
Databanks 100 # Max # of databanks (20-1000)
Tables 4000 # Max # of tables (500-1000000)
ActTrans 20000 # Max # of active trans (500-1000000)
SQLPool 1000 # Initial SQLPool (400-8388607 kb)
RequestThreads 8 # # of request threads (1-100)
BackgroundThreads 3 # # of background threads (1-100)
TcFlushThreads 1 # # of t-cache flush threads (0-20)
Users 100 # Max # of logged in users (1-5000)
DBCheck 1 # DB check, 0=index, 1=all, 2=immediate,

3=im. index, 4=im. all (0-4)
Pages4K 206867 # # of 4K bufferpool pages (11-33554432)
Pages32K 18784 # # of 32K bufferpool pages (7-4194304)
Pages128K 2187 # # of 128K bufferpool pages (0-1048576)
DelayedCommit 2 # Delayed commit, 0=Off 1=On 2=Disabled

(0-2)
DelayedCommitTimeout 100 # Delayed commit timeout in

milliseconds (0-60000)
GroupCommitTimeout 2 # Group commit timeout in milliseconds

(0-20)
Oper OPER # Receivers for messages
DumpPath <> # Path for dump directory
TCPPort 1360 # TCP/IP port
MaxSQLPool 216000 # SQLPool max size (2400-16777215 kb)
MemLock 0 # Lock bpool in memory, 0=No 1=Yes (0-1)
MiniDump 1 # Small bufferpool dump (no page content)

, 0=No 1=Yes (0-1)
DECPort MULTI # Decnet network object
ProcName MULTI # Process name prefix
NetUsers 5000 # Max # of network users (1-5000)
ServPrio 5 # VMS prio for server process (0-16)
Cleanup 60 # Cleanup interval (1-10000 seconds)
Multithread 0 # Kernel thread limit (0-64)
BPResident # Bufferpool resident area name
HomeRAD - # Home RAD

MULTIDEFS Parameters
Parameter Definition

Databanks Specifies the maximum number of databank files that the
database server can have open at any one time.

Tables Specifies the maximum number of tables that can be accessed
simultaneously by the database server.

ActTrans Specifies the maximum number of transactions that can be
active in the database server.

SQLPool Initial size of the SQLPool area in K bytes. This area contains
information about each session, i.e. opened tables and
databanks, compiled SQL programs, etc. The SQLPool area
will expand automatically if it is too small, but it will not be
larger than MaxSQLPool.

RequestThreads The number of threads in the database server that can serve
client requests.

BackgroundThreads The number of background threads in the database server.

164 Appendix C The MULTIDEFS File on VMS and Linux
MULTIDEFS Parameters

TcFlushThreads Extra threads that run in the background to help clear the
transaction cache. This is beneficial for systems with long-
running transactions. The thread keeps the size down of the
transaction cache by deleting records that are no longer used.
When there are no long running transactions the cache can be
cleared efficiently without scanning the cache so in this case
the thread is not needed. Default is 1 thread. To get the same
behavior as in version 10.0 specify 0 threads for this
parameter. For very large databases with long-running
transactions more than 1 thread can be used.

Users The maximum number of users that are allowed to connect to
the database server. This parameter should not exceed the
number of users specified in the Mimer SQL license key.
This number is also used to calculate the size of the shared
memory region used for local database server
communication. About 70 Kbytes of shared memory will be
allocated for each user.

Parameter Definition

Mimer SQL Version 11.0 165
System Management Handbook

DBCheck A number which specifies what kind of check that should be
performed when a databank is opened which previously was
not closed properly.

0 - check index pages
Index pages only are checked in the foreground while
applications that access the databank waits for the
operation to complete.

1 - check data pages
A full databank check (involving index and data pages)
provides for more secure operations, but may take much
longer to execute than an index page check. When a full
check is done, the index pages are checked in the
foreground and the data pages are checked in the
background so there is a smaller effect on performance.

2 - Immediate restart, no check
This options performs no checking when the file is
opened. The system still verifies the integrity of each
page through a checksum. A few pages may have been
pre-allocated and these are not reclaimed when this
option is used. If the option is subsequently changed
these pages will be reclaimed the next time the databank
is opened.

3 - Immediate restart, check index pages
This option performs a check of all index pages in the
databank in the background. This is done concurrently
with other operations on the system.

4 - Immediate restart, check all pages
This option performs a check of all pages in the
databank in the background. This is done concurrently
with other operations on the system.

The Immediate restart options require a license key called
“Imm Restart”.
Databank checks can be avoided by always shutting down the
database server properly with the MIMCONTROL command,
especially prior to shutting down the machine.

Parameter Definition

166 Appendix C The MULTIDEFS File on VMS and Linux
MULTIDEFS Parameters

Pages4K The number of 4 Kbytes pages in the bufferpool area
containing pages from the databank files. The default value of
this parameter is 12.5% of the total RAM memory in the
machine.
VMS: There may be an OpenVMS limit set for the amount

of memory a process may allocate, this limit will not
be exceeded. Among the various OpenVMS
parameters, WSMAX is likely to be of primary
interest in connection with this limit.

Pages32K The number of 32 Kbytes pages in the bufferpool area
containing pages from the databank files. The default value of
this parameter is 8.33% of the total RAM memory in the
machine.

Pages128K The number of 128 Kbytes pages in the bufferpool area
containing pages from the databank files. The default value of
this parameter is 5% of the total RAM memory in the
machine.

Parameter Definition

Mimer SQL Version 11.0 167
System Management Handbook

DelayedCommit This option controls how quickly a transaction commit is
secured on disk. It greatly affects the performance of the
database server. For example, if a single user commits two
transactions in quick sequence the database server may use a
single I/O to secure both transactions when delayed commit is
on.
Transactions are never reordered by using the delayed commit
option. I.e. it is not possible for a later transaction to be
secured on disk before an earlier one. The database is thus
always returned to a consistent state after a machine crash.
However, if a transaction has been committed but not yet
written to disk it will be lost if the database server or machine
goes down in an uncontrolled fashion.
Transactions that use the XA transaction protocol are
automatically committed with delay commit disabled.
Delayed commit option can be set to one of the following:

0 - Default off
In this mode delayed commit is not used unless a
transaction is set to use delayed commit by the
application. This is the default.

1 - Default on
In this mode all transactions where the delay mode has
not been explicitly set are delayed. The transaction will
be secured within the time-out period specified. If other
transactions are committed before the time-out occurs
the transactions may be combined into a single I/O to
boost performance.

2 - Disabled
In this mode all transactions are secured to disk
immediately and the application will not regain control
after a commit until the transaction has been secured.
This option overrides any application settings for delay
commit.

DelayedCommitTimeout This specifies the number of milliseconds to wait before the
transaction is written to disk. If a value of zero is specified
transactions are not flushed until the server determines that
the commit set page is full. In general, this is not
recommended as transactions are likely to be lost if there is an
uncontrolled machine stop.
Default is 100 milliseconds.

Parameter Definition

168 Appendix C The MULTIDEFS File on VMS and Linux
MULTIDEFS Parameters

EnablePasswords VMS: Enable password login:
0 - password login disabled. (Only OS_USER login
possible.)
1 - password login allowed.

GroupCommitTimeout How many milliseconds to wait for other transactions to
commit before proceeding with first transaction. If another
transaction arrives within the timeout period if will be
grouped with existing transactions before they are committed
together with a single I/O rather. This improves overall
performance but the delay prolongs commits time on a system
with low load. Default is one millisecond.

Oper This parameter gives a list of host system users, i.e. operators,
or e-mail addresses that should receive e-mail notification of
serious problems with the database server.
VMS: On OpenVMS, you can also specify OPER.

This will enable that notification messages are sent to
the central operator, i.e. processes that have set:
$ REPLY/ENABLE=CENTRAL.

DumpPath This parameter may specify an alternate path for the dump
directories. The default is to create dump directories under the
database home directory.

TCPPort Specifies how the database server should handle incoming
TCP/IP connection requests. If this parameter is set to - (a
single dash), the TCP/IP capability will be disabled for the
database server.
Linux: On Linux, the TCPPort parameter is, by default, set

to inetd which means that the TCP/IP port server
program, mimtcp, will be used for establishing a
connection to any Mimer SQL database server (of
version 8 and later). In this case clients may connect
to the port to which mimtcp listens, usually 1360,
and the handshake will be passed over to the
requested Mimer SQL database server.
If a TCP/IP port number is specified, the database
server will listen directly to that port.

VMS: On OpenVMS, the TCPPort parameter is, by default,
set to the TCP/IP port number 1360. The TCP/IP port
server program, MIMTCP, will automatically be
started to listen to the given port, serving all Mimer
SQL database servers (of version 8 and later) set up to
use that port.

Parameter Definition

Mimer SQL Version 11.0 169
System Management Handbook

MaxSQLPool The maximum size (in kilobytes) of the SQLPool. The
SQLPool memory area grows dynamically, but the size will
never exceed this parameter. Use this parameter to control the
maximum virtual size (maximum page file usage) for the
database server process.

NetworkEncryption Controls the use of encryption of network communication
over TCP/IP between server and clients.

0 = Network encryption disabled
Network encryption is not supported or not used.

1 = Network encryption preferred
Network encryption is enabled for version 11 clients.
Older clients use unencrypted network communication.
When this setting is used, older clients without support
for network encryption are allowed to communicate
with the database server over TCP/IP.
Use this option when there is a mix of older and newer
clients that communicate with the database server over
TCP/IP.
This is the default value.

2 = Network encryption required
The database server requires all clients to use encrypted
communication when communicating over TCP/IP.
Clients that do not support encryption are rejected at
login with error code -18531.
Named Pipes via OS-user login is not allowed.
This option is recommended over option 1 when
possible (i.e. when there are no older clients that need to
be supported.)

MemLock A number which specifies whether the bufferpool and
communication buffers should be locked in memory (1) or not
locked in memory (0).

Minidump Small bufferpool dump (no page content).
0 = No
1 = Yes (default)

Parameter Definition

170 Appendix C The MULTIDEFS File on VMS and Linux
MULTIDEFS Parameters

BackgroundPriority Linux: Specifies if the background threads should run at a
higher priority than other server threads. Default is 0
meaning that the priority is not changed. Valid
values are between 1 and 40, where 1 is the highest
priority and 40 the lowest. A priority of 20 will give
the same priority as the default value.
During certain circumstances like in situations
where the background threads cannot manage to
shorten a transaction queue a higher priority might
help. Giving a too high priority might have
unexpected side effects.
To be able to change the thread priority Linux
capabilities is used. To allow the Mimer SQL
executable to do this the setcap command is used:
sudo setcap CAP_SYS_NICE+iep
/opt/mimersql1103-11.0.3D/bin/mimexper

To do this the libpam-cap needs to be installed,
and the user that will manage the Mimer SQL
database must be give permissions to change
priorities. This is done by adding
CAP_SYS_NICE <user> after the line that says
none * in /etc/security/capability.conf.

AutoStart Linux: By default, this parameter is set to 1 which indicates
that the database should be started automatically
when the operating system goes into multi-user
mode. If the parameter is set to 0 the database will
not be started automatically.

DumpScript Linux: If the database server goes into an erroneous and
unrecoverable state, it will produce dumps of the
current internal database structures before it goes
down. If this situation occurs, it is of great
importance for the error detection process to get a
Linux kernel stack trace from the location where the
error was located.
By defining this parameter to a command that can
produce a kernel trace, such as pstack, stack
information will be automatically generated to
mimer.log. The %p option, used in the example
above, is used to get the current process ID as a
parameter to the command given.

Parameter Definition

Mimer SQL Version 11.0 171
System Management Handbook

DECPort VMS: Specifies the DECNET network object that the
database server listens to. Each database server must
use a unique network object. The default value is the
database name.
If you set this parameter to - (a single dash), the
DECNET capability will be disabled for the database
server.

ProcName VMS: This parameter specifies the process name prefix for
the database server. (The last part of the process name
is always Srv).
Specify a maximum of 11 characters. The default
value is to use the first 11 characters of the database
name.

NetUsers VMS: This parameter specifies the number of users who can
access the database through a network connection.
The value used by the system will be the minimum of
this parameter and the Users parameter. The default
value is 5000.
Since the Users parameter can not be larger than
5000, this means that all users may be network users.

ServPrio VMS: This parameter specifies the OpenVMS priority for
the database server process.

Cleanup VMS: Specifies the time (in seconds) between the cleanup
sweeps that check for terminated database clients.

BPResident VMS: If the BPResident parameter is blank (default) the
bufferpool will be allocated in normal process
memory and is backed by the paging file. The paging
file process quota for the database server will be
increased accordingly.
If the BPResident parameter specifies a name, a
memory resident global section with this name will be
created to hold the buffer pool. Since physical
memory is used, the buffer pool will not be backed by
the paging file. Also, the working set quota of the
process does not have to include the buffer pool. This
is recommended for larger buffer pools.
To use the BPResident parameter, the user that
starts the database server must hold the
VMS$MEM_RESIDENT_USER process right.
Please see the VMS Guide for more information.

Parameter Definition

172 Appendix C The MULTIDEFS File on VMS and Linux
MULTIDEFS Parameters

Multithread VMS: Multithread can be used to limit the number of kernel
threads used by a database server. When running
several instances of Mimer servers on a machine with
a large number of cores, it can be beneficial to limit
the number of kernel threads (and the number of
cores) each database server can use.
The default value is zero, which means that the
number of kernel threads are not limited.
This feature requires OpenVMS 8.4 or later.

HomeRAD VMS: The parameter HomeRAD can be used to specify a
Home RAD (Resource Affinity Domain) for the
database server process. If a server hosts multiple
Mimer database servers, it can be beneficial to start
the servers in different RAD’s.
An article in OpenVMS technical Journal V16 about
RAD support on Integrity servers can be found here:
https://h41379.www4.hpe.com/openvms/journal/v16/rad.pdf

The default value of the HomeRAD parameter is - (a
minus sign), which means that no HomeRAD is set.
By specifying a number, the database server process
will use the specified RAD as its home RAD.
If you specify a Home RAD and also specify a
memory resident global section (parameter
BPResident), you should create the section in the
same RAD.

ServerType This option decides which Mimer SQL database server
program that should be started to operate the database files
for the database:

3 - mimexper
The Mimer SQL Experience database server. This is the
standard database server. See Mimer SQL Experience
Database Server on page 43.

7- miminm
The Mimer SQL In-memory database server. See Mimer
SQL In-memory Database Server on page 44.

Parameter Definition

https://h41379.www4.hpe.com/openvms/journal/v16/rad.pdf

Mimer SQL Version 11.0 173
System Management Handbook

IOQueue Linux: Specifies the maximum number of concurrent IO
requests queued to the operating system. Default is
128, but more advanced disk systems such as SANs,
battery backed caching IO controllers, PCI Express
connected SSDs and NVMe SSDs can make use of
larger queues. This can give a significantly higher
database performance. However, specifying a too
large queue can overload the IO subsystems.
Maximum queue length is 65535.

Parameter Definition

174 Appendix C The MULTIDEFS File on VMS and Linux
MULTIDEFS Parameters

Mimer SQL Version 11.0 175
System Management Handbook

Appendix D

Data Dictionary
Tables

This appendix documents the organization of the data dictionary tables, which are stored
in the databank SYSDB.
The tables are created by the SDBGEN program when the system is created. The tables are
created in a schema called SYSTEM and are thus effectively owned by a pseudo ident
called SYSTEM.
The database administration ident SYSADM is granted SELECT access on the dictionary
tables with the WITH GRANT OPTION. No other user may read the data dictionary base
tables unless authorized to do so by SYSADM.
A set of system views is defined on the data dictionary tables when the system is installed,
see the Mimer SQL Reference Manual, Chapter 13, Data Dictionary Views for more
information).
The logical group PUBLIC is granted SELECT access on these views, so that any user may
read the dictionary information presented in the views. Many of the view definitions
restrict the information presented to descriptions of objects and privileges accessible to
the current user.
Note: If SYSADM reads the contents of such a view, the result shows only the objects

and privileges to which SYSADM has access. In order to gain information on
inaccessible objects and privileges, SYSADM must read the contents of the
dictionary base tables directly.

The SYSADM ident may define installation-specific views on the data dictionary tables to
supplement the system-defined views. Such views may be tailor-made for the installation
or system in use, and SELECT access on the views may be granted to limited user groups
if desired.
All maintenance of the data dictionary is performed by internal routines and is invisible
to the user. No user, including SYSADM, may alter the contents of the data dictionary
directly.
Note: Mimer reserves the right to change the internal organization of the data

dictionary, without maintaining backward compatibility with user-written
application programs which read the data dictionary tables directly.

176 Appendix D Data Dictionary Tables

Summary of Data Dictionary Tables

Table name Description

SYSTEM.API_FUNCTION Translation of id to function or
module name.

SYSTEM.AST_CODES Binary representation of the
search condition of views in
the database (for internal use).

SYSTEM.AST_SOURCES Textual representation of view
definitions and tables and
domains with check
constraints.

SYSTEM.ATTRIBUTES Attributes of user-defined
types.

SYSTEM.CHAR_SETS Character sets in the database.

SYSTEM.CHECK_CONSTRAINTS Check constraints defined for
tables and domains.

SYSTEM.COLLATE_DEFS Collation definitions.

SYSTEM.COLLATIONS Character collations in the
database.

SYSTEM.COLUMN_OBJECT_USE Columns that depend on other
database objects.

SYSTEM.COLUMN_PRIVILEGES Instances of privileges granted
on a column.

SYSTEM.COLUMNS Columns in tables or views.

SYSTEM.COMMENTS Comments on objects.

SYSTEM.DATABANKS Databanks in the database.

SYSTEM.DIRECT_SUPERTYPES Direct supertypes in the
database.

SYSTEM.DOMAIN_CONSTRAINTS Constraints defined for
domains.

SYSTEM.DOMAINS Domains in the database.

SYSTEM.EXEC_STATEMENTS Precompiled statements.

SYSTEM.FIPS_FEATURES Details about all FIPS features.

SYSTEM.FIPS_SIZING Details about FIPS limits.

SYSTEM.HEURISTICS Details about heuristics.

SYSTEM.KEY_COLUMN_USAGE Columns in an index or in a
primary, unique or foreign key.

Mimer SQL Version 11.0 177
System Management Handbook

SYSTEM.LEVEL2_RESTRICT Restrictions for domains legal
for use by DB level 2.

SYSTEM.LEVEL2_VIEWCOL Columns of views acceptable
by DB level 2.

SYSTEM.LEVEL2_VIEWRES Restrictions for DB level 2.

SYSTEM.LIBRARIES External libraries.

SYSTEM.LOGINS OS_USER logins for user
idents.

SYSTEM.MANYROWS Dummy table with more than
one row.

SYSTEM.MESSAGE Translation of message code to
message text.

SYSTEM.METHOD_SPECIFICATION_PARAMETERS Method specification
parameters.

SYSTEM.METHOD_SPECIFICATIONS Method specifications.

SYSTEM.MODULES SQL-server modules in the
database.

SYSTEM.NANO_DATABANKS (Currently not used.)

SYSTEM.NANO_DESCRIPTORS (Currently not used.)

SYSTEM.NANO_OBJECTS (Currently not used.)

SYSTEM.NANO_ROUTINE_USE (Currently not used.)

SYSTEM.NANO_USERS (Currently not used.)

SYSTEM.OBJECT_COLUMN_USE Columns referenced by other
database objects.

SYSTEM.OBJECT_OBJECT_USE Objects that have a
dependency on another object.

SYSTEM.OBJECT_PROGRAMS Information about predefined
executable statements for table
operations and routines.

SYSTEM.OBJECTS Objects in the database.

SYSTEM.ONEROW Dummy table containing one
row.

SYSTEM.PARAMETERS Parameters of routines in the
database.

SYSTEM.REFER_CONSTRAINTS Referential constraints in the
database.

Table name Description

178 Appendix D Data Dictionary Tables

SYSTEM.ROUTINES Procedures and user-defined
functions in the database.

SYSTEM.SCHEMATA Schemas in the database.

SYSTEM.SEQUENCE_VALUE_TABLE Current values of sequences.

SYSTEM.SEQUENCES Sequences in the database.

SYSTEM.SERVER_INFO Attributes of the current
database system or server.

SYSTEM.SEVERITY Severity levels and optional
module for error codes.

SYSTEM.SOURCE_DEFINITION Source definitions for defaults,
check constraints, views,
modules, procedures, functions
and triggers.

SYSTEM.SPECIFIC_NAMES Specific names of the routines
in the database.

SYSTEM.SQL_CONFORMANCE SQL functionality.

SYSTEM.SQL_LANGUAGES SQL standards and SQL
dialects supported.

SYSTEM.STATEMENT_DESCRIPTORS Compiled code for statements.

SYSTEM.STATEMENT_ROUTINE_USE Compiled routine used by
precompiled statements.

SYSTEM.SYNONYMS Synonyms and shadows in the
database.

SYSTEM.TABLE_CONSTRAINTS Table constraints in the
database.

SYSTEM.TABLE_PRIVILEGES Instances of privileges granted
on a table.

SYSTEM.TABLE_TYPES The types of table supported.

SYSTEM.TABLES Tables and views in the
database.

SYSTEM.TRANSLATIONS Character translations in the
database.

SYSTEM.TRIGGERED_COLUMNS Table columns explicitly
specified in an UPDATE
trigger event.

SYSTEM.TRIGGERS Triggers in the database.

SYSTEM.TYPE_INFO Information about data types
supported.

Table name Description

Mimer SQL Version 11.0 179
System Management Handbook

SYSTEM.USAGE_PRIVILEGES Instances of privileges which
grant the right to use a database
object.

SYSTEM.USER_DEF_TYPES User-defined types in the
database.

SYSTEM.USERS Idents (GROUP, PROGRAM or
USER) in the database.

SYSTEM.VIEWS Views in the database.

Table name Description

180 Appendix D Data Dictionary Tables
SYSTEM.API_FUNCTION

SYSTEM.API_FUNCTION
Records translations of id to function or module name.

Primary key: MODULEID, API_FUNCTION

SYSTEM.AST_CODES
Records the binary representation of the search condition of views in the database (for
internal use).

Primary key: AST_SYSID, AST_VERSION, STRUCT_VERSION, SEQUENCE_NO

SYSTEM.AST_SOURCES
Records the textual representation of view definitions and domains or tables with check
constraints in the database (for internal use).

Primary key: ASTS_SYSID, SEQUENCE_NO

Column name Data type Description

MODULEID INTEGER System identifier for module.

API_FUNCTION INTEGER System identifier for function.

TEXT CHAR(40) Name of the function or module.

Column name Data type Description

AST_SYSID INTEGER System identifier for the view.

AST_VERSION INTEGER Current AST-revision version number.

STRUCT_VERSION INTEGER Compiler version number.

SEQUENCE_NO INTEGER Sequence number within representation.

AST_LENGTH INTEGER Length of binary data in AST_CODE.

AST_CODE VARCHAR(1200) Binary representation of the view search
condition.

Column name Data type Description

ASTS_SYSID INTEGER System identifier for the object
which the definition represents.

SEQUENCE_NO INTEGER Sequence number within
representation.

ASTS_LENGTH INTEGER Length of representation.

ASTS_SOURCE NCHAR VARYING(400) Textual representation of view,
domain or table.

Mimer SQL Version 11.0 181
System Management Handbook

SYSTEM.ATTRIBUTES
Records user-defined type attributes.

Column name Data type Description

UDT_SYSID INTEGER System identifier for the
user-defined type, to
which the attribute
belongs.

ATTRIBUTE_ID INTEGER System identifier for the
attribute.

ATTRIBUTE_NAME NCHAR_VARYING(128) Attribute name.

ORDINAL_POSITION INTEGER The ordinal position of the
attribute in the user-
defined type.
The first attribute is
number 1.

COLLATION_SYSID INTEGER System identifier for the
collation used by the
attribute.

CHARSET_SYSID INTEGER System identifier for the
attribute’s character set.

ATTRIBUTE_UDT_SYSID INTEGER System identifier for the
attribute’s data type, if
user-defined type.

182 Appendix D Data Dictionary Tables
SYSTEM.ATTRIBUTES

DATA_TYPE VARCHAR(30) The data type of the
attribute. Can be one of the
following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE
OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER
VARYING
NATIONAL CHAR LARGE
OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types,
this is a character string
specifying the interval
qualifier for the named
interval data type, see the
Mimer SQL Reference
Manual.
For other data types it is
the null value.

INTERNAL_TYPE INTEGER System identifier for data
type.

Column name Data type Description

Mimer SQL Version 11.0 183
System Management Handbook

CHAR_MAX_LENGTH BIGINT For CHARACTER, BINARY,
CHARACTER LARGE
OBJECT and BINARY
LARGE OBJECT data types,
this shows the maximum
length in characters or
bytes as appropriate.
For all other data types it is
the null value.

CHAR_OCTET_LENGTH BIGINT For a CHARACTER,
BINARY, CHARACTER
LARGE OBJECT and
BINARY LARGE OBJECT
data types, this shows the
maximum length in octets.
For all other data types it is
the null value. (For single
octet character sets, this is
the same as
CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types,
this shows the total
number of decimal digits
allowed in the column.
For all other data types it is
the null value.
NUMERIC_PREC_RADIX
indicates the units of
measurement.

NUMERIC_SCALE INTEGER This defines the total
number of significant
digits to the right of the
decimal point. For
INTEGER and SMALLINT,
this is 0. For CHARACTER,
VARCHAR, DATETIME,
FLOAT, INTERVAL, REAL
and DOUBLE PRECISION
data types, it is the null
value.

Column name Data type Description

184 Appendix D Data Dictionary Tables
SYSTEM.ATTRIBUTES

NUMERIC_PREC_RADIX INTEGER For numeric data types, the
value 10 is shown because
NUMERIC_PRECISION
specifies a number of
decimal digits.
For all other data types it is
the null value.
NUMERIC_PRECISION
and
NUMERIC_PREC_RADIX
can be combined to
calculate the maximum
number that the column
can hold.

DATETIME_PRECISION INTEGER For DATE, TIME,
TIMESTAMP and
INTERVAL data types, this
column contains the
number of digits of
precision for the fractional
seconds component.
For other data types it is
the null value.

INTERVAL_PRECISION INTEGER For INTERVAL data types,
this is the number of
significant digits for the
interval leading precision,
see the Mimer SQL
Reference Manual.
For other data types it is
the null value.

INTERNAL_OFFSET INTEGER Internal offset for attribute
in type.

IS_NULLABLE BOOLEAN Nullability attribute
TRUE = The attribute can
be null
FALSE = The attribute can
not be null

OBSERVER_METHOD INTEGER System identifier for
observer method for
attribute.

MUTATOR_METHOD INTEGER System identifier for
mutator method for
attribute.

Column name Data type Description

Mimer SQL Version 11.0 185
System Management Handbook

Primary key: UDT_SYSID, ATTRIBUTE_ID
Unique constraint: UDT_SYSID, ORDINAL_POSITION
Unique constraint: UDT_SYSID, ATTRIBUTE_NAME

SYSTEM.CHAR_SETS
Records character sets in the database.

Primary key: CHARSET_SYSID

OBSERVER_METHOD_
SPECIFICATION

INTEGER System identifier for
observer method
specification for attribute.

MUTATOR_METHOD_
SPECIFICATION

INTEGER System identifier for
mutator method
specification for attribute.

INTERNAL_LENGTH INTEGER Internal length in bytes of
attribute.

AS_LOCATOR BOOLEAN One of:
TRUE = declared as locator
FALSE = not locator

Column name Data type Description

Column name Data type Description

CHARSET_SYSID INTEGER The system identifier for the character
set.

FORM_OF_USE VARCHAR(128) A user-defined name that indicates the
form-of-use of the character set.

NUMBER_OF_CHARS INTEGER Number of characters in the character
set.

DEF_COLLATE_SYSID INTEGER System identifier for the character
collation.

186 Appendix D Data Dictionary Tables
SYSTEM.CHECK_CONSTRAINTS

SYSTEM.CHECK_CONSTRAINTS
Records check constraints defined for tables and domains in the database.

Primary key: CONSTRAINT_SYSID

SYSTEM.COLLATE_DEFS
Records collation definitions in the database.

Primary key: COLLATION_SYSID, COLLATION_SEQNO

Column name Data type Description

CONSTRAINT_SYSID INTEGER System identifier for the
check constraint.

CHECK_CLAUSE NCHAR VARYING(200) The text of the search
condition of the check
constraint.
If the text is too long or null
value, it will be stored in the
SOURCE_DEFINITION
table.

Column name Data type Description

COLLATION_SYSID INTEGER System identifier for the
collation.

COLLATION_SEQNO INTEGER Sequence number for each
row of a definition (starts by
1).

COLLATION_TYPE INTEGER Internal identification for the
base of the collation.

FROM_COLLATION_SYSID INTEGER System identifier for the
collation on which this
collation is based.

COLLATION_DEF_CHAR_LENGTH INTEGER Total length of the collation
definition in number of
characters.

COLLATION_DEF_CHAR_OFFSET INTEGER Offset to where the delta
string for this collation starts
in the definition.

COLLATION_DEF NCHAR
VARYING(400)

Complete collation
definition for this collation
(i.e. including the base
collation).

Mimer SQL Version 11.0 187
System Management Handbook

SYSTEM.COLLATIONS
Records character collations in the database.

Primary key: COLLATION_SYSID

SYSTEM.COLUMNS
Records table and view columns in the database.

Column name Data type Description

COLLATION_SYSID INTEGER System identifier for the collation.

CHARSET_SYSID INTEGER System identifier for the character set.

PAD_ATTRIBUTE VARCHAR(20) One of the following values:
NO PAD = the collation has the no pad
attribute PAD SPACE = the collation has the
pad space attribute.

Column name Data type Description

TABLE_SYSID INTEGER System identifier for the table or
view.

COLUMN_ID INTEGER Column identifier.

COLUMN_NAME NCHAR
VARYING(128)

The name of the table or view
column.

ORDINAL_POSITION INTEGER The ordinal position of the column in
the table. The first column in the
table is number 1.

DOMAIN_SYSID INTEGER System identifier for the domain used
by the column.

COLLATION_SYSID INTEGER System identifier for the collation
used by the column.

188 Appendix D Data Dictionary Tables
SYSTEM.COLUMNS

DATA_TYPE VARCHAR(30) Identifies the data type of the
column.
Can be one of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the
interval qualifier for the named
interval data type, see the Mimer SQL
Reference Manual.
For other data types it is the null
value.

INTERNAL_TYPE INTEGER System identifier for the internal data
type.

CHAR_MAX_LENGTH BIGINT For CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
characters or bytes as appropriate.
For all other data types it is the null
value.

Column name Data type Description

Mimer SQL Version 11.0 189
System Management Handbook

CHAR_OCTET_LENGTH BIGINT For a CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
octets.
For all other data types it is the null
value. (For single octet character
sets, this is the same as
CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of decimal digits
allowed in the column.
For all other data types it is the null
value. NUMERIC_PREC_RADIX
indicates the units of measurement.

NUMERIC_SCALE INTEGER For NUMERIC data types, this shows
the total number of significant digits
to the right of the decimal point. For
INTEGER values this is 0. For all
other types, it is the null value.

NUMERIC_PREC_RADIX INTEGER For NUMERIC data types, the value 10
is shown because
NUMERIC_PRECISION specifies a
number of decimal digits. For all
other data types it is the null value.
NUMERIC_PRECISION and
NUMERIC_PREC_RADIX can be
combined to calculate the maximum
number that the column can hold.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
interval data types, this column
contains the number of digits of
precision for the fractional seconds
component.
For other data types it is the null
value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision, see the
Mimer SQL Reference Manual.
For other data types it is the null
value.

Column name Data type Description

190 Appendix D Data Dictionary Tables
SYSTEM.COLUMNS

IS_NULLABLE BOOLEAN One of:
FALSE = the column is not nullable,
according to the rules in the
international standard
TRUE = the null value is allowed in
the column.

IS_UPDATABLE BOOLEAN One of:
FALSE = the column is not updatable
TRUE = the column is updatable.

IS_INSTEAD_OF BOOLEAN One of:
FALSE = the updatability of the
column does not depend on an
instead of trigger
TRUE = the updatability of the
column depends on an instead of
trigger.

INTERNAL_LENGTH INTEGER Internal length in bytes of value.

INTERNAL_INDEX INTEGER Internal index for value in record.

INTERNAL_OFFSET INTEGER Internal offset for value in record.

INTERNAL_VC_OFFSET INTEGER Internal offset for field containing
actual length for a varying length
item.

CHARSET_SYSID INTEGER System identifier for the character set
used by the column.

UDT_SYSID INTEGER System identifier for a user-defined
type.

COLUMN_CARD BIGINT Number of unique values in column.

COLUMN_CARD_NONULL BIGINT Number of values in column that are
not null.

COLUMN_LOW_VALUE BINARY(16) Lowest value in column.

COLUMN_HIGH_VALUE BINARY(16) Highest value in column.

Column name Data type Description

Mimer SQL Version 11.0 191
System Management Handbook

Primary key: TABLE_SYSID, COLUMN_ID
Unique constraint: COLUMN_NAME, TABLE_SYSID
Unique constraint: TABLE_SYSID, ORDINAL_POSITION
Secondary index: TABLE_SYSID, INTERNAL_INDEX, INTERNAL_OFFSET

COLUMN_DEFAULT NCHAR
VARYING(200)

This shows the default value for the
column.
If the default value is a CHARACTER
string, the value shown is the string
enclosed in single quotes.
If the default value is a NUMERIC
LITERAL, the value is shown in its
original character representation
without enclosing quotes.
If the default value is a DATE, TIME
or TIMESTAMP, the value shown is
the appropriate keyword (e.g. DATE)
followed by the literal representation
of the value enclosed in single
quotes, see the Mimer SQL Reference
Manual for a description of DATE,
TIME and TIMESTAMP literals).
If the default value is a pseudo-
literal, the value shown is the
appropriate keyword (e.g.
CURRENT_DATE) without enclosing
quotes.
If the default value is the null value,
the value shown is the keyword NULL
without enclosing quotes.
If the default value cannot be
represented without truncation, then
a zero-length string is stored.
If no default value was specified then
its value is the null value.
The value of COLUMN_DEF is
syntactically suitable for use in
specifying default-value in a
CREATE TABLE or ALTER TABLE
statement.

Column name Data type Description

192 Appendix D Data Dictionary Tables
SYSTEM.COLUMN_OBJECT_USE

SYSTEM.COLUMN_OBJECT_USE
Records table or view columns that depend on other objects in the database.
.

Primary key: OBJECT_SYSID, TABLE_SYSID, COLUMN_ID
Secondary index: TABLE_SYSID, COLUMN_ID

SYSTEM.COLUMN_PRIVILEGES
Records instances of privileges granted on a column.

Primary key: TABLE_SYSID, COLUMN_ID, PRIVILEGE_TYPE, GRANTEE_SYSID,
GRANTOR_SYSID

Secondary index: GRANTEE_SYSID
Secondary index: GRANTOR_SYSID

Column name Data type Description

OBJECT_SYSID INTEGER System identifier for the object on which
the column depends.

TABLE_SYSID INTEGER System identifier for the table or view.

COLUMN_ID INTEGER Id for the column.

Column name Data type Description

TABLE_SYSID INTEGER System identifier for the table or view.

COLUMN_ID INTEGER The id of the table or view column.

PRIVILEGE_TYPE VARCHAR(20) One of:
INSERT
REFERENCES
SELECT
UPDATE.

GRANTEE_SYSID INTEGER The sysid of the ident to whom the privilege
was granted.

GRANTOR_SYSID INTEGER The sysid of the ident granting the privilege.

IS_GRANTABLE BOOLEAN One of:
FALSE = WITH GRANT OPTION is not held
for the privilege
TRUE = WITH GRANT OPTION is held for
the privilege.

IS_INSTEAD_OF BOOLEAN One of:
FALSE = The privilege has been granted
explicitly
TRUE = The privilege is granted because an
instead of trigger has been defined on the
view to which the column belongs.

Mimer SQL Version 11.0 193
System Management Handbook

SYSTEM.COMMENTS
Comments on objects in the database.

Primary key: OBJECT_SYSID, COLUMN_ID

SYSTEM.DATABANKS
Records the databanks in the database.

Column name Data type Description

OBJECT_SYSID INTEGER System identifier for object.

COLUMN_ID INTEGER Column ordinal position, 0 if comment is
not on column.

COMMENT NCHAR
VARYING(254)

Comment.

Column name Data type Description

DATABANK_SYSID INTEGER System identifier for the databank.

DATABANK_SEQNO INTEGER The shadowing sequence number for
the databank.

DATABANK_FILENO INTEGER The file number of the databank file.

DATABANK_NAME NCHAR
VARYING(128)

The name of the databank.

SHADOW_NAME NCHAR
VARYING(128)

The shadow name if the databank is a
shadow.

DATABANK_FILENAME NCHAR
VARYING(256)

The path name for the databank file.

DATABANK_TYPE VARCHAR(20) Indicates type of transaction handling:
LOG = transaction handling with
logging
READ ONLY = allows read operations
only
TEMPORARY = work databank (SQLDB)
TRANSACTION = transaction handling
without logging
WORK = transaction handling not used

IS_MASTER BOOLEAN One of:
FALSE = the databank is a shadow
TRUE = the databank is a master.

IS_ONLINE BOOLEAN One of:
FALSE = the databank is OFFLINE
TRUE = the databank of ONLINE.

194 Appendix D Data Dictionary Tables
SYSTEM.DIRECT_SUPERTYPES

Primary key: DATABANK_SYSID, DATABANK_SEQNO, DATABANK_FILENO
Unique constraint: SHADOW_NAME, DATABANK_FILENO
Secondary index: DATABANK_NAME, DATABANK_SEQNO

SYSTEM.DIRECT_SUPERTYPES
Contains information about inheritance relation between user-defined types. (Currently
not used.)

Primary key: UDT_SYSID, UDT_SUPERTYPE_SYSID
Secondary index: UDT_SUPERTYPE_SYSID

LOBDIR_SYSID INTEGER System identifier for the large object
directory in the databank.

LOBDATA_SYSID INTEGER System identifier for the large object
table in the databank

MAXSIZE BIGINT Maximum size for databank file, kilo
bytes

GOALSIZE BIGINT Ideal size for databank file, kilo bytes

MINSIZE BIGINT Minimum size for databank file, kilo
bytes

IS_REMOVABLE BOOLEAN One of:
FALSE = databank is not removable
TRUE = databank is removable

BACKUPED TIMESTAMP(2) Last date for backup, currently always
set to null

SEQTABLE_SYSID INTEGER System id for the sequence table.
Null if no sequence in databank.

Column name Data type Description

Column name Data type Description

UDT_SYSID INTEGER System identifier for the user-defined
type.

UDT_SUPERTYPE_SYSID INTEGER System identifier for user-defined type
used in inheritance.

Mimer SQL Version 11.0 195
System Management Handbook

SYSTEM.DOMAINS
Records the domains in the database.

Column name Data type Description

DOMAIN_SYSID INTEGER System identifier for the domain.

COLLATION_SYSID INTEGER System identifier for the collation for
a domain associated with a character
set.

CHARSET_SYSID INTEGER System identifier for the character set.

DATA_TYPE VARCHAR(30) Identifies the data type of the domain.
Can be one of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the
interval qualifier for the named
interval data type, see the Mimer SQL
Reference Manual.
For other data types it is the null
value.

INTERNAL_TYPE INTEGER System identifier for the internal data
type.

196 Appendix D Data Dictionary Tables
SYSTEM.DOMAINS

CHAR_MAX_LENGTH BIGINT For CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
characters or bytes as appropriate.
For all other data types it is the null
value.

CHAR_OCTET_LENGTH BIGINT For a CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
octets.
For all other data types it is the null
value. (For single octet character sets,
this is the same as
CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of decimal digits
allowed in the column.
For all other data types it is the null
value. NUMERIC_PREC_RADIX
indicates the units of measurement.

NUMERIC_SCALE INTEGER This defines the total number of
significant digits to the right of the
decimal point.
For INTEGER and SMALLINT, this is
0.
For CHARACTER, VARCHAR,
DATETIME, FLOAT, INTERVAL, REAL
and DOUBLE PRECISION data types,
it is the null value.

NUMERIC_PREC_RADIX INTEGER For NUMERIC data types, the value 10
is shown because
NUMERIC_PRECISION specifies a
number of decimal digits.
For all other data types it is the null
value.
NUMERIC_PRECISION and
NUMERIC_PREC_RADIX can be
combined to calculate the maximum
number that the column can hold.

Column name Data type Description

Mimer SQL Version 11.0 197
System Management Handbook

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
interval data types, this column
contains the number of digits of
precision for the fractional seconds
component.
For other data types it is the null
value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision, see the
Mimer SQL Reference Manual.
For other data types it is the null
value.

INTERNAL_LENGTH INTEGER Internal length in bytes of value.

Column name Data type Description

198 Appendix D Data Dictionary Tables
SYSTEM.DOMAINS

Primary key: DOMAIN_SYSID

DOMAIN_DEFAULT NCHAR
VARYING(200)

This shows the default value for the
domain.
If the default value is a character
string, the value shown is the string
enclosed in single quotes.
If the default value is a numeric
literal, the value is shown in its
original character representation
without enclosing quotes.
If the default value is a DATE, TIME or
TIMESTAMP, the value shown is the
appropriate keyword (e.g. DATE)
followed by the literal representation
of the value enclosed in single quotes,
see Mimer SQL Reference Manual for
a description of DATE, TIME and
TIMESTAMP literals.
If the default value is a pseudo-literal,
the value shown is the appropriate
keyword (e.g. CURRENT_DATE)
without enclosing quotes.
If the default value is the null value,
the value shown is the keyword NULL
without enclosing quotes.
If the default value cannot be
represented without truncation, then a
zero-length string is stored.
If no default value was specified then
its value is the null value.
The value of DOMAIN_DEFAULT is
syntactically suitable for use in
specifying default-value in a
CREATE TABLE or ALTER TABLE
statement.

ANY_CONSTRAINT BOOLEAN One of:
FALSE = There are no constraints for
the domain
TRUE = There are constraints for the
domain.

IS_LEVEL2_APPROVED BOOLEAN One of:
FALSE = Tables using this domain can
not be used with the level 2 interface
TRUE = The use of this domain does
not prohibit the table being used with
the level 2 interface.

Column name Data type Description

Mimer SQL Version 11.0 199
System Management Handbook

SYSTEM.DOMAIN_CONSTRAINTS
Records the constraints defined for domains in the database.
.

Primary key: DOMAIN_SYSID, CONSTRAINT_SYSID
Secondary index: CONSTRAINT_SYSID

SYSTEM.EXEC_STATEMENTS
Records precompiled statements in the database.

Primary key: STATEMENT_SYSID

Column name Data type Description

DOMAIN_SYSID INTEGER System identifier for the domain.

CONSTRAINT_SYSID INTEGER System identifier for the constraint.

IS_DEFERRABLE BOOLEAN One of:
FALSE = the constraint is not deferrable.
TRUE = the constraint is deferrable.

INITIALLY_DEFERRED BOOLEAN One of:
FALSE = the constraint is not initially
deferred
TRUE = the constraint is initially deferred.

Column name Data type Description

STATEMENT_SYSID INTEGER System identifier for the
precompiled statement.

STATEMENT_TYPE INTEGER Type of statement (internal
value).

STATEMENT_SOU_LENGTH INTEGER Length of source text in
characters.

STATEMENT_SOURCE NCHAR
VARYING(200)

Source text for the precompiled
statement. If the length exceeds
200 characters, this value is null
and the source text is stored in
SOURCE_DEFINITION.

INLINE BOOLEAN One of:
FALSE = the statement is not
inline
TRUE = the statement is inline.

200 Appendix D Data Dictionary Tables
SYSTEM.FIPS_FEATURES

SYSTEM.FIPS_FEATURES
Lists details of all FIPS features.

Primary key: FEATURE_ID

SYSTEM.FIPS_SIZING
Lists details about FIPS limits.

Primary key: SIZING_ID

Column name Data type Description

FEATURE_ID SMALLINT Identification number of the FIPS feature.

FEATURE_NAME VARCHAR(50) The name of the FIPS feature.

CLASSIFICATION VARCHAR(12) The conformance level of the feature.
One of:
TRANSITIONAL
INTERMEDIATE
FULL.

IS_SUPPORTED BOOLEAN One of:
TRUE = Mimer SQL supports the feature
FALSE = Mimer SQL does not support
the feature.

IS_VERIFIED BOOLEAN One of:
TRUE = Mimer SQL support for the
feature has been tested and verified
FALSE = Mimer SQL support for the
feature has not been verified.

FEATURE_COMMENTS VARCHAR(100) Comments about the feature.

Column name Data type Description

SIZING_ID SMALLINT Identification number for limit.

DESCRIPTION VARCHAR(50) Description of limit.

ENTRY_VALUE INTEGER Limit for entry SQL.

INTERMEDIATE_VALUE INTEGER Limit for intermediate SQL.

VALUE_SUPPORTED INTEGER Limit for Mimer SQL.

SIZING_COMMENTS VARCHAR(100) Comments for limit.

Mimer SQL Version 11.0 201
System Management Handbook

SYSTEM.HEURISTICS
Holds information about distributed transactions.

Primary key: COMMIT_ID

SYSTEM.KEY_COLUMN_USAGE
Records columns in an index or in a primary, unique or foreign key.

Column name Data type Description

COMMIT_ID BINARY(128)

HEURISTIC_OPCODE INTEGER

COMMIT_PROTOCOL INTEGER

FORMAT_ID INTEGER

GTRID_LENGTH INTEGER

BQUAL_LENGTH INTEGER

Column name Data type Description

TABLE_SYSID INTEGER System identifier for the table.

CONSTRAINT_SYSID INTEGER System identifier for the table constraint.

ORDINAL_POSITION INTEGER The ordinal position of the column in the
table.
The first column in the table is number 1.

COLUMN_ID INTEGER The id of the table column.

KEY_TYPE VARCHAR(20) One of:
FOREIGN KEY
INDEX
INTERNAL KEY
PRIMARY KEY
UNIQUE.

IS_UNIQUE BOOLEAN One of:
FALSE = the column may contain non-
unique values
TRUE = the column is constrained to
contain only unique values.

IS_ASCENDING BOOLEAN One of:
FALSE = the column is indexed in
descending value order
TRUE = the column is indexed in
ascending value order.

202 Appendix D Data Dictionary Tables
SYSTEM.LEVEL2_RESTRICT

Primary key: TABLE_SYSID, CONSTRAINT_SYSID, ORDINAL_POSITION
Unique constraint: CONSTRAINT_SYSID, COLUMN_ID

SYSTEM.LEVEL2_RESTRICT
Records restrictions for domains legal for use by Level 2.

Primary key: DOMAINID, SEQNO

COLLATION_SYSID INTEGER System identifier for the collation used by
the index.

INDEX_ALGORITHM VARCHAR(20) Algorithm used when creating index.

ATTRIBUTE_SYSID INTEGER System identifier for user-defined type if
index defined on attribute in structured
type.

ATTRIBUTE_NUMBER INTEGER Ordinal position for attribute within user
defined structured type.

ATTRIBUTE_OFFSET INTEGER Offset for attribute within user-defined
type.

INTERNAL_TYPE INTEGER Data type for index column.

SIZE INTEGER Precision of index column data type.

SCALE INTEGER Scale for index column data type.

Column name Data type Description

Column name Data type Description

DOMAINID INTEGER System identifier for the domain with
restrictions.

SEQNO SMALLINT Restriction order number.

LOGOP CHAR(3) Logical operator (AND, OR).

RELOP CHAR(2) Relational operator (EQ, …).

LENGTH SMALLINT Length of the value.

RESVALUE VARCHAR(64) Restriction value.

Mimer SQL Version 11.0 203
System Management Handbook

SYSTEM.LEVEL2_VIEWCOL
Records columns of views acceptable by DB level 2.

Primary key: VTABID, VCOLNO

SYSTEM.LEVEL2_VIEWRES
Records restrictions for DB level 2.

Primary key: VTABID, SEQNO

SYSTEM.LIBRARIES
Records external libraries.

Primary key: LIBRARY_SYSID
Secondary index: LIBRARY_FILENAME

Column name Data type Description

VTABID INTEGER View table identifier.

VCOLNO SMALLINT View table column number.

BTABID INTEGER Base table identifier.

BCOLNO SMALLINT Base table column number.

Column name Data type Description

VTABID INTEGER View table identifier.

SEQNO SMALLINT Restriction order number.

LOGOP CHAR(3) Logical operator (AND, OR).

BTABID INTEGER Base table identifier.

BCOLNO SMALLINT Base table column number.

RELOP CHAR(2) Relational operator (EQ, …).

LENGTH SMALLINT Length of the value.

RESVALUE VARCHAR(64) Restriction value.

Column name Data type Description

LIBRARY_SYSID INTEGER System identifier for external
library.

LIBRARY_FILENAME NCHAR VARYING(256) Filename for external library.

204 Appendix D Data Dictionary Tables
SYSTEM.LOGINS

SYSTEM.LOGINS
Records OS_USER logins for user idents.

Primary key: USER_LOGIN, USER_SYSID
Secondary index: USER_SYSID

SYSTEM.MANYROWS
Dummy table with more than one row.

Primary key: C

SYSTEM.MESSAGE
Records translations of message codes to message text.

Primary key: MODULEID, MESSAGEID, LANGUAGE, LINENO

Column name Data type Description

USER_LOGIN NCHAR VARYING(128) OS_USER name.

USER_SYSID INTEGER System identifier for the ident.

Column name Data type Description

C SMALLINT The values column.

Column name Data type Description

MODULEID INTEGER Identification number for Mimer SQL module
to which error belongs.

MESSAGEID INTEGER Identification number for message

LANGUAGE INTEGER Language number for message
1 = English.

LINENO INTEGER Line number for message.

MESSAGE VARCHAR(80) Message text.

Mimer SQL Version 11.0 205
System Management Handbook

SYSTEM.METHOD_SPECIFICATION_PARAMETER
S

Records parameters to method specifications.

Column name Data type Description

METHOD_SYSID INTEGER System identifier for the
method specification.

ORDINAL_POSITION INTEGER The ordinal position of the
parameter in the method
specification. The first
parameter is number 1.

PARAMETER_NAME NCHAR VARYING(128) The name of the parameter.

PARAMETER_MODE CHAR(5) One of:
IN
OUT
INOUT.

IS_RESULT BOOLEAN One of
TRUE = The parameter is a
result parameter
FALSE = The parameter is
not a result parameter

UDT_SYSID INTEGER System identifier for the
parameter’s type, if it’s a
user-defined type.

COLLATION_SYSID INTEGER System identifier of the
collation associated with the
parameter.

CHARSET_SYSID INTEGER The system identifier for the
character set.

206 Appendix D Data Dictionary Tables
SYSTEM.METHOD_SPECIFICATION_PARAMETERS

DATA_TYPE VARCHAR(30) The data type of the
parameter. Can be one of the
following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE
OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER
VARYING
NATIONAL CHAR LARGE
OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

INTERVAL_TYPE CHAR(30) For INTERVAL data types,
this is a character string
specifying the interval
qualifier for the named
interval data type, see the
Mimer SQL Reference
Manual.
For other data types it is the
null value.

INTERNAL_TYPE INTEGER System identifier for the
internal data type.

Column name Data type Description

Mimer SQL Version 11.0 207
System Management Handbook

CHAR_MAX_LENGTH BIGINT For CHARACTER, BINARY,
CHARACTER LARGE
OBJECT and BINARY LARGE
OBJECT data types, this
shows the maximum length
in characters or bytes as
appropriate.
For all other data types it is
the null value.

CHAR_OCTET_LENGTH BIGINT For a CHARACTER, BINARY,
CHARACTER LARGE
OBJECT and BINARY LARGE
OBJECT data types, this
shows the maximum length
in octets.
For all other data types it is
the null value. (For single
octet character sets, this is
the same as
CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types, this
shows the total number of
decimal digits allowed in the
column.
For all other data types it is
the null value.
NUMERIC_PREC_RADIX
indicates the units of
measurement.

NUMERIC_SCALE INTEGER This defines the total number
of significant digits to the
right of the decimal point.
For INTEGER and
SMALLINT, this is 0. For
CHARACTER, VARCHAR,
DATETIME, FLOAT,
INTERVAL, REAL and
DOUBLE PRECISION data
types, it is the null value.

Column name Data type Description

208 Appendix D Data Dictionary Tables
SYSTEM.METHOD_SPECIFICATION_PARAMETERS

Primary key: METHOD_SYSID, ORDINAL_POSITION
Unique constraint: METHOD_SYSID, PARAMETER_NAME

NUMERIC_PREC_RADIX INTEGER For numeric data types, the
value 10 is shown because
NUMERIC_PRECISION
specifies a number of
decimal digits.
For all other data types it is
the null value.
NUMERIC_PRECISION and
NUMERIC_PREC_RADIX can
be combined to calculate the
maximum number that the
column can hold.

DATETIME_PRECISION INTEGER For DATE, TIME,
TIMESTAMP and INTERVAL
data types, this column
contains the number of digits
of precision for the fractional
seconds component.
For other data types it is the
null value.

INTERVAL_PRECISION INTEGER For INTERVAL data types,
this is the number of
significant digits for the
interval leading precision,
see the Mimer SQL
Reference Manual.
For other data types it is the
null value.

AS_LOCATOR BOOLEAN One of:
TRUE = declared as locator
FALSE = not locator

INTERNAL_LENGTH INTEGER Internal length.

DOMAIN_SYSID INTEGER System identifier for
domain, when a domain is
used as the type for a
parameter in a method
specification.

Column name Data type Description

Mimer SQL Version 11.0 209
System Management Handbook

SYSTEM.METHOD_SPECIFICATIONS
Records method specifications.

Column name Data type Description

METHOD_SYSID INTEGER System identifier for the method
specification.

UDT_SYSID INTEGER System identifier for user-defined type,
to which the method is specified.

IS_STATIC BOOLEAN One of
TRUE = Method specification is static
FALSE = Method specification is not
static

IS_OVERRIDING BOOLEAN One of
TRUE = Method specification is
overriding
FALSE = Method specification is not
overriding

IS_CONSTRUCTOR BOOLEAN One of
TRUE = Method specification is a
constructor method
FALSE = Method specification is not a
constructor method

IS_DETERMINISTIC BOOLEAN One of:
FALSE = The routine is not
deterministic. i.e. invoking the routine
with the same input values is not
guaranteed to return the same result
TRUE = The routine is deterministic, i.e.
when invoked with same input values it
will always return the same result.

IS_NULL_CALL BOOLEAN One of:
TRUE = method will be invoked when
parameters are null
FALSE = method will not be invoked
when parameters are null and returns
null.
(currently not used)

SQL_DATA_ACCESS VARCHAR(20) One of:
NO SQL
CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA.

METHOD_LANGUAGE VARCHAR(20) Language used for method. One of:
SQL

(currently not used)

210 Appendix D Data Dictionary Tables
SYSTEM.METHOD_SPECIFICATIONS

PARAMETER_STYLE VARCHAR(20) The parameter passing style of the
routine if it is an external routine,
otherwise the null value is shown.

RESULT_UDT_SYSID INTEGER System identifier for the result data
type, if it’s a user-defined type.

COLLATION_SYSID INTEGER System identifier of the collation
associated with the result.

CHARSET_SYSID INTEGER The system identifier for the character
set.

DATA_TYPE VARCHAR(30) The data type of the result. Can be one
of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

INTERVAL_TYPE VARCHAR(30) For INTERVAL data types, this is a
character string specifying the interval
qualifier for the named interval data
type, see the Mimer SQL Reference
Manual.
For other data types it is the null value.

INTERNAL_TYPE INTEGER System identifier for the internal data
type.

Column name Data type Description

Mimer SQL Version 11.0 211
System Management Handbook

CHAR_MAX_LENGTH BIGINT For CHARACTER, BINARY, CHARACTER
LARGE OBJECT and BINARY LARGE
OBJECT data types, this shows the
maximum length in characters or bytes
as appropriate.
For all other data types it is the null
value.

CHAR_OCTET_LENGTH BIGINT For a CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
octets.
For all other data types it is the null
value. (For single octet character sets,
this is the same as CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows the
total number of decimal digits allowed
in the column.
For all other data types it is the null
value. NUMERIC_PREC_RADIX
indicates the units of measurement.

NUMERIC_SCALE INTEGER This defines the total number of
significant digits to the right of the
decimal point. For INTEGER and
SMALLINT, this is 0. For CHARACTER,
VARCHAR, DATETIME, FLOAT,
INTERVAL, REAL and DOUBLE
PRECISION data types, it is the null
value.

NUMERIC_PREC_RADIX INTEGER For numeric data types, the value 10 is
shown because NUMERIC_PRECISION
specifies a number of decimal digits.
For all other data types it is the null
value.
NUMERIC_PRECISION and
NUMERIC_PREC_RADIX can be
combined to calculate the maximum
number that the column can hold.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
INTERVAL data types, this column
contains the number of digits of
precision for the fractional seconds
component.
For other data types it is the null value.

Column name Data type Description

212 Appendix D Data Dictionary Tables
SYSTEM.MODULES

Primary key: METHOD_SYSID
Secondary index: UDT_SYSID

SYSTEM.MODULES
Records the SQL-server modules in the database.

Primary key: MODULE_SYSID

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision, see the
Mimer SQL Reference Manual.
For other data types it is the null value.

TOTAL_PARAMS INTEGER The number of parameters. (Described
in
SYSTEM.METHOD_SPECIFICATION
_PARAMETERS on page 205.)

AS_LOCATOR BOOLEAN One of:
TRUE = declared as locator
FALSE = not locator

INTERNAL_LENGTH INTEGER Internal length.

SELF_AS_RESULT BOOLEAN One of:
TRUE = returns self
FALSE = does not return self

DOMAIN_SYSID INTEGER System identifier for domain, when a
domain is used as the return type for a
method.

Column name Data type Description

Column name Data type Description

MODULE_SYSID INTEGER System identifier for the module.

DEF_CHARSET_SYSID INTEGER System identifier for the default
character set for the module.

DEF_SCHEMA_SYSID INTEGER System identifier for the default
schema for the module.

MODULE_LENGTH INTEGER Length of the module definition.

MODULE_DEFINITION NCHAR
VARYING(200)

Source text for module definition, if
the length of the module definition
exceeds 200 characters, this value is
null and the source text is stored in
SOURCE_DEFINITION.

Mimer SQL Version 11.0 213
System Management Handbook

SYSTEM.NANO_DATABANKS
Contains information about Mimer Nano databanks. (Currently not used.)

SYSTEM.NANO_DESCRIPTORS
Contains information about Mimer Nano descriptors. (Currently not used.)

SYSTEM.NANO_OBJECTS
Contains information about Mimer Nano objects. (Currently not used.)

SYSTEM.NANO_ROUTINE_USE
Contains information about Mimer Nano routine usage. (Currently not used.)

SYSTEM.NANO_USERS
Contains information about Mimer Nano databanks. (Currently not used.)

SYSTEM.OBJECT_COLUMN_USE
Records columns referenced by other database objects.

Column name Data type Description

TABLE_SYSID INTEGER System identifier for the table.

COLUMN_ID INTEGER The id of the table column.

USED_BY_SYSID INTEGER The system identifier of the referencing
object.

USED_BY_TYPE VARCHAR(20) One of:
VIEW
PROCEDURE
FUNCTION
METHOD
CHECK
TRIGGER
USER DEFINED TYPE
STATEMENT.

PRIVILEGE_TYPE VARCHAR(20) One of:
INSERT
DELETE
SELECT
UPDATE
REFERENCES.

214 Appendix D Data Dictionary Tables
SYSTEM.OBJECT_OBJECT_USE

Primary key: TABLE_SYSID, COLUMN_ID, USED_BY_SYSID, USED_BY_TYPE,
PRIVILEGE_TYPE

Secondary index: USED_BY_SYSID

SYSTEM.OBJECT_OBJECT_USE
Records objects referenced by other objects.

Column name Data type Description

OBJECT_SYSID INTEGER System identifier for the object used.

USED_BY_SYSID INTEGER The system identifier of the referencing
object.

IS_STRONG BOOLEAN Determines if a dependent object will be
dropped when dropping the object on which
this object depends.
One of:
FALSE = the dependent object will be
dropped even if drop restrict is specified
TRUE = the object will only be dropped if
cascade is specified.

OBJECT_TYPE VARCHAR(20) One of:
BASE TABLE
DATABANK
INDEX
VIEW
PROCEDURE
FUNCTION
METHOD
METHOD SPECIFICATION
DOMAIN
SEQUENCE
CHARACTER SET
COLLATION
TRANSLATION
TRIGGER
USER DEFINED TYPE
STATEMENT.

Mimer SQL Version 11.0 215
System Management Handbook

Primary key: OBJECT_SYSID, USED_BY_SYSID
Secondary index: USED_BY_SYSID

SYSTEM.OBJECT_PROGRAMS
Contains information about predefined executable statements for table operations and
routines.

Primary key: OBJECT_SYSID, OPERATION
Secondary index: STATEMENT_SYSID

USED_BY_TYPE VARCHAR(20) One of:
BASE_TABLE
VIEW
PROCEDURE
FUNCTION
METHOD
METHOD SPECIFICATION
DOMAIN
TRIGGER
CHARACTER SET
COLLATION
CHECK
INDEX
STATEMENT.

Column name Data type Description

Column name Data type Description

OBJECT_SYSID INTEGER System identifier for object.

OPERATION VARCHAR(20) Type of operation, one of:
DELETE
INSERT
UPDATE
'' (empty string), routine invocation

STATEMENT_SYSID INTEGER System identifier for executable statement.

216 Appendix D Data Dictionary Tables
SYSTEM.OBJECTS

SYSTEM.OBJECTS
Records objects in the database.

Column name Data type Description

OBJECT_SYSID INTEGER System identifier for the database
object.

OBJECT_TYPE VARCHAR(20) One of:
BASE TABLE
CHARACTER SET
COLLATION
CONSTRAINT
CONSTRUCTOR METHOD
DATABANK
DOMAIN
FUNCTION
IDENT
INDEX
INSTANCE METHOD
METHOD SPECIFICATION
MODULE
PROCEDURE
SCHEMA
SEQUENCE
SHADOW
STATEMENT
STATIC METHOD
SYNONYM
TRANSLATION
TRIGGER
USER DEFINED TYPE
VIEW.

OBJECT_SCHEMA NCHAR
VARYING(128)

The name of the schema
containing the object.

OBJECT_NAME NCHAR
VARYING(128)

The name of the object.

OBJECT_CREATED TIMESTAMP(2) The date and time the object was
created.

OBJECT_ALTERED TIMESTAMP(2) The date and time the object was
last altered.

IS_IMPLICIT BOOLEAN One of:
TRUE = the object is created
implicitly as the result of another
CREATE statement
FALSE = the object is created
explicitly.

Mimer SQL Version 11.0 217
System Management Handbook

Primary key: OBJECT_SYSID
Unique constraint: OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME,
SPECIFIC_SYSID

SYSTEM.ONEROW
Dummy table containing one row.

Primary key: M

SYSTEM.PARAMETERS
Records parameters of routines in the database.

SPECIFIC_SYSID INTEGER Specific id for overloaded
routines.

COMPATIBILITY INTEGER Indicates which compatibility
mode was set when the object was
created.

LAST_DEPENDENCY_SYSID INTEGER Upper limit for scope when
resolving object references in
routines and triggers.

Column name Data type Description

Column name Data type Description

M CHAR(1) Contains the value M.

Column name Data type Description

ROUTINE_SYSID INTEGER System identifier for the function or
procedure.

ORDINAL_POSITION INTEGER The ordinal position of the parameter
in the routine. The first parameter in
the routine is number 1.

IS_RETURN BOOLEAN For a type preserving method this
column indicates whether the
parameter is type preserving or not.
One of
TRUE
FALSE

PARAMETER_MODE CHAR(5) One of:
IN
OUT
INOUT.

218 Appendix D Data Dictionary Tables
SYSTEM.PARAMETERS

PARAMETER_NAME NCHAR
VARYING(128)

The name of the parameter.

DOMAIN_SYSID INTEGER System identifier of the domain that
defines the data type of the parameter.

COLLATION_SYSID INTEGER System identifier of the collation
associated with the parameter.

CHARSET_SYSID INTEGER The system identifier for the character
set.

UDT_SYSID INTEGER System identifier for a user-defined
type.

DATA_TYPE CHAR(30) The data type of the parameter. Can be
one of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

INTERVAL_TYPE CHAR(30) For INTERVAL data types, this is a
character string specifying the interval
qualifier for the named interval data
type, see the Mimer SQL Reference
Manual.
For other data types it is the null value.

INTERNAL_TYPE INTEGER System identifier for the internal data
type.

Column name Data type Description

Mimer SQL Version 11.0 219
System Management Handbook

CHAR_MAX_LENGTH BIGINT For CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
characters or bytes as appropriate.
For all other data types it is the null
value.

CHAR_OCTET_LENGTH BIGINT For a CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
octets.
For all other data types it is the null
value. (For single octet character sets,
this is the same as
CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of decimal digits
allowed in the column.
For all other data types it is the null
value. NUMERIC_PREC_RADIX
indicates the units of measurement.

NUMERIC_SCALE INTEGER This defines the total number of
significant digits to the right of the
decimal point. For INTEGER and
SMALLINT, this is 0. For CHARACTER,
VARCHAR, DATETIME, FLOAT,
INTERVAL, REAL and DOUBLE
PRECISION data types, it is the null
value.

NUMERIC_PREC_RADIX INTEGER For numeric data types, the value 10 is
shown because
NUMERIC_PRECISION specifies a
number of decimal digits.
For all other data types it is the null
value.
NUMERIC_PRECISION and
NUMERIC_PREC_RADIX can be
combined to calculate the maximum
number that the column can hold.

Column name Data type Description

220 Appendix D Data Dictionary Tables
SYSTEM.PARAMETERS

PARAMETER_NAME NCHAR
VARYING(128)

The name of the parameter.

DOMAIN_SYSID INTEGER System identifier of the domain that
defines the data type of the parameter.

COLLATION_SYSID INTEGER System identifier of the collation
associated with the parameter.

CHARSET_SYSID INTEGER The system identifier for the character
set.

UDT_SYSID INTEGER System identifier for a user-defined
type.

DATA_TYPE CHAR(30) The data type of the parameter. Can be
one of the following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

INTERVAL_TYPE CHAR(30) For INTERVAL data types, this is a
character string specifying the interval
qualifier for the named interval data
type, see the Mimer SQL Reference
Manual.
For other data types it is the null value.

INTERNAL_TYPE INTEGER System identifier for the internal data
type.

Column name Data type Description

Mimer SQL Version 11.0 221
System Management Handbook

CHAR_MAX_LENGTH BIGINT For CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
characters or bytes as appropriate.
For all other data types it is the null
value.

CHAR_OCTET_LENGTH BIGINT For a CHARACTER, BINARY,
CHARACTER LARGE OBJECT and
BINARY LARGE OBJECT data types,
this shows the maximum length in
octets.
For all other data types it is the null
value. (For single octet character sets,
this is the same as
CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types, this shows
the total number of decimal digits
allowed in the column.
For all other data types it is the null
value. NUMERIC_PREC_RADIX
indicates the units of measurement.

NUMERIC_SCALE INTEGER This defines the total number of
significant digits to the right of the
decimal point. For INTEGER and
SMALLINT, this is 0. For CHARACTER,
VARCHAR, DATETIME, FLOAT,
INTERVAL, REAL and DOUBLE
PRECISION data types, it is the null
value.

NUMERIC_PREC_RADIX INTEGER For numeric data types, the value 10 is
shown because
NUMERIC_PRECISION specifies a
number of decimal digits.
For all other data types it is the null
value.
NUMERIC_PRECISION and
NUMERIC_PREC_RADIX can be
combined to calculate the maximum
number that the column can hold.

Column name Data type Description

222 Appendix D Data Dictionary Tables
SYSTEM.REFER_CONSTRAINTS

Primary key: ROUTINE_SYSID, ORDINAL_POSITION, IS_RETURN

SYSTEM.REFER_CONSTRAINTS
Records referential constraints in the database.

DATETIME_PRECISION INTEGER For DATE, TIME, TIMESTAMP and
INTERVAL data types, this column
contains the number of digits of
precision for the fractional seconds
component.
For other data types it is the null value.

INTERVAL_PRECISION INTEGER For INTERVAL data types, this is the
number of significant digits for the
interval leading precision, see the
Mimer SQL Reference Manual.
For other data types it is the null value.

AS_LOCATOR BOOLEAN One of:
TRUE = declared as locator
FALSE = not locator

INTERNAL_LENGTH INTEGER Internal length.

IS_RESULT BOOLEAN One of:
FALSE = This parameter is not part of
the result clause for a result set
procedure
TRUE = This parameter is part of the
result set.

Column name Data type Description

Column name Data type Description

TABLE_SYSID INTEGER System identifier for the table.

CONSTRAINT_SYSID INTEGER System identifier for the referential
constraint.

UNIQUE_TABLE_SYSID INTEGER System identifier for the table that is
referenced in the foreign key.

UNIQUE_CONST_SYSID INTEGER System identifier for the constraint that
is (implicitly) referenced in the foreign
key.

Mimer SQL Version 11.0 223
System Management Handbook

Primary key: TABLE_SYSID, CONSTRAINT_SYSID
Secondary index: UNIQUE_TABLE_SYSID, UNIQUE_CONST_SYSID
Secondary index: CONSTRAINT_SYSID
Secondary index: UNIQUE_CONST_SYSID

IS_CONSISTENT BOOLEAN Indicates if the foreign key constraint is
consistent.
One of:
TRUE
FALSE

A foreign key constraint will be marked
as inconsistent if the system databank
transdb is dropped or if the databank in
which the referenced or referencing
table is located is set to work option.

MATCH_OPTION VARCHAR(20) One of:
NONE
PARTIAL
FULL.

UPDATE_RULE VARCHAR(20) One of:
CASCADE
SET NULL
SET DEFAULT
NO ACTION
RESTRICT.

DELETE_RULE VARCHAR(20) One of:
CASCADE
SET NULL
SET DEFAULT
NO ACTION
RESTRICT.

Column name Data type Description

224 Appendix D Data Dictionary Tables
SYSTEM.ROUTINES

SYSTEM.ROUTINES
Records procedures and user-defined functions in the database.

Column name Data type Description

ROUTINE_SYSID INTEGER System identifier of the
function or procedure.

MODULE_SYSID INTEGER System identifier of the
module to which the routine
belongs.

ROUTINE_TYPE VARCHAR(20) One of:
PROCEDURE
FUNCTION.

SQL_DATA_ACCESS VARCHAR(20) One of:
NO SQL
CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA.

ROUTINE_OFFSET INTEGER Offset for routine within
module definition.
This value is zero if the
routine ins not defined in a
module.

ROUTINE_LENGTH INTEGER Length of routine definition

TOTAL_PARAMS INTEGER The total number of routine
parameters.

RESULT_PARAMS INTEGER The number of result
parameters.

INPUT_PARAMS INTEGER The number of input
parameters.

OUTPUT_PARAMS INTEGER The number of output
parameters.

ROUTINE_DEFINITION NCHAR
VARYING(200)

Routine definition.
If the length of the routine
definition exceeds 200
characters, this value is null
and the source text is stored in
SOURCE_DEFINITION.

Mimer SQL Version 11.0 225
System Management Handbook

IS_DETERMINISTIC BOOLEAN One of:
FALSE = The routine is not
deterministic. i.e. invoking the
routine with the same input
values is not guaranteed to
return the same result
TRUE = The routine is
deterministic, i.e. when
invoked with same input
values it will always return the
same result.

ROUTINE_BODY VARCHAR(20) One of:
SQL = The routine is an SQL
routine
EXTERNAL = The routine is
external

EXTERNAL_NAME NCHAR
VARYING(128)

The name of the program that
implements the routine if it is
an external routine otherwise
null.

EXTERNAL_LANGUAGE VARCHAR(20) The language for the routine if
it is external otherwise null.

PARAMETER_STYLE VARCHAR(20) The parameter passing style
for the routine if it is an
external routine, otherwise
null.

SCHEMA_LEVEL_ROU BOOLEAN One of:
FALSE = The routine is
defined within a module
TRUE = The routine is not
defined in a module.

MX_DYN_RESULT_SETS INTEGER The maximal number of result
sets that the routine may
return.

UDT_SYSID INTEGER System identifier for user-
defined type, if routine is a
method.

IS_USER_DEFINED_CAST BOOLEAN (currently not used)

IS_IMPLICITLY_INVOCABLE BOOLEAN (currently not used)

MS_SYSID INTEGER (currently not used)

Column name Data type Description

226 Appendix D Data Dictionary Tables
SYSTEM.ROUTINES

Primary key: ROUTINE_SYSID
Secondary index: LIBRARY_SYSID
Secondary index: MODULE_SYSID
Secondary index: OVERRIDING_SYSID
Unique constraint: MS_SYSID

IS_NULL_CALL BOOLEAN One of:
TRUE = routine will be called
if all parameters are null
FALSE = routine returns null if
all parameters are null

OVERRIDING_SYSID INTEGER System identifier for original
method specification.

ROUTINE_HEADER_OFFSET INTEGER Offset for routine header in
source definition.

ROUTINE_HEADER_LENGTH INTEGER Length of routine header.

ROUTINE_RETURNS_OFFSET INTEGER Offset for returns clause in
source definition.

ROUTINE_RETURNS_LENGTH INTEGER Length of return clause.

ROUTINE_SPECIFIC_OFFSET INTEGER Offset for specific clause in
source definition.

ROUTINE_SPECIFIC_LENGTH INTEGER Length of specific clause.

ROUTINE_EXTERNAL_OFFSET INTEGER Offset for external clause in
source definition.

ROUTINE_EXTERNAL_LENGTH INTEGER Length of external clause.

ROUTINE_BODY_OFFSET INTEGER Offset for routine body in
source definition.

ROUTINE_BODY_LENGTH INTEGER Length of routine body.

LIBRARY_SYSID INTEGER System identifier for external
library.

ROUTINES_IS_INVOKED_
MANY

BOOLEAN The column indicates whether
a function or method should
be invoked multiple times or
only once within a statement.

Column name Data type Description

Mimer SQL Version 11.0 227
System Management Handbook

SYSTEM.SCHEMATA
Records schemas in the database.

Primary key: SCHEMA_SYSID

SYSTEM.SEQUENCE_VALUE_TABLE
Stores information about sequences.

Primary key: SEQ_SYSID

Column name Data type Description

SCHEMA_SYSID INTEGER System identifier of the schema.

DEF_CHARSET_SYSID INTEGER System identifier of the default
character set.

Column name Data type Description

SEQ_SYSID INTEGER System identifier of the sequence.

CURRENT_VALUE BIGINT Current value for sequence.

CYCLES BIGINT Number of times the sequence has reached
its maximum value.

IS_EXHAUSTED INTEGER Indicates whether a unique sequences has
reached its maximum value. One of:
1 = sequence has reached its maximum value
0 = sequence has not reached its maximum
value

228 Appendix D Data Dictionary Tables
SYSTEM.SEQUENCES

SYSTEM.SEQUENCES
Records sequences in the database.

Primary key: SEQUENCE_SYSID

Column name Data type Description

SEQUENCE_SYSID INTEGER System identifier of the sequence.

DATA_TYPE VARCHAR(30) One of:
SMALLINT
INTEGER
BIGINT.

INTERNAL_TYPE INTEGER System identifier of internal data type.

NUMERIC_PRECISION INTEGER Precision for data type.

MAXIMUM_VALUE BIGINT The maximum value of the sequence.

MINIMUM_VALUE BIGINT The minimum value of the sequence.

INCREMENT BIGINT The increment value for sequence.

CYCLE_OPTION BOOLEAN One of:
TRUE = the sequence will restart when all
values are exhausted
FALSE = the sequence will not restart
when all values are exhausted.

START_VALUE BIGINT Start value for sequence when first used.

CURRENT_VALUE BIGINT Start value at system start up.

IS_EXHAUSTED BOOLEAN One of:
TRUE = the series of values defined by the
sequence is exhausted
FALSE = the series of values defined by
the sequence is not exhausted.

CYCLES BIGINT Number of times the maximum value of
the sequence is exceeded.

FLUSH_RATE BIGINT Number of sequence value allocations
between saving sequence data to disk.

DATABANK_SYSID INTEGER Databank location.

INTERNAL_LENGTH INTEGER Internal length.

Mimer SQL Version 11.0 229
System Management Handbook

SYSTEM.SERVER_INFO
Records attributes of the current database system or server.

Primary key: SERVER_ATTRIBUTE

Column name Data type Description

SERVER_ATTRIBUTE VARCHAR(100) One of:
AUTOUPGRADE_ENABLED
CATALOG_NAME
COLLATION_SEQ
CURRENT_COLLATION_ID
IDENTIFIER_LENGTH
INTERVAL_FRAC_PREC
INTERVAL_LEAD_PREC
ROW_LENGTH
TIME_PREC
TIMESTAMP_PREC
TXN_ISOLATION
USERID_LENGTH
CATALOG_VERSION_CREATED
CATALOG_VERSION_CURRENT.

ATTRIBUTE_VALUE VARCHAR(100) The value for the attribute.

230 Appendix D Data Dictionary Tables
SYSTEM.SEVERITY

SYSTEM.SEVERITY
Records severity levels and optional module for error codes.

Primary key: MODULEID, MESSAGEID

SYSTEM.SOURCE_DEFINITION
Records source definitions for defaults, check constraints, views, modules, procedures,
functions, triggers and statements.

Column name Data type Description

MODULEID INTEGER Identification number for the Mimer SQL
module to which the message belongs.

MESSAGEID INTEGER Identification number for message.

SEVERITY INTEGER Severity for message:
1 = Message
2 = Warning
3 = Error
4 = Fatal error
5 = Internal error
6 = Code.

MODULE VARCHAR(20) Name of Mimer SQL module to which the
message belongs.

SQLSTATE_VALUE CHAR(5) Corresponding SQLSTATE value for
message.

CLASS_ORIGIN VARCHAR(20) Class origin for the SQLSTATE value.

SUBCLASS_ORIGIN VARCHAR(20) Sub class origin for the SQLSTATE value.

Column name Data type Description

SOURCE_SYSID INTEGER System identifier of the source
definition.

COLUMN_ID INTEGER Column id if the source types is a
default value for a column. Null
otherwise.

SOURCE_TYPE VARCHAR(20) One of:
DEFAULT
CHECK
VIEW
ROUTINE
STATEMENT.

SEQUENCE_NO INTEGER Sequence number in source definition.

Mimer SQL Version 11.0 231
System Management Handbook

Primary key: SOURCE_SYSID, COLUMN_ID, SOURCE_TYPE, SEQUENCE_NO

SYSTEM.SPECIFIC_NAMES
Records specific names of the routines in the database.

Primary key: ROUTINE_SYSID
Unique constraint: SPECIFIC_SCHEMA, SPECIFIC_NAME

SYSTEM.SQL_CONFORMANCE
The SQL_CONFORMANCE base table has one row for each conformance element
identified by ISO/IEC 9075.

SOURCE_LENGTH INTEGER The length of the stored source text.

SOURCE_DEFINITION NCHAR
VARYING(400)

The stored source text.

Column name Data type Description

Column name Data type Description

ROUTINE_SYSID INTEGER System identifier of the routine.

SPECIFIC_SCHEMA NCHAR
VARYING(128)

The name of the schema containing the
routine.

SPECIFIC_NAME NCHAR
VARYING(128)

The specific name for the routine.

UDT_SYSID INTEGER System identifier for user-defined type if
routine is a method.

Column name Data type Description

CONFORMANCE_ID VARCHAR(20) Identification of the
conformance element
described.

CONFORMANCE_SUB_ID VARCHAR(20) If the conformance
element is a subfeature
then it's identification,
otherwise a single space.

CONFORMANCE_TYPE VARCHAR(20) Type of conformance
element. FEATURE,
SUBFEATURE, PACKAGE,
or PART.

CONFORMANCE_IS_CORE_SQL BOOLEAN TRUE if the conformance
element belongs to Core
SQL, otherwise FALSE.

232 Appendix D Data Dictionary Tables
SYSTEM.SQL_LANGUAGES

Primary key: CONFORMANCE_ID, CONFORMANCE_SUB_ID

SYSTEM.SQL_LANGUAGES
Records the SQL standards and SQL dialects supported.

CONFORMANCE_NAME VARCHAR(100) Short description of the
conformance element.

CONFORMANCE_SUB_NAME VARCHAR(130) Short description of a
subfeature, otherwise a
single space.

CONFORMANCE_IS_SUPPORTED BOOLEAN TRUE if fully supported by
Mimer SQL, otherwise
FALSE.

CONFORMANCE_IS_VERIFIED_BY BOOLEAN Should identify
conformance test used to
verify the conformance
(always null).

CONFORMANCE_REMARKS VARCHAR(100) Comments pertinent to the
conformance element.

Column name Data type Description

Column name Data type Description

ORDINAL_NO INTEGER Ordinal number.

SOURCE VARCHAR(100) Body that has defined standard.

SOURCE_YEAR VARCHAR(100) Which year the standard was approved.

CONFORMANCE VARCHAR(100) Level of conformance within standard.

INTEGRITY VARCHAR(100) If the supported standard is ISO 9075
the value YES in this column means that
the integrity enhancement feature of this
standard is supported, otherwise the
value of this column is null.

IMPLEMENTATION VARCHAR(100) Implementation style, always null in
Mimer SQL.

BINDING_STYLE VARCHAR(100) One of:
DIRECT = Support for interactive (ad
hoc) access to the database
EMBEDDED = Support for access through
an application programming interface.

PROGRAMMING_LANG VARCHAR(100) Name of programming languages that
are supported if the binding style is
EMBEDDED.

Mimer SQL Version 11.0 233
System Management Handbook

Primary key: ORDINAL_NO

SYSTEM.STATEMENT_DESCRIPTORS
Records compiled code for precompiled statements.

Primary key: STATEMENT_SYSID, DESC_TYPE, DESC_MODE, DESC_SEQNO

SYSTEM.STATEMENT_ROUTINE_USE
Records compiled routines used by precompiled statements.

Primary key: STATEMENT_SYSID, USE_SEQNO
Secondary index: ROUTINE_SYSID

Column name Data type Description

STATEMENT_SYSID INTEGER System identifier for the precompiled
statement.

DESC_TYPE INTEGER Internal. Naming or section descriptor
type.

DESC_MODE INTEGER Mode, one of:
1 = no scroll
2 = scroll

DESC_SEQNO INTEGER Sequence number for compiled code.

DESC_VERSION INTEGER Compiler version used.

DESC_CODE_LENGTH INTEGER Length of compiled code.

DESC_CODE BINARY(1000) Compiled code.

Column name Data type Description

STATEMENT_SYSID INTEGER System identifier for the precompiled
statement.

USE_SEQNO INTEGER Sequence number.

USE_LEVEL INTEGER Call level for routine.

ROUTINE_SYSID INTEGER System identifier for called routines.

234 Appendix D Data Dictionary Tables
SYSTEM.SYNONYMS

SYSTEM.SYNONYMS
Records synonyms and shadows in the database.

Primary key: SYNONYM_SYSID
Secondary index: ORDINARY_SYSID

SYSTEM.TABLES
Records tables and views in the database.

Column name Data type Description

SYNONYM_SYSID INTEGER System identifier of the synonym.

ORDINARY_SYSID INTEGER System identifier of the original object.

Column name Data type Description

TABLE_SYSID INTEGER System identifier of the table or view.

TABLE_TYPE VARCHAR(20) One of:
BASE TABLE
VIEW.

TABLE_NOCOLS INTEGER Number of columns in table.

TABLE_RECLEN INTEGER Record length for table.

TABLE_CARD BIGINT Number of records in table.

STATISTIC_GATHERED TIMESTAMP(2) Date and time when statistics for the
table or view were lasted updated.

IS_LEVEL2_APPROVED BOOLEAN One of:
TRUE = The table can be used with
level 2 DB interface.
FALSE = The table cannot be used
with level 2 DB interface.

IS_PERSISTENT BOOLEAN One of:
FALSE = The table is a temporary
table
TRUE = The table is not temporary.

DATABANK_SYSID INTEGER System identifier of the databank in
which the table is stored.

LATEST_ROOTID INTEGER Identifier for the table used in the
rootpage of the databank file.

VARIABLE INTEGER Number of length field entries.

IS_VARIABLE BOOLEAN One of:
TRUE = The table has variable format
FALSE = The table has fixed format

Mimer SQL Version 11.0 235
System Management Handbook

Primary key: TABLE_SYSID
Secondary index: DATABANK_SYSID

SYSTEM.TABLE_CONSTRAINTS
Records table constraints in the database.

COMMIT_ACTION VARCHAR(20) Indicates what happens with records
in a temporary table at commit.
One of:
DELETE
PRESERVE

The column will be null if the table is
not temporary.

Column name Data type Description

Column name Data type Description

TABLE_SYSID INTEGER System identifier of the table.

CONSTRAINT_SYSID INTEGER System identifier of the constraint.

CONSTRAINT_TYPE VARCHAR(20) One of:
PRIMARY KEY
UNIQUE
FOREIGN KEY
INDEX
INDEX UNIQUE
INTERNAL KEY
CHECK.

CONSTRAINT_KEYCOLS INTEGER Number of key columns in the
constraint.

CONSTRAINT_KEYLEN INTEGER Record length for key columns in the
constraint.

CONSTRAINT_RECCOLS INTEGER Number of columns in constraint.

CONSTRAINT_RECLEN INTEGER Record length for constraint.

CONSTRAINT_CARD BIGINT Number of records in constraint.

DATABANK_SYSID INTEGER System identifier of the databank in
which the table is stored.

IS_CONSISTENT BOOLEAN One of:
FALSE = The index may be inconsistent
and should not be used for index lookup
only
TRUE = The index may be used for index
lookup only.

236 Appendix D Data Dictionary Tables
SYSTEM.TABLE_PRIVILEGES

Primary key: TABLE_SYSID, CONSTRAINT_SYSID
Unique constraint: CONSTRAINT_SYSID

SYSTEM.TABLE_PRIVILEGES
Records instances of privileges granted on a table.

IS_DEFERRABLE BOOLEAN One of:
FALSE = The constraint is not deferrable
TRUE = The constraint is deferrable.

INITIALLY_DEFERRED BOOLEAN One of:
FALSE = The constraint is immediate
TRUE = The constraint is not immediate.

VARIABLE INTEGER Number of length field entries.

LATEST_ROOTID INTEGER The latest value for the internal
identifier for a constraint or index. The
internal identifier can change if the table
on which the constraint or index is
defined is altered.

ON_CONFLICT VARCHAR(20) Possible behavior when a constraint is
violated.
Currently this value is always ABORT.

Column name Data type Description

Column name Data type Description

TABLE_SYSID INTEGER System identifier of the table.

PRIVILEGE_TYPE VARCHAR(20) One of:
DELETE
INSERT
LOAD
REFERENCES
SELECT
UPDATE
TRIGGER.

GRANTEE_SYSID INTEGER The sysid of the ident to whom the table
privilege was granted.

GRANTOR_SYSID INTEGER The sysid of the ident granting the table
privilege.

IS_GRANTABLE BOOLEAN One of:
TRUE = WITH GRANT OPTION is held
with the privilege
FALSE = WITH GRANT OPTION is not
held with the privilege.

Mimer SQL Version 11.0 237
System Management Handbook

Primary key: TABLE_SYSID, PRIVILEGE_TYPE, GRANTEE_SYSID, GRANTOR_SYSID
Secondary index: GRANTEE_SYSID
Secondary index: GRANTOR_SYSID

SYSTEM.TABLE_TYPES
Records the types of table supported.

Primary key: TABLE_TYPE

IS_INSTEAD_OF BOOLEAN One of:
FALSE = The privilege was granted
explicitly
TRUE = The privilege was granted implicitly
when an instead of trigger was created.

IS_ON_TABLE BOOLEAN One of:
FALSE = The privilege was granted on
individual columns
TRUE = The privilege was granted on the
complete table.

ALL_COLUMNS BOOLEAN One of:
TRUE = the privilege was granted on the
table and therefore applies to all table
columns, including new ones added
FALSE = the privilege only applies to the
table columns explicitly specified when the
privilege was granted.

Column name Data type Description

Column name Data type Description

TABLE_TYPE VARCHAR(20) One of:
SYNONYM
SYSTEM TABLE
TABLE
VIEW.

238 Appendix D Data Dictionary Tables
SYSTEM.TRANSLATIONS

SYSTEM.TRANSLATIONS
Records character translations in the database.

Primary key: TRANSLATION_SYSID

SYSTEM.TRIGGERED_COLUMNS
Records table columns explicitly specified in an UPDATE TRIGGER event.

Primary key: TRIGGER_SYSID, EVENT_TABLE_SYSID, EVENT_COLUMN_ID

SYSTEM.TRIGGERS
Records triggers in the database.

Column name Data type Description

TRANSLATION_SYSID INTEGER System identifier of the character set
translation.

SRC_CHARSET_SYSID INTEGER System identifier of the source character set
for the translation.

TGT_CHARSET_SYSID INTEGER System identifier of the target character set
for the translation.

Column name Data type Description

TRIGGER_SYSID INTEGER System identifier of the trigger.

EVENT_TABLE_SYSID INTEGER System identifier of the table on which
the trigger is defined.

EVENT_COLUMN_ID INTEGER The id of the column in which updates
will cause the trigger to execute.

Column name Data type Description

TRIGGER_SYSID INTEGER System identifier of the trigger.

EVENT_TABLE_SYSID INTEGER System identifier of the table on
which the trigger is defined.

EVENT_MANIPULATION VARCHAR(20) One of:
DELETE
INSERT
UPDATE.

Mimer SQL Version 11.0 239
System Management Handbook

ACTION_ORDER INTEGER Ordinal number for trigger
execution.
This number will define the
execution order of triggers on the
same table and with the same value
for EVENT_MANIPULATION,
CONDITION_TIMING and
ACTION_ORIENTATION.
The trigger with 1 in this column will
be executed first, followed by the
trigger with 2 etc.

ACTION_CONDITION NCHAR
VARYING(200)

The text of the search condition of
the trigger action WHEN clause.

ACTION_STATEMENT NCHAR
VARYING(200)

The character representation of the
body of the trigger.
If the length of the text exceeds 200
characters, this value is null and the
source text is stored in
SOURCE_DEFINITION.

ACTION_ORIENTATION VARCHAR(20) One of:
ROW
STATEMENT.

CONDITION_TIMING VARCHAR(20) One of:
BEFORE
AFTER
INSTEAD OF.

COND_REF_NEW_TABLE NCHAR
VARYING(128)

Name of new table/row alias.

COND_REF_OLD_TABLE NCHAR
VARYING(128)

Name of old table/row alias.

REFERENCE_NEW BOOLEAN One of:
FALSE = The trigger has no new
table/row alias
TRUE = The trigger has new
table/row alias.

REFERENCE_OLD BOOLEAN One of:
FALSE = The trigger has no new
table/row alias
TRUE = The trigger has new
table/row alias.

Column name Data type Description

240 Appendix D Data Dictionary Tables
SYSTEM.TYPE_INFO

Primary key: TRIGGER_SYSID
Secondary index: EVENT_TABLE_SYSID

SYSTEM.TYPE_INFO
Records information about data types supported.

COLS_IS_IMPLICIT BOOLEAN One of:
FALSE = The trigger is invoked on
update on any column (if the event is
update)
TRUE = The trigger will only be
invoked if a column in the for update
of list is updated.

REF_SYSID INTEGER System identifier for foreign key
constraint, if the trigger is defined
for checking of a delete rule.

Column name Data type Description

Column name Data type Description

INTERNAL_TYPE INTEGER System identifier of the internal data
type.

DATA_TYPE SMALLINT Identification number for data type.

Mimer SQL Version 11.0 241
System Management Handbook

TYPE_NAME VARCHAR(30) Name of data type. Can be one of the
following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER VARYING
NATIONAL CHAR LARGE OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

COLUMN_SIZE INTEGER Length of data type name.

LITERAL_PREFIX VARCHAR(30) Optional prefix for a literal of this type.

LITERAL_SUFFIX VARCHAR(30) Optional suffix for a literal of this type.

CREATE_PARAMS VARCHAR(30) A description of how to specify length
attributes for the data type.

NULLABLE SMALLINT One of:
1 = A not null constraint can be used
with this type in a domain or column
definition
0 = A not null constraint can not be used
with this type in a domain or column
definition.

CASE_SENSITIVE SMALLINT One of:
1 = The data type name is case sensitive
0 = The data type name is not case
sensitive.

Column name Data type Description

242 Appendix D Data Dictionary Tables
SYSTEM.TYPE_INFO

Primary key: INTERNAL_TYPE, DATA_TYPE

SEARCHABLE SMALLINT One of:
0 = The data type can not be used with
any comparison operator
1 = The data type can only be used with
the LIKE operator
2 = The data type can be used with any
comparison operator except like
3 = The data type can be used with any
comparison operator.

UNSIGNED_ATTRIBUTE SMALLINT One of:
1 = The data type is unsigned
0 = The data type is signed
The value is null if the data type is non-
numeric.

FIXED_PREC_SCALE SMALLINT One of:
1 = The data type has a determined
precision and scale
0 = The data type does not have a
determined precision and scale.

AUTO_UNIQUE_VALUE SMALLINT One of:
1 = The data type will generate unique
values
0 = The data type will not generate
unique values.

LOCAL_TYPE_NAME VARCHAR(30) Local name for data type.

MINIMUM_SCALE SMALLINT Minimum value for scale for a numeric
data type.

MAXIMUM_SCALE SMALLINT Maximum value for scale for a numeric
data type.

SQL_DATA_TYPE SMALLINT A numeric value representing the data
type.

SQL_DATETIME_SUB SMALLINT Subtype for an interval data type.

NUM_PREC_RADIX SMALLINT Radix for numeric data type.

INTERVAL_PRECISION SMALLINT Precision for an interval data type.

PRECISION INTEGER Precision for data type.

INTERNAL_LEN_DIFF SMALLINT Internal length difference.

INTERNAL_TYPENAME VARCHAR(30) Internal type name.

INTERNAL_VERSION SMALLINT Internal version number.

INTERNAL_TYPEORDER SMALLINT Internal type ordering number.

Column name Data type Description

Mimer SQL Version 11.0 243
System Management Handbook

SYSTEM.USAGE_PRIVILEGES
Records instances of privileges which grant the right to use a database object.

Primary key: OBJECT_SYSID, OBJECT_PRIVILEGE, GRANTEE_SYSID,
GRANTOR_SYSID

Secondary index: GRANTEE_SYSID
Secondary index: GRANTOR_SYSID

Column name Data type Description

OBJECT_SYSID INTEGER System identifier of the database object.

OBJECT_PRIVILEGE VARCHAR(20) One of:
BACKUP
CHARACTER SET
COLLATION
DATABANK
DOMAIN
FUNCTION
IDENT
METHOD
PROGRAM
SCHEMA
SEQUENCE_ON_DATABANK
SHADOW
STATEMENT
STATISTICS
TABLE
USER DEFINED TYPE

GRANTEE_SYSID INTEGER The id of the ident to whom the usage
privilege was granted.

GRANTOR_SYSID INTEGER The id of the ident granting the usage
privilege.

IS_GRANTABLE BOOLEAN One of:
TRUE = WITH GRANT OPTION is held
with the privilege
FALSE = WITH GRANT OPTION is not
held with the privilege.

IS_IMPLICIT BOOLEAN One of:
TRUE = The privilege has been granted
implicitly as the result of another grant
statement
FALSE = The privilege has been granted
implicitly.

244 Appendix D Data Dictionary Tables
SYSTEM.USER_DEF_TYPES

SYSTEM.USER_DEF_TYPES
Records user-defined types in the database.

Column name Data type Description

UDT_SYSID INTEGER System identifier of the
user-defined type.

CATEGORY_TYPE VARCHAR(20) One of:
STRUCTURED
DISTINCT.

COLLATION_SYSID INTEGER System identifier for the
collation used by the
column.

CHARSET_SYSID INTEGER System identifier for the
character set used by the
column.

DATA_TYPE VARCHAR(30) Identifies the data type of
the column.
Can be one of the
following:
BIGINT
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
CHARACTER
CHARACTER VARYING
CHARACTER LARGE
OBJECT
NATIONAL CHARACTER
NATIONAL CHARACTER
 VARYING
NATIONAL CHAR LARGE
 OBJECT
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
Float(p)
INTEGER
Integer(p)
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP
USER-DEFINED.

Mimer SQL Version 11.0 245
System Management Handbook

INTERVAL_TYPE VARCHAR(30) Identifies the interval type
of the column

CHAR_MAX_LENGTH BIGINT For CHARACTER,
BINARY, CHARACTER
LARGE OBJECT and
BINARY LARGE OBJECT
data types, this shows the
maximum length in
characters or bytes as
appropriate.
For all other data types it
is the null value.

CHAR_OCTET_LENGTH BIGINT For a CHARACTER,
BINARY, CHARACTER
LARGE OBJECT and
BINARY LARGE OBJECT
data types, this shows the
maximum length in
octets.
For all other data types it
is the null value. (For
single octet character sets,
this is the same as
CHAR_MAX_LENGTH.)

NUMERIC_PRECISION INTEGER For NUMERIC data types,
this shows the total
number of decimal digits
allowed in the column.
For all other data types it
is the null value.
NUMERIC_PREC_RADI
X indicates the units of
measurement.

NUMERIC_SCALE INTEGER For NUMERIC data types,
this shows the total
number of significant
digits to the right of the
decimal point. For
INTEGER values this is 0.
For all other types, it is the
null value.

Column name Data type Description

246 Appendix D Data Dictionary Tables
SYSTEM.USER_DEF_TYPES

NUMERIC_PREC_RADIX INTEGER For NUMERIC data types,
the value 10 is shown
because
NUMERIC_PRECISION
specifies a number of
decimal digits. For all
other data types it is the
null value.
NUMERIC_PRECISION
and
NUMERIC_PREC_RADIX
can be combined to
calculate the maximum
number that the column
can hold.

DATETIME_PRECISION INTEGER For DATE, TIME,
TIMESTAMP and interval
data types, this column
contains the number of
digits of precision for the
fractional seconds
component.
For other data types it is
the null value.

INTERVAL_PRECISION INTEGER For INTERVAL data types,
this is the number of
significant digits for the
interval leading precision,
see the Mimer SQL
Reference Manual.
For other data types it is
the null value.

INTERNAL_TYPE INTEGER System identifier of the
internal data type.

INTERNAL_LENGTH INTEGER Internal length in bytes of
value.

MAX_INTERNAL_LENGTH INTEGER Length of the type’s
longest subtype.

IS_INSTANTIABLE BOOLEAN One of:
TRUE = the structured
user-defined type can be
instantiated
FALSE = the structured
user-defined type cannot
be instantiated.

Column name Data type Description

Mimer SQL Version 11.0 247
System Management Handbook

IS_FINAL BOOLEAN One of:
TRUE = the structured
user-defined type cannot
be used as a supertype
FALSE = the structured
user-defined type can be
used as a supertype.

ORDERING_FORM VARCHAR(20) One of:
NONE, comparison not
allowed for instances of
the structured user-
defined type
EQUALS, only equality
comparisons allowed for
instances of the structured
user-defined type
FULL, all possible
comparisons allowed for
instances of the structured
user-defined type.

ORDERING_CATEGORY VARCHAR(20) One of:
RELATIVE, comparisons
are done with a relative
ordering function
STATE, comparisons are
done with a state ordering
function
MAP, comparisons are
done with a map ordering
function

ORDERING_ROUTINE_SYSID INTEGER System identifier for
ordering function.

ORDERING_SYSID INTEGER System identifier for
ordering.

NO_OF_ATTRIBUTES INTEGER Number of attributes in a
structured user-defined
type, 0 if user-defined
type is distinct.

CONSTRUCTOR_FUNCTION INTEGER System identifier for
constructor function, 0 if
user-defined type is
distinct.

OBSERVER_METHOD INTEGER System identifier for
observer method, 0 if
user-defined type is
structured.

Column name Data type Description

248 Appendix D Data Dictionary Tables
SYSTEM.USERS

Primary key: UDT_SYSID
Secondary index: ORDERING_SYSID

SYSTEM.USERS
Records idents (GROUP, PROGRAM or USER) in the database.

Primary key: USER_NAME
Unique constraint: USER_SYSID

TOTAL_DEFAULT_LENGTH INTEGER Total length in bytes for
all default values for
attributes in a structured
user-defined type.

TOTAL_ATTRIBUTE_NAME_LENGTH INTEGER Total length for all
attribute names in a
structured user-defined
type.

AS_LOCATOR BOOLEAN For a distinct type this
indicates whether the base
data type used in the type
definition is declared AS
LOCATOR or not.
One of:
TRUE
FALSE

NO_OF_SUPERTYPES INTEGER Number of supertypes.

NO_OF_SUBTYPES INTEGER Number of subtypes.

NO_OF_INHERITED INTEGER Number of inherited.

Column name Data type Description

Column name Data type Description

USER_NAME NCHAR
VARYING(128)

The ident name.

USER_SYSID INTEGER System identifier for the ident.

USER_TYPE VARCHAR(20) One of:
USER
OS_USER
PROGRAM
GROUP.

USER_PASSWORD
_MINIMUM_LENGTH

INTEGER The minimum length for a password.

Mimer SQL Version 11.0 249
System Management Handbook

SYSTEM.VIEWS
Records views in the database.

Primary key: VIEW_SYSID

Column name Data type Description

VIEW_SYSID INTEGER System identifier of the view.

CHECK_OPTION VARCHAR(20) One of:
CASCADED
LOCAL
NONE.

IS_UPDATABLE BOOLEAN One of:
FALSE = The view can not be updated
TRUE = The view can be updated.

IS_INSTEAD_OF BOOLEAN One of:
FALSE = The view can be updated per se
TRUE = The view can be updated due to
the existence of an instead of trigger.

VIEW_DEFINITION NCHAR
VARYING(200)

The text of the view definition.
If the length of the text exceeds 200
characters, this value is null and the text
is stored in SOURCE_DEFINITION.

250 Appendix D Data Dictionary Tables
SYSTEM.VIEWS

Mimer SQL Version 11.0 251
SQL Reference Manual

Appendix E

System Limits
LIMIT Value

Database cache 327 TB a

a. 2147480000 * (4k + 32k +128k blocks)

Databank file size 4096 PB

252 Appendix E System Limits

Mimer SQL Version 11.0 253
System Management Handbook

Appendix F

Deprecated
Features

This chapter discusses features and functionality that have been deprecated.

Export/Import
The Export/Import functionality in UTIL has been deprecated. It has been replaced with
Mimer SQL LOAD/UNLOAD, see Chapter 8, Loading and Unloading Data and
Definitions.

Load/Unload
The Load/Unload functionality in BSQL has been deprecated. It has been replaced with
Mimer SQL LOAD/UNLOAD, see Chapter 8, Loading and Unloading Data and
Definitions.
Load/Unload is still available from the BSQL menu for backward compatibility.

Readlog from UTIL
The UTIL Readlog functionality has been deprecated. It is now available from BSQL, see
Mimer SQL User’s Manual, Chapter 9, READLOG.

Backup/Restore from UTIL
The Backup/Restore functionality in UTIL has been deprecated. It is now available as
SQL statements, see Mimer SQL Reference Manual, Chapter 12, System Administration
Statements.

Statistics from UTIL
The statistics functionality in UTIL has been deprecated. It is now available as the SQL
statement UPDATE STATISTICS, see Mimer SQL Reference Manual, Chapter 12,
UPDATE STATISTICS.

254 Chapter F Deprecated Features
Shadowing Management from UTIL

Shadowing Management from UTIL
The UTIL shadowing management has been deprecated. Use the BSQL functionality
instead, see Creating and Managing Shadows on page 128.

Mimer SQL Version 11.0 255
System Management Handbook

Index
A
access

privileges 21
AES-GCM 47
ALTER SUBSCRIPTION 112
Audit trail 79
audit trail 79
authorization

database statistics 137
DBC 83
DBOPEN 91

B
backup and restore 67

SQL statements 74
backups of databanks 71
bufferpool 45

report 64

C
cascade 19

access privileges 21
effects with drop and revoke 22

CHECK 24, 25
command-line arguments

MIMCONTROL 52
MIMINFO 58
SDBGEN 35, 36

concurrency control 17
CONNECT SOURCE USER 114
CONNECT TARGET USER 114
connecting 37
CREATE SUBSCRIPTION 111

D
data

description headers 104
files 104
loading 93

data dictionary 5
tables 175

data integrity 23
data protection 125

levels 125
databank check. See DBC
databanks 7

allocating disk space 10
backup 71
changing location 13
data security 12
disk I/O 12
file access 14
file deletion 14
initial size 34
locating files 9
options 9
organizing 10
recreating 77
restoring from backup 76
system 7

LOGDB 8
SQLDB 8
SYSDB 8
TRANSDB 8

user 8
database 5

accessing 29
administration 3
connecting 37
data dictionary 5
default (node-specific) 38
defining user specific 38
environment 5
ident and data structure 36
listing connected users 59
local 28
remote 29
security 18
selecting 37
single-user mode 151
statistics 137
SYSADM 3
troubleshooting connect failures 39

database server 43

256 Index

bufferpool 45
client-server interface 30
communication buffers 46
controlling 50
error messages 65
managing 43
memory requirements 45
MIMCONTROL 43
MIMINFO 43
performance 44
SQLPOOL 46
system information 57
system requirements 49
threads 47

DBC 81
command-line arguments 82
error messages 86

bitmap errors 86
root page errors 86
sequential structure errors 86
table structure errors 87

for LOGDB, TRANSDB and SQLDB
85

end page 85
no. of pages read 85
no. of records read 85
page size 85
start page 85
status of table 85
tabid 85
type of table 85

result file 83
table information 84

data page size 85
index page size 84
keylen 84
levels 84
number of data pages 85
number of index pages 85
reached no of records 85
reclen 84
required/allocated data pages 85
startp 84
status of table 84
tabid 84
type of table 84

dbc 81
DBOPEN 89

authorization 91
background threads 89
command-line arguments 89
functions 91
multi-user mode 89
output example 92

DEFAULT section 158
delayed commit 167
DELETE 21

DESCRIBE SUBSCRIPTION 113
DISCONNECT SOURCE 114
DISCONNECT TARGET 115
domains 23

default value 23
drop log 74
DROP SUBSCRIPTION 113

E
encryption 47
ENTER SOURCE 115
ENTER TARGET 115
entity integrity 24
Error handling 118
error messages

DBC 86
EXECUTE 21
EXIT 116

G
GRANT OPTION 19, 22
group ident 6

I
ident 6

access and authority 7
group 6
program 6
structuring guidelines 19
SYSADM 7
user 6

Immediate restart 165
in-memory database server 44
INSERT 21
install 109
integrity

domains 23
foreign key 24
in view definitions 25
primary key 24
within tables 24

L
LEAVE SOURCE 115
LEAVE TARGET 116
license key 30, 107
LIST SUBSCRIPTIONS 113
LOAD 93

AS 99
examples 100
files 98
LOG 99
START AT 100
syntax 98

Mimer SQL Version 11.0 257
System Management Handbook

WITH SHARED ACCESS 100
LOCAL section 158
locating databank files 9
LOG databank option 9
log file 121
log tables 107
LOGDB 8

information contained in 69
initial creation 34

M
MEMBER 21
MIMCONTROL 50

command-line arguments 52
syntax 51

MIMDUMP 64
Mimer SQL

publications 2
Mimer SQL license key 30
Mimer SQL system databanks 7

generating 34
MIMER_MODE variable 151
mimexper 43
MIMINFO 57

bufferpool report 57
command-line arguments 58
performance report 57, 59

background threads 62
bufferpool report 64
databank statistics 62
general statistics 60
page statistics 60
table statistics 64
transaction statistics 61

SQLPOOL report 57, 64
syntax 57
users list 57, 59
using 57
Version report 57
version report 64

miminm 43
MIMLICENSE

syntax 32
MIMLOAD 93

command-line arguments 94
examples 95
exit codes 83, 95
syntax 94

MIMREPADM 110
options 108

MIMSERV 59
MIMSYNC 119
mimtcp 29, 30, 168
MULTIDEFS

mimtcp 168
MULTIDEFS file 161

multifile databank 14

O
object privileges 21
optimistic concurrency control 17

P
performance

database server 44
Privilege

system
databank 20
ident 20
schema 20
shadow 20
statistics 20

Privileges 20
privileges

access
ALL 21
delete 21
insert 21
references 21
select 21
update 21

object 21
execute 21
member 21
table 21
usage on domain 21

revoking - cascade effects 22
system 20

backup 20
program ident 6
PUBLIC logical group 7

R
READ ONLY databank option 9
REFERENCES 21
referential integrity 24
relocating databanks

system 13
user 13

REMOTE section 158
replication 107
REPSERVER 117
requirements 107
reset log 74
restore 76
restriction views 23

S
SDBGEN 34

command-line arguments 36

258 Index

syntax 35
SELECT 21
Shadow

not accessible 134
Shadowing 123

databank 123
LOGDB shadow to a master 133
LOGDB Shadow to Master 133
logging 127
management 128
performance 135
privileges 128
shadow to master 132
SYSDB Shadow to Master 132
system databanks 131
testing 134
transaction control 123
TRANSDB shadow to master 133
troubleshooting 135

shadowing in backup and restore 67
Shadows

backing-up from 129
SHOW SETTINGS 116
SINGLEDEFS file 153
single-user mode access to a database 151

file protection 151
MIMER_MODE variable 151
the SINGLEDEFS file 153

source database 110
SQL compiler 137
SQL statement

about 4
SQL statements for managing databank
backups 72
SQLDB 8

backups of 71
initial creation 34

SQLHOSTS file 155
SQLMONITOR 141
SQLPOOL 46
statistics on data access 137

authorization 137
subscription 110
synchronization 119
SYSADM 3, 7, 19

administration 3
privileges and access 4

SYSDB 8
initial creation 34

system databanks 7
system management 3

T
TABLE 21
table integrity 24
target database 110

TEMPORARY databank option 9
threads 47

request 47
transaction conflict 118
transaction control 18
TRANSACTION databank option 9
transactions 18

build-up 18
read-set 18
write-set 18

TRANSDB 8
backups of 70
initial creation 34

treads
background 47

triggers 107

U
uninstall 110
UNLOAD 93, 101

AS 102
examples 103
FROM 103
LOG 102
syntax 101
USING 103

UPDATE 21
USAGE 21
user databanks 8
USER ident 6

V
view integrity 25
Views

restriction 23
views - use in database security 23

W
WORK databank option 9

Mimer SQL Version 11.0 I
Documentation Set

Index
Symbols
@ 105, 125

A
aborting transactions 396
ABS 89
access

privileges 24, 359, 219, 120, 21
DELETE 219
INSERT 219
REFERENCES 219
SELECT 219
UPDATE 219

access control statements 191, 20
GRANT 20
REVOKE 20

access privileges 120
DELETE 359, 120
examples 121
granting 120
INSERT 359, 120
REFERENCES 359, 120
revoking 388
SELECT 359, 120
UPDATE 359, 120

access rights
for cursors 53

access-clause for procedures 259
accessing data 50
ACOS 90
active connection 43, 162
ADO.NET 2
AES-GCM 47
AFTER 281
ALL 155, 176, 62

in SELECT clause 176
predicate 155

ALLOCATE CURSOR 196
ALLOCATE DESCRIPTOR 198
ALTER DATABANK 200, 111

INTO 200
SET FILESIZE 200

TO
LOG 200
TRANSACTION 200
WORK 200

ALTER DATABANK RESTORE 205
filename-string 205
LOG 205

ALTER DATABASE 207
ALTER FUNCTION 209
ALTER IDENT 212, 113
ALTER METHOD 214
ALTER PROCEDURE 216
ALTER ROUTINE 219
ALTER SEQUENCE 222
ALTER SHADOW 223
ALTER STATEMENT 225
ALTER SUBSCRIPTION 112
ALTER TABLE 226, 111
ALTER TYPE 230, 231
Alternate Weighting 26
anchor member 181
ANSI/ISO 9
ANY 155, 62
APIs

embedded SQL 7, 31, 33, 75, 97, 117
Application Server 235
arccosine 90
arcsine 91
arctangent 92
arithmetic operations 34
arithmetical operators 72
arrays 46
AS

for column labels 25
AS_DECIMAL 292, 294
AS_DOUBLE 292, 294
AS_TEXT 292, 294, 297
ASCII_CHAR 90
ASCII_CODE 91
ASCII, escaped function 27
ASIN 91
assigning values 77

standard compliance 80, 83

II Index

assignment
SET 404

assignments 77
string 77

ATAN 92
ATAN2 92
Audit trail 79
audit trail 79
authorization

database statistics 137
DBC 83
DBOPEN 91

automatic upgrade 208
AUTOUPGRADE 207, 228, 254, 265
AVG 136, 45

B
BACKUP 119

privilege 364, 218
backup

databank 248
backup and restore 67

SQL statements 74
BACKUP privilege 364
back-up protection 92
backups of databanks 71
Backward Accent Ordering 32
backward compatibility 529
basic predicate 154

subselect 154
batch jobs 125
Batch SQL 125, 169
BEFORE 281
BEGIN DECLARE SECTION 314, 46
BEGINS 93
BEGINS_WORD 93
BETWEEN 156
BETWEEN operator 32
BIGINT 52
BINARY 50
BINARY LARGE OBJECT 50
binary operators 142
BINARY VARYING 50
bit operators 72
BLOB 50
Block Fetching 54
Boolean 57
BREADTH first 182
BSQL 125, 169

batch jobs 125
command-line arguments 127
commands 130
errors in 164
host variables 160
logging in 129
running 125

script jobs 126
syntax descriptions 131
Unix command line 129
variables 160

BSQL commands 130
CLOSE 132
DESCRIBE 133
DESCRIBE options 134
EXIT 142
GET DIAGNOSTICS 142
LIST 143
LOG 146
READ INPUT 147
SET ECHO 151
SET EXECUTE 152
SET EXPLAIN 152
SET LINECOUNT 154
SET LINESPACE 154
SET LINEWIDTH 155
SET LOG 155
SET MAX_BINARY_LENGTH 155
SET MAX_CHARACTER_LENGTH

156
SET MESSAGE 156
SET OUTPUT 156
SET PAGELENGTH 157
SET PAGEWIDTH 157
SET SILENCE 157
SET STATISTICS 158
SHOW SETTINGS 158
TRANSACTIONS 159
WHENEVER 160

bufferpool 45
report 64

BUILTIN.BEGINS_WORD 93
builtin.gis_coordinate 301
builtin.gis_latitude 291
builtin.gis_location 297
builtin.gis_longitude 294
BUILTIN.MATCH_WORD 94
BUILTIN.UTC_TIMESTAMP 95

C
C (programming language)

preprocessor output 313
C/C++ 2

comments 308
data types 311

value assignments 312
host variables 309

declaring 309
line continuation 308
null terminated strings 309
quotation marks 308
special characters 308
statement delimiters 308

Mimer SQL Version 11.0 III
Documentation Set

statement format 308
white-space 308

CALL 233
CALL statement 259
calling procedures 233, 259
CASCADE 227, 228, 327, 388, 392, 113,
121
cascade 19

access privileges 21
effects with drop and revoke 22

CASE 145, 235, 39
rules 145, 146

CASE expression 145
COALESCE 147
is NULLIF 147
NULLIF 147
rules 145, 146
short forms 147

case folding 47
CAST 148, 41
CAST specification 148

example 151
rules 148

CEILING 96
changing connections 162
changing databank file location 223
changing passwords 113
changing shadow to master databank 223
CHAR_LENGTH 96, 37
CHAR(), escaped function 27
CHAR(n) 45
CHARACTER 44
CHARACTER LARGE OBJECT 44
character set 525, 28
character string 64
character string comparison 28
CHARACTER VARYING 44
CHARACTER VARYING(n) 45
CHARACTER_SET_ CATALOG 345
CHARACTER_SET_ NAME 345
CHARACTER_SET_ SCHEMA 345
CHARACTER(n) 45
character-string-literal 64
CHECK 24, 25

in domain 257, 104
check

conditions 11
option in views 11

check conditions 22
in tables 102

CHECK OPTION
in view definition 302

check option in views 107
check options 23
client/server 13
CLOB 44, 45

maximum length 45, 50

CLOSE 237
closing a cursor 237
COALESCE 147
COBOL 2

comments 315
data types 316
host variables 315
line continuation 314
preprocessor output 317
statement delimiters 314

COLLATE 179
collation 20, 327, 525

creating 251
dropping 327

COLLATION_CATALOG 345
COLLATION_NAME 345
COLLATION_SCHEMA 345
collations 75

altering 77
comparison operators 78
concatenation operator 81
CREATE DOMAIN 76
CREATE INDEX 77
CREATE TYPE 76
CREATE/ALTER TABLE 76
DISTINCT 83
dropping 77
GROUP BY 80
IN and BETWEEN 81
INFORMATION_SCHEMA 78
ORDER BY 79
precedence 77
scalar string functions 80
UNION 82
using 76
using - examples 78

column
adding 226
altering 227
dropping 227

column definition 287
column labels 25
column names

in UNION queries 184
in views 302

COM+ 237
COMMAND_FUNCTION 356
command-line arguments

MIMCONTROL 52
MIMINFO 58
SDBGEN 35, 36

COMMENT 239
comment

dropping 327
comments 239, 35, 110

changing 239
dropping 327

IV Index

in COBOL 315
in FORTRAN 318
in routines 260

COMMIT 241, 226
COMMIT BACKUP 241
committing transactions 91
common table expression 179
comparison 27
comparison operators 73
comparisons 80

truth tables 82
compiler 38
compound statement 243
compress 227
computed values 34
concatenation 65
concurrency control 91, 17
condition names

declaring 307
conditional execution

CASE 235
IF 366

CONNECT 245
backward compatibility syntax 530

CONNECT SOURCE USER 114
CONNECT TARGET USER 114
connecting 37
connection name 42, 158
connection statements 191, 20

CONNECT 20
DISCONNECT 20
ENTER 20
LEAVE 20
SET CONNECTION 20

connections
cursors 54

constants 64
CONSTRAINT_CATALOG 354
constraints

referential 100
unique 100

constructor-method-invocation 151
CONTINUE 434
contractions 32
coordinate 301
coordinate system 58
Coordinated Universal Time 95
correlation names 177, 58
COS 97
COSH 97
cosine 97
COT 98
cotangent 98
COUNT 136, 45
CREATE

BACKUP 248
COLLATION 251

DATABANK 253
DOMAIN 256
FUNCTION 258
IDENT 262
INDEX 264
METHOD 267
MODULE 268
PROCEDURE 271
SCHEMA 275
SEQUENCE 277
SHADOW 280
STATEMENT 282
SYNONYM 284
TABLE 285
TRIGGER 294
TYPE 298
VIEW 301, 302

CREATE SUBSCRIPTION 111
creating 282

collations 251
comments 239
databanks 253, 97
domain 256
domains 103
function 258
ident 262
method 267
module 268
modules 105
procedure 271
procedures 105
schema 275
secondary index 264
secondary indexes 108
sequence 277
shadow databank 280
synonym 284
synonyms 109
table 285
tables 98
trigger 294
triggers 105
user-defined types 298
view 302
views 107
views on views 108

CROSS JOIN 172
cross product 52
cte 179
CURDATE(), escaped function 28
current locale 48
current row 58
CURRENT VALUE 100
CURRENT_DATE 98
CURRENT_PROGRAM 99
CURRENT_TIME(), escaped function 28
CURRENT_TIMESTAMP(), escaped

Mimer SQL Version 11.0 V
Documentation Set

function 28
CURRENT_USER 99
cursor

closing 237
cursor stack 237, 309
cursor-independent data manipulation 58
cursors 50, 58

access rights 310, 53
and program idents 44
closing 54
declaring 309, 51
deleting current row 319
evaluating declaration 310
evaluating SELECT statement 53
extended dynamic 64
for join conditions 55
for UPDATE and DELETE 58
in dynamic SQL 68
in multiple connections 54
opening 378, 53
position after delete 319
position in result set 53, 58
positioning 53
positioning in result set 339
REOPENABLE 309
resource allocation 54
retrieving data 339
SCROLL 309, 339
stacking 56
transactions 232
updatable 59
updating and deleting with 58
updating data 429

CURTIME(), escaped function 28
CYCLE 278
CYCLE clause 184
cycle-clause 180

D
data

binary 50
description headers 104
errors 335
files 104
loading 93
numerical 52

data definition statements 192, 19
ALTER 19
COMMENT 19
CREATE 19
DROP 19

data dictionary 12, 437, 5
tables 175

data integrity 21, 9, 23
check conditions 22
check options 23

domains 22
foreign keys 21

data manipulation 85
data manipulation statements 20

CALL 20
DELETE 20
INSERT 20
SELECT 20
SET 20
UPDATE 20

data protection 125
levels 125

data types
abbreviations 59
C/C++ 311
CHAR(n) 45
CHARACTER(n) 45
compatibility 60
compatibility in FETCH statements 340
conversion 60, 61, 148
DATE TIME TIMESTAMP 53
in COBOL 316
in FORTRAN 320
INTERVAL 54
NCHAR 46
NCHAR VARYING 46
ROW 59
standard compliance 63

DATABANK 119
privilege 218

databank 12, 253
access errors 369
altering 200
backup 248
creating 253
dropping 327
file location 223, 253
name 255, 276
offline 407
restoring 205
shadow 280
shadows offline 416
shadows online 416
system 13
user 13

databank check. See DBC
DATABANK privilege 364
databank shadows 14
databanks 13, 7

allocating disk space 10
altering 111
backup 71
changing location 13
creating 97
data security 12
disk I/O 12
dropping 114

VI Index

file access 14
file deletion 14
initial size 34
locating files 9
online 407
options 9
organizing 10
recreating 77
restoring from backup 76
system 13, 7

LOGDB 8
SQLDB 8
SYSDB 8
TRANSDB 8

user 13, 8
database 13, 5

accessing 29
administration 3
connecting 37
connecting to 245
data dictionary 5
default (node-specific) 38
defining user specific 38
definition statements 95
design 95
environment 5
ident and data structure 36
listing connected users 59
local 28
objects 11
offline 409
online 409
optimizing performance 432
private objects 11
privileges 218
remote 29
security 18
selecting 37
single-user mode 151
statistics 137
SYSADM 3
system objects 11
troubleshooting connect failures 39

database administration statements 21
ALTER DATABANK 21
CREATE BACKUP 21
CREATE INCREMENTAL BACKUP

21
RESTORE 21
SET DATABANK 21
SET DATABASE 21
SET SHADOW 21
UPDATE STATISTICS 21

database server 43
bufferpool 45
client-server interface 30
communication buffers 46

controlling 50
error messages 65
managing 43
memory requirements 45
MIMCONTROL 43
MIMINFO 43
performance 44
SQLPOOL 46
system information 57
system requirements 49
threads 47

DATABASE(), escaped function 28
DATE 53, 54
datetime

arithmetic 42
functions 42

datetime and interval comparisons 81
datetime assignments 79
DATETIME data types 349
Datetime literals 67
DATETIME_INTERVAL _CODE 346
DATETIME_INTERVAL _PRECISION
346
DAY 56, 100, 101
DAYNAME(), escaped function 28
DAYOFYEAR 100, 101, 102
DAY-TIME 54
DBC 81

command-line arguments 82
error messages 86

bitmap errors 86
root page errors 86
sequential structure errors 86
table structure errors 87

for LOGDB, TRANSDB and SQLDB
85

end page 85
no. of pages read 85
no. of records read 85
page size 85
start page 85
status of table 85
tabid 85
type of table 85

result file 83
table information 84

data page size 85
index page size 84
keylen 84
levels 84
number of data pages 85
number of index pages 85
reached no of records 85
reclen 84
required/allocated data pages 85
startp 84
status of table 84

Mimer SQL Version 11.0 VII
Documentation Set

tabid 84
type of table 84

dbc 81
DBOPEN 89

authorization 91
background threads 89
command-line arguments 89
functions 91
multi-user mode 89
output example 92

DDL 192
deadlock 223
DEALLOCATE

DESCRIPTOR 305
PREPARE 306

deallocating cursor resources 237
debugging 275
DECIMAL 52
decimal literals 66
declaration of SQLSTATE 49
DECLARE

CONDITION 307
CURSOR 309
HANDLER 312
SECTION 314
VARIABLE 315

DECLARE SECTION 46
declaring

condition names 268
cursors 51
host variables 51
routine variables 250

declaring host variables 314
declaring procedure variables 315
DEFAULT

in column definition 287
in domain 256

DEFAULT section 158
default transaction mode settings 413
default values 76
default values in domains 104
DEGREES 102
delayed commit 167
DELETE 317, 58, 89, 120, 21

CURRENT 319
privilege 359
privileges 219

DELETE STATISTICS 321
delete-rule 290
delimited identifier 38
delimiting complex statements with @ 105
deprecated features 529, 399

SET TRANSACTION CHANGES 400
SQLDA 399
VARCHAR(size) 400

DEPTH first 182
DESCRIBE

COLLATION 140
DATABANK 134
DOMAIN 135
FUNCTION 138
IDENT 135
INDEX 136
MODULE 137
PROCEDURE 137
SCHEMA 140
SEQUENCE 139
SHADOW 140
SPECIFIC 141, 142
SYNONYM 136
TABLE 136
TRIGGER 139
VIEW 137

DESCRIBE INPUT 66
DESCRIBE SELECT LIST 323
DESCRIBE SUBSCRIPTION 113
DESCRIBE USER VARIABLES 323
descriptor area 323

see SQLDA 340
destroy allocated cursor 306
destroy prepared statement 306
diagnostics area 351, 50
DIFFERENCE(), escaped function 28
DISCONNECT 325, 162
DISCONNECT SOURCE 114
DISCONNECT TARGET 115
disconnecting 43
disk representation 227
DISTINCT 176, 26

in set functions 45
DISTINCT FROM 161
DISTINCT predicate 161
distinct type 287
domain 256

creating 256
data integrity 22
dropping 327

domains 9, 23
check clause 104
creating 103
default value 23
default values 104
dropping 114

dormant cursors 54
DOUBLE PRECISION 52
DROP 16, 326
drop behavior 227, 228
drop log 74
DROP SUBSCRIPTION 113
dropping objects 113
DTC 235, 92
duplicate values 26
dynamic SQL 64

cursors 68

VIII Index

descriptor area 63
example framework 68
executing statements 67
input variables 66
object form of statements 64
output variables 66
parameter markers 62
preparing statements 64
source form of statements 64
SQL statements 61
statement source form 64
statements 62, 65

ALLOCATE CURSOR 62
ALLOCATE DESCRIPTOR 62
CLOSE 62
DEALLOCATE DESCRIPTOR 62
DEALLOCATE PREPARE 62
DESCRIBE 62
EXECUTE 62
EXECUTE IMMEDIATE 62
FETCH 62
GET DESCRIPTOR 62
OPEN 62
PREPARE 62
SET DESCRIPTOR 62
submitting 62

dynamic SQL statements
executing 332, 334
opening cursors 378
preparing 380
source form 380

DYNAMIC_FUNCTION 356

E
ELSE 146, 366
ELSEIF 366
Embedded SQL

ESQL 2
host languages 34
program structure 39
scope 33
statements 34

embedded SQL control statements 193
encryption 47
END DECLARE SECTION 314, 46
ENTER 44
ENTER SOURCE 115
ENTER TARGET 115
entity integrity 24
EOR 10
error

codes 535, 537
handling 434

error codes 323, 329
Error handling 118
error handling 69

in transactions 233
error messages

DBC 86
errors

examples 165
illegal BSQL commands 166
messages 166
semantic 164
syntax 165

escape
characters 158

escape clause 27
ESCAPE in LIKE conditions 29
ESQL 7, 31, 33, 75, 97, 117
evaluating cursor declaration 310
EXCEPT 71, 185
exception

conditions 434
handlers

declaring 312
exception conditions 69
exception handlers 271

continue 271
exit 271
undo 271

exception-info 353
EXEC SQL 34
EXECUTE 332, 120, 21

on routine 274
privileges 218

EXECUTE IMMEDIATE 334
EXECUTE privilege

on procedure 362
on program ident 362

EXECUTE STATEMENT 335, 336
EXISTS 159

condition 60
NULL values 69

EXIT 116
EXLOAD 180
EXP 103
exp 103
explain 336, 169
expression 141

CASE 145
expressions 141

binary operators 142
evaluating arithmetical 143
evaluating string 144
in SELECT 176
operands 142
precision and scale 143
standard compliance 152
syntax 141
unary operators 142

extended cursor
allocate 196

Mimer SQL Version 11.0 IX
Documentation Set

DELETE CURRENT 319
UPDATE CURRENT 429

EXTRACT 103, 37

F
FETCH 339, 53, 67

scrollable cursor 339
FETCH FIRST 187
fetch limit 187
file extension

shadow databank 223
file location

databank 223, 253
FILESIZE 201, 253
FIPS_DOCUMENTATION 532
FLOAT 52
floating point literals 66
FLOOR 104
FOR loop 257
FOR UPDATE 398
foreign keys 10, 100

data integrity 21
FORTRAN 2

comments 318
host variables 319
line continuation 318
preprocessor output 320
statement delimiters 318
statement margins 318
statement numbers 318

function
dropping 328

functions 17, 87, 258, 240, 15
datetime pseudo literals

CURRENT_DATE 98
LOCALTIME 107
LOCALTIMESTAMP 107

invoking 260
scalar functions

standard compliance 133
scalar interval functions

ABS 89
scalar numeric functions 87

ASCII_CODE 91, 132
CHAR_LENGTH 96
CURRENT_VALUE 100
DAYOFYEAR 100, 101, 102
EXTRACT 103
IRAND 105
MOD 110
OCTET_LENGTH 112
POSITION 115
ROUND 123
SIGN 125
TRUNCATE 131
WEEK 133

scalar string functions
ASCII_CHAR 90, 131
CURRENT_PROGRAM 99
LOWER 109
PASTE 114
REPEAT 122
REPLACE 122
SOUNDEX 126
SUBSTRING 127
TAIL 128
TRIM 130
UPPER 132

set functions 136
ALL 137
AVG 136
COUNT 136
DISTINCT 137
eliminating duplicate values 137
empty operand set 137
evaluating 138
MAX 136
MIN 136
NULL 137
operational mode 137
precision and scale 138
restrictions 137
results 137
standard compliance 138
SUM 136
syntax 136

SQL statements 241
string ‘pseudo literals’

CURRENT_USER 99
SESSION_USER 124
USER 132

user-defined 258

G
general exception handlers 269
GET DESCRIPTOR 344
GET DIAGNOSTICS 351, 50

COMMAND_FUNCTION 356
condition-info 353
DYNAMIC_FUNCTION 356
exception-info

CATALOG_NAME 353
CLASS_ORIGIN 353
COLUMN_NAME 353
CONDITION_IDENTIFIER 354
CONDITION_NUMBER 354
CONNECTION_NAME 354
CONSTRAINT_CATALOG 354
CONSTRAINT_NAME 354
CONSTRAINT_SCHEMA 354
CURSOR_NAME 354
ERROR_LENGTH 354

X Index

ERROR_POSITION 354
MESSAGE_LENGTH 354
MESSAGE_OCTET _LENGTH

354
MESSAGE_TEXT 354
NATIVE_ERROR 355
PARAMETER_NAME 355
RETURNED_SQLSTATE 355
ROUTINE_CATALOG 355
ROUTINE_NAME 355
ROUTINE_SCHEMA 355
SCHEMA_NAME 355
SERVER_NAME 355
SPECIFIC_NAME 355
SUBCLASS_ORIGIN 355
TABLE_NAME 356
TRIGGER_CATALOG 356
TRIGGER_NAME 356
TRIGGER_SCHEMA 356

ROW_COUNT 262
statement-information 353

COMMAND_FUNCTION 353
DYNAMIC_FUNCTION 353
MORE 353
NUMBER 353
ROW_COUNT 353
TRANSACTION_ACTIVE 353

GIS 58
GOALSIZE 201, 253
GOTO 434
GRANT OBJECT PRIVILEGE 361
GRANT OPTION 219, 19, 22
grant option 18, 117
GRANT SYSTEM PRIVILEGE 364
granting privileges 119
GROUP BY 178, 47
GROUP ident 218
group ident 14, 6
GROUP idents 263
group idents 17
group membership 362

H
handlers

declaring 312
HAVING 179, 48
holdable 58
holdable cursor 196, 309, 52, 58
host identifier 161
host language

included code 35
host languages 291, 305, 307

C/C++ 291, 305, 307
COBOL 291, 305, 307
FORTRAN 291, 305, 307

host variable declarations 314

host variables 46, 309, 160
arrays 46
declaration 51
declarations 39
declaring 46
in COBOL 315
in cursor declarations 52
in FORTRAN 319
in SQL statements 46
names 35
scope 161
SQL 161
using 161

HOUR 56, 104
hyperbolic cosine 97
hyperbolic sine 126
hyperbolic tangent 129

I
IDENT 119

privilege 364, 218
ident 14, 262, 6

access and authority 7
creating 262
disconnecting from a database 325
dropping 328
GROUP 263
group 14, 6
group membership 362
PROGRAM 262
program 14, 6
structuring guidelines 19
SYSADM 7
USER 262
user 14, 6

IDENT privilege 364
identifiers

standard compliance 43
idents 217, 16, 95

altering 113
dropping 115
GROUP 218
group 17
names 96
PROGRAM 217
program 16
structure 118
USER 217
user 16

IEEE 312
IF 366
Immediate restart 165
implicit connection 42
IN condition 31
IN predicate 156
included code

Mimer SQL Version 11.0 XI
Documentation Set

host language 35
increment 277
index 264

dropping 328
index algorithm 265
INDEX_CHAR 105
indexes 16, 8
indexing

automatic 266, 8
Indic 33
indicator variable 161
indicator variables 42, 47

including 161
INFO_SCHEM 532
INFORMATION_SCHEMA 437
in-memory database server 44
INNER JOINs 167
INSERT 368, 58, 85, 120, 21

privilege 359
privileges 219

INSERT(), escaped function 28
inserting NULL values 88
inserting with a subselect 87
inserting with a values list 86
INSIDE_RECTANGLE 298, 301
install 109
instance method 288
INSTEAD OF 281
INTEGER 52
integer literals 65
integrity

domains 23
foreign key 24
in view definitions 25
primary key 24
within tables 24

INTERFACE 16
intermediate result sets 177
INTERSECT 72, 185
INTERVAL 54

literals 67
qualifiers 55

INTERVAL data types 349
invoking functions 260
invoking procedures 233
IRAND 105
IS NULL 67
ISO/IEC 9075 9
ISOLATION LEVEL 413
isolation levels 418
isolation levels in transactions 94
item descriptor area 345
ITERATE 371, 257, 259
iteration 257

LOOP statement 257
REPEAT statement 258
skip 259

WHILE statement 258
iterative execution

LOOP 376
REPEAT 382
WHILE 435

J
Japanese 35
JDBC 2

driver 31
JOIN

FULL OUTER 171
INNER 167
LEFT OUTER 170
NATURAL 168
ON 167
OUTER 169
RIGHT OUTER 170
standard compliance 172
USING 168

join
a table with itself 59
condition 51
views 8

join retrievals
using cursors 55

joined tables 167
joins 165

outer 54
simple 52

K
Kanji 35, 36
keys

foreign 100
primary 100

keywords
in syntax diagrams 6

Korean 36

L
labels in SELECT clause 176
languages 549
LARGE OBJECT 48, 50
latitude 58, 291
LCASE(), escaped function 28
LEAVE 373, 44

(program ident) 375
LEAVE RETAIN 44
LEAVE SOURCE 115
LEAVE TARGET 116
LEFT 106
LENGTH 346
LENGTH(), escaped function 28

XII Index

LEVEL 346
level-1 25
level-2 25
level-3 26
level-4 26
license key 30, 107
LIKE 157, 29

escape characters 158
meta-characters 157
wildcards 157

limits 339
line continuation

in COBOL 314
in FORTRAN 318

Linguistic Sorting 14
LIST

COLLATIONS 143
DATABANK 143
DATABANKS 143
DOMAINS 144
FUNCTIONS 144
IDENTS 144
INDEXES 144
MODULES 144
OBJECTS 144
PROCEDURES 144
SCHEMATA 145
SEQUENCES 145
SHADOWS 145
STATEMENTS 145
SYNONYMS 145
TABLES 145
TRIGGERS 145
VIEWS 146

LIST SUBSCRIPTIONS 113
literals 64

standard compliance 69
LN 106
LOAD 93

AS 99
examples 100
files 98
LOG 99
START AT 100
syntax 98
WITH SHARED ACCESS 100

LOBs 164
LOCAL section 158
locale 8, 48
LOCALTIME 107
LOCALTIMESTAMP 107
LOCATE 108
locating databank files 9
location 58
LOG 224
log 106, 109
LOG databank option 92, 9

log file 121
LOG option 202, 254
log tables 107
LOG(), escaped function 28
LOG10 109
LOGDB 13, 8

information contained in 69
initial creation 34

logging 92
options 92

logical operators 27
longitude 58, 294
LOOP 376, 257
LOOP statement 257
LOWER 109, 37
LTRIM(), escaped function 28

M
MASTER 223
MATCH_WORD 94
MAX 136, 45
MAXSIZE 201, 253
MAXVALUE 278
MEMBER 120, 21

privileges 218
MEMBER privilege 362
messages 166
meta-characters 157
method 267
method-invocation 151
Micro API 97
Micro C API 3
MIMCONTROL 50

command-line arguments 52
syntax 51

MIMDUMP 64
Mimer API 97
Mimer SQL 1

basic concepts 11, 25
database objects 11
publications 3, 2

Mimer SQL C API 2, 97
Mimer SQL license key 30
Mimer SQL Micro C API 97
Mimer SQL system databanks 7

generating 34
MIMER_LOCALE 9, 49
MIMER_MODE variable 151
mimer_rowid 284
MimerAddBatch 121
MimerBeginSession 122
MimerBeginSession8 123
MimerBeginSessionC 124
MimerBeginStatement 125
MimerBeginStatement8 127
MimerBeginStatementC 129

Mimer SQL Version 11.0 XIII
Documentation Set

MimerBeginTransaction 131
MimerCloseCursor 132
MimerColumnCount 133
MimerColumnName 134
MimerColumnName8 135
MimerColumnNameC 136
MimerColumnType 137
MimerCurrentRow 138
MimerEndSession 139
MimerEndStatement 140
MimerEndTransaction 141
MimerExecute 142
MimerExecuteStatement 143
MimerExecuteStatement8 144
MimerExecuteStatementC 145
MimerFetch 146
MimerFetchScroll 147
MimerFetchSkip 149
MimerGetBinary 150
MimerGetBlobData 152
MimerGetBoolean 153
MimerGetDouble 154
MimerGetFloat 155
MimerGetInt32 156
MimerGetInt64 157
MimerGetLob 158
MimerGetNclobData 160
MimerGetNclobData8 162
MimerGetNclobDataC 164
MimerGetStatistics 166
MimerGetString 168
MimerGetString8 170
MimerGetStringC 172
MimerGetUUID 174
MimerIsBinary 107
MimerIsBlob 107
MimerIsBoolean 107
MimerIsClob 107
MimerIsDouble 107
MimerIsFloat 107
MimerIsInt32 107
MimerIsInt64 107
MimerIsNull 175
MimerIsString 107
MimerNext 176
MimerOpenCursor 177
MimerParameterCount 178
MimerParameterMode 179
MimerParameterName8 181
MimerParameterNameC 182
MimerParameterType 183
MimerRowSize 184
MimerSetArraySize 185
MimerSetBinary 186
MimerSetBlobData 188
MimerSetDouble 190
MimerSetFloat 192

MimerSetInt32 194
MimerSetInt64 196
MimerSetLob 197
MimerSetNclobData 199
MimerSetNclobData8 200
MimerSetNclobDataC 201
MimerSetNull 202
MimerSetString 203
MimerSetString8 205
MimerSetStringC 207
MimerSetStringLen 209
MimerSetStringLen8 211
MimerSetStringLenC 213
MimerSetUUID 215
mimexper 43
MIMINFO 57

bufferpool report 57
command-line arguments 58
performance report 57, 59

background threads 62
bufferpool report 64
databank statistics 62
general statistics 60
page statistics 60
table statistics 64
transaction statistics 61

SQLPOOL report 57, 64
syntax 57
users list 57, 59
using 57
Version report 57
version report 64

miminm 43
MIMLICENSE

syntax 32
MIMLOAD 93

command-line arguments 94
examples 95
exit codes 83, 95
syntax 94

MIMREPADM 110
options 108

MIMSERV 59
MIMSYNC 119
mimtcp 29, 30, 168
MIN 136, 45
MINSIZE 201, 253
minus sign

in COBOL variable names 315
MINUTE 56, 110
MINVALUE 278
MOD 110
module

dropping 328
Module SQL 2, 75
modules 18, 268, 253, 15

creating 268, 105

XIV Index

MONTH 56, 111
MONTHNAME(), escaped function 29
MSDTC 237
MSQL 2, 75
MTS 235
MULTIDEFS

mimtcp 168
MULTIDEFS file 161
multifile databank 14
Multilevel Comparisons 25
multiple connections 43

N
NAME 346
NATIONAL CHARACTER 48
national character

data 526
NCHAR 46
strings 46

NATIONAL CHARACTER LARGE
OBJECT 48
NATIONAL CHARACTER VARYING 48
NATIONAL CHARACTER VARYING(n)
48
NATIONAL CHARACTER(n) 48
national-character-string-literal 64
native escape clause 27
NATURAL JOIN 168
NCHAR 46, 48
NCHAR LARGE OBJECT 48
NCHAR VARYING 48
NCHAR VARYING(n) 48
NCHAR(n) 48
NCLOB 48
nested selects 56
NEW 289
new table 279
NEXT VALUE 111
NO CYCLE 278
NODE 16
NOT EXISTS 159
NOT FOUND 434
NOW(), escaped function 29
NULL 59, 159, 47

in comparisons 82
in expressions 143
in host variables 42
in set functions 137
in UNION queries 184
indicator variables 529
predicate 159

NULL databank option 92
NULL values

in EXISTS etc. 69
in SELECT 67
in set functions 45

in variables 161
inserting 88
treated as equal by distinct 26

NULLABLE 346
NULLIF 147
numerical

comparisons 81
data

precision and scale 53
literals 66
strings 62

NVARCHAR 48

O
object

privileges 218
EXECUTE 218
MEMBER 218
TABLE 218
USAGE 218

object privileges 23, 361, 18, 120, 21
examples 120
EXECUTE 120
granting 120
MEMBER 120
revoking 391
TABLE 120
USAGE 120

OCC 221
OCTET_LENGTH 112, 346
ODBC 2

connecting 13
declarations 12
disconnecting 18
driver 7
error handling 18
executing 22
file data source 15
initializing 13
interaction 15
operating systems 12
prepared execution 22
stored procedure 23
transaction processing 19

ODBC escape clause 27
old table 279
ON DELETE 290
ON UPDATE 290
OPEN 378, 67
operand 71
operands 142
operators 72

standard compliance 75, 76
optimistic concurrency control 221, 17
optimizing transactions

READ ONLY and READ WRITE 94

Mimer SQL Version 11.0 XV
Documentation Set

ORDER BY 186, 49
order-by-clause 175
orientation specification 339
OS_USER 14, 16
OUTER JOINs 169
outer joins 54
outer references 40, 60
OVERLAPS 160
OVERLAY 113

P
padding

string values 77
with blanks in LIKE predicate 158

parameter marker 41
parameter markers 62

in dynamic SQL statements 332
in SELECT statements 68

parameter overloading 259, 272, 553, 239,
245
PARAMETER_MODE 347
PARAMETER_ORDINAL_POSITION 347
PARAMETER_SPECIFIC_CATALOG 347
PARAMETER_SPECIFIC_NAME 347
parameters

in syntax diagrams 7
Parts explosion 56
parts explosion problem 310
passwords 96
PASTE 114
pattern conditions 29
performance

database server 44
persistent stored modules - See stored
procedures
PI(), escaped function 29
platforms 1
POSITION 115, 37
POWER 115
power 115
precedence

search conditions 165
PRECISION 347
precision 53
precompiled statement 282
precompiled statements 282
predicates 141, 153

ALL 155
ANY or SOME 155
basic 154
EXISTS 159
IN 156
LIKE 157
NULL 159
quantified 155, 62
standard compliance 163, 166

syntax 153
PREPARE 380
preprocessing 35

WHENEVER statements 71
preprocessor output

in C 313
in COBOL 317
in FORTRAN 320

PRIMARY KEY 288
primary key 100
Primary Keys 8
primary keys 16

indexes 16
Primary level 25
Privilege

system
databank 20
ident 20
schema 20
shadow 20
statistics 20

Privileges 20
privileges 23, 17, 117

about 24
access 24, 359, 219

ALL 21
delete 21
insert 21
references 21
select 21
update 21

ALTER 219
COMMENT 219
DROP 219
GRANT OPTION 219
granting 119

access privileges 359
object privileges 361
system privileges 364

granting and revoking 117
object 23, 361, 21

execute 21
member 21
table 21
usage on domain 21

revoking 121
access privileges 388
CASCADE 121
object privileges 391
RESTRICT 121
system privileges 394

revoking - cascade effects 22
system 23, 364, 218, 20

BACKUP 218
backup 20
DATABANK 218
IDENT 218

XVI Index

SCHEMA 218
SHADOW 218

system utilities 118
procedure

dropping 328
procedures 17, 271, 242, 15

access-clause 259, 272, 273
calling 233
creating 271, 105
invoking 259
leaving 373
returning result set data 386
returning result sets 264
SQL statements 242
variables 43

value assignment 404
procedures and modules

protection against CASCADE effects
115

program construction errors 364
PROGRAM ident 217
program ident 14, 6
PROGRAM idents 262, 44
program idents 16

EXECUTE privilege 362
leaving 375
retaining resources 375

program structure 39
PROTOCOL 16
PSM - See stored procedures
PSM Debugger 275

choosing a routine 277
executing a routine 277
input parameters 277
logging in 276
requirements 275
setting breakpoints 277
starting 276
viewing source code 277
watching variables and input 277

PUBLIC logical group 7

Q
quantified predicate 155
QUARTER 116
Quaternary level 26

R
radian 116
RADIANS 116
random 105
RDBMS 1
READ ONLY 224
READ ONLY databank option 9
READ ONLY option 203

READLOG
functions 147
list definitions 148

list properties 148
log file 148

listing operations 150
all 151
specified tables 150
tables in databank 150

listing restrictions 149
databank 149
ident 149
time interval 149

output format 151
readlog 147
read-only cursors 52, 59
read-only result sets 399
read-set 91
REAL 52
recursive member 181
recursive query 181
REFERENCES 100, 121, 21

privileges 219
REFERENCES privilege 359
referential integrity 21, 10, 100, 24
REGEXP_MATCH 117
regular expression 117, 158
RELEASE 237
relocating databanks

system 13
user 13

REMOTE section 158
REMOVABLE 254
REOPENABLE 309
REPEAT 122, 382, 258
REPEAT statement 258
REPLACE 122
replication 107
REPSERVER 117
requirements 107
reserved words 43, 519, 521
reset log 74
RESIGNAL 384
RESIGNAL statement 268
resignaling exceptions in routines 268
restore 76
RESTRICT 227, 228, 327, 388, 392, 113,
121
restriction views 23
RESULT OFFSET 186
result set procedure CALL 50
result set procedures 264
result table 23
result-offset-clause 175
RETAIN 375
retrieving

multiple tables 55

Mimer SQL Version 11.0 XVII
Documentation Set

single rows 55
retrieving data 53

from multiple tables 51
from single tables 23

retrieving single rows 401
RETURN 386
RETURN statement 265
RETURNED_LENGTH 347
RETURNED_OCTET _LENGTH 347
REVOKE

ACCESS PRIVILEGE 388
OBJECT PRIVILEGE 391
SYSTEM PRIVILEGE 394

revoking privileges 121
recursive effects 392, 394

RIGHT 123
RIGHT OUTER JOIN 170
rights. See privileges
ROLLBACK 396, 226
ROLLBACK BACKUP 396
ROUND 123
routines 17, 239, 15

access clause 247
access rights 274
ATOMIC compound SQL Statement

249
comments in 260
compound SQL statement 248
declaring

exception handlers 269
variables 250

deterministic clause 247
IF statement 254
invoking 260
LEAVE statement 248
managing exception conditions 267
parameters 245
restrictions 260
scope in 248
SQL constructs

IF 254
SET 254

SQL constructs in 254
using drop and revoke 275
write operations 261

ROW 59
row trigger 279
ROW_COUNT 262
row-expression 153
run-time errors 70

S
scalar functions 37

using 37
scalar subquery 145
scale 53

SCHEMA 119
privilege 364, 218

schema 15, 275
creating 275
dropping 328

SCHEMA privilege 364
schemas 95, 96
script jobs

security 126
SCROLL 309, 52
scrollable cursor 309, 339, 52
SDBGEN 34

command-line arguments 36
syntax 35

SEARCH clause 182
search conditions 165

precedence 165
truth tables 165

search-clause 180
searched CASE 235
searching 165
searching for NULL 67
SECOND 56, 124
secondary index 264

creating 264
dropping 327
maintaining 266
use 266

secondary indexes
creating 108

Secondary level 25
SELECT 398, 120, 21

… AS column-label 176
* 175
ALL 176
COLLATE 179
computed values 34
correlation names 177
creating views 107
DISTINCT 176, 26
EXISTS 60
expression 176
FOR UPDATE OF 398
FROM 177
GROUP BY 178, 47
HAVING 179, 48
intermediate result sets 177
INTO 401
notes 187
NULL values 67
ordering the result 49
privilege 359
privileges 219
quantified predicate 62
restrictions 187
SELECT clause 175
simple form 23

XVIII Index

statement 398
in dynamic SQL 333

table.* 176
table-reference 177
UNION 184
WHERE 178, 27

SELECT … AS 176
SELECT clause 175
SELECT INTO 55
SELECT specification 173

standard compliance 187
SELECT statement 50
select-expression 173
select-expression-body 174
selecting groups 48
selection process 70
select-specification 174
semantic errors 70
separator 5
SEQUENCE 120
sequence 19, 222, 277

creating 277
dropping 328

sequences 12
server name 158
SERVICE 16
SESSION_USER 124
SET 404

CONNECTION 406, 162
DATABANK 407
DATABASE 409
DESCRIPTOR 411
SESSION 413
SHADOW 416
TRANSACTION 418

SET COMPRESS 227
set conditions 31
set functions 136, 45
SET PAGESIZE 227
SET SESSION 94
SET statement 254
SET TRANSACTION 225, 93

access mode 418
CHANGES 531
ISOLATION LEVEL 418

options 227
READ ONLY 227
READ WRITE 227
START 420

SHADOW 119
privilege 218

Shadow
not accessible 134

shadow 280
dropping 328

shadow databank
creating 280

shadow databank name 280
shadow databanks

dropping 328
shadow file extension 223
SHADOW privilege 364
Shadowing 123

databank 123
LOGDB shadow to a master 133
LOGDB Shadow to Master 133
logging 127
management 128
performance 135
privileges 128
shadow to master 132
SYSDB Shadow to Master 132
system databanks 131
testing 134
transaction control 123
TRANSDB shadow to master 133
troubleshooting 135

shadowing 14
shadowing in backup and restore 67
Shadows

backing-up from 129
shadows 18
SHOW SETTINGS 116
SIGN 125
SIGNAL 422
SIGNAL statement 267
signaling exceptions in routines 267
simple CASE 235
simple joins 52
SIN 125
sin 125
SINGLEDEFS file 153
single-row SELECT 401
singleton 401, 55
SINGLETON SELECT 62
single-user mode access to a database 151

file protection 151
MIMER_MODE variable 151
the SINGLEDEFS file 153

SINH 126
SMALLINT 52
SOME 155, 62
sort order

character set 525
index 265

SOUNDEX 126
source database 110
source table 23
SPACE(), escaped function 29
spatial data 58
specific exception handlers 270
specific name 240
SPECIFIC_NAME 355
specifying default values 76

Mimer SQL Version 11.0 XIX
Documentation Set

SQL 9
access control statements 191
compiler 38
connection statements 191
constructs in routines 254
data definition statements 192
descriptor area 50
dynamic 64
embedded control statements 193
standards 9
statement identifier 34
statements 33

errors 340
using host variables 46

SQL compiler 137
SQL descriptor area 63

allocate 198
COUNT field 198, 345, 411, 63
deallocate 305
get values 344
in FETCH statements 340
item descriptor area 345

CHARACTER_SET_ CATALOG
345

CHARACTER_SET_ NAME 345
CHARACTER_SET_ SCHEMA

345
COLLATION_CATALOG 345
COLLATION_NAME 345
COLLATION_SCHEMA 345
DATA 345
DATETIME data types 349
DATETIME_INTERVAL _CODE

346
DATETIME_INTERVAL _PRE-

CISION 346
INDICATOR 346
INTERVAL data types 349
LENGTH 346
NAME 346
NULLABLE 346
OCTET_LENGTH 346
PARAMETER_MODE 347
PARAMETER_ORDINAL_POSI-

TION 347
PARAMETER_SPECIFIC_CATA-

LOG 347
PARAMETER_SPECI-

FIC_NAME 347
PARAMETER_SPECIFIC_SCHE-

MA 347
parameters 349
PRECISION 347
RETURNED_LENGTH 347
RETURNED_OCTET _LENGTH

347
SCALE 347

TYPE 347
TYPE field 348
UNNAMED 348

set values 411
setting the TYPE field 412
structure 63

SQL statement
about 4

SQL statements 191, 19
access control 20
ALTER DATABANK 200
ALTER DATABANK RESTORE 205
ALTER IDENT 212, 222
ALTER SHADOW 223
connection 20
data definition 19
data manipulation 20
database administration 21
transaction control 20

SQL statements for managing databank
backups 72
SQL_DESC_DISPLAY_SIZE_64 10
SQL_DESC_LENGTH_64 10
SQL_DESC_OCTET_LENGTH_64 10
SQL_DESC_OCTET_LENGTH_PTR_64
11
sql.h 8
SQL/PSM 9
sqlcode

list of sqlcode values 329
SQLDA 323

in OPEN 378
in PREPARE 380

SQLDB 8
backups of 71
initial creation 34

SQLDriverConnect 16
SQLERROR 434
SQLEXCEPTION 434
sqlext.h 8
SQLHOSTS file 155
SQLMONITOR 141
SQLPOOL 46
SQLSTATE 535, 49, 70, 323

class 49
fields 535, 49
list of SQLSTATE return codes 323
subclass 49

sqltypes.h 8
sqlucode.h 8
SQLWARNING 434
SQRT 127
square root 127
stacking cursors 56
standard compliance

assigning values 80, 83
data types 63

XX Index

expressions 152
fixed values 76
identifiers 43
JOIN 172
literals 69
operators 75, 76
predicates 163, 166
scalar functions 133
SELECT specification 187
set functions 138
statements (also see individual

statements) 43
START 424
START BACKUP 424
start value 277
statement

delimiters
in COBOL 314
in FORTRAN 318

dropping 328
margins

in FORTRAN 318
numbers

in FORTRAN 318
statement trigger 279
statement-information 353
statements

access control 191
connection 191
data definition 192
embedded SQL control 193
preparing 64

static method 288
static-method-invocation 151
STATISTICS 119

privilege 218
statistics on data access 137

authorization 137
STATISTICS privilege 364
status 535, 537
stored procedures 239

access rights and routines 274
CASE statement 255
comments 260
declaring condition names 268
functions 240
invoking procedures and functions 259
ITERATE 257
modules 253
ODBC 23
procedures 242
result set procedures 264
routines 239
using cursors 262

restrictions 263
string

character 64

comparisons 80
empty 64
expressions 144
hexadecimal 68
literals 64
operators 72

string concatenation 34
string operators 72
subprogram names 35
subroutine names 35
subscription 110
subselect

in INSERT 369
in UNION queries 184, 185
in view definition 303

subselects 56
in INSERT 87

SUBSTRING 127, 37
SUM 136, 45
synchronization 119
synonym 284

creating 284
dropping 329

synonyms 18, 13
creating 109
dropping 327

syntax diagrams
explanation 5
keywords 6

syntax errors 69, 88, 165
SYSADM 118, 3, 7, 19

administration 3
privileges and access 4

SYSADM privileges 118
SYSDB 13, 8

initial creation 34
system

privileges 218
system databanks 13, 7
system failure 225
system management 3
system privileges 23, 364, 18, 119

BACKUP 119
DATABANK 119
examples 119
granting 364
IDENT 119
revoking 394
SHADOW 119
STATISTICS 119

T
TABLE 120, 21

privileges 218
table 15, 285

adding columns 226

Mimer SQL Version 11.0 XXI
Documentation Set

base 16
changing column defaults 226
changing definition 226
constraints

dropping 228
creating 285
deleting rows 317
dropping 329
inserting rows 368
reference 177
updating contents 426

table access errors 369
table integrity 24
tables 5

altering 111
base and views 6
check conditions 102
column definitions 100
creating 98
dropping 114
entering data 58
joined 167

TAIL 128
Tailorings 27
TAN 129
tan 129
TANH 129
target database 110
target_variables 43
TEMPORARY databank option 9
Tertiary level 26
threads 47

request 47
TIME 53
TIMESTAMP 53
TIMESTAMPADD(), escaped function 29
TIMESTAMPDIFF(), escaped function 29
TOP_LEVEL_COUNT 64
TRANSACTION 224
transaction

consistency 94
control options 94
control statements 93
logging 92

options 92
optimization 94
phases 91

transaction conflict 118
transaction control 18
transaction control statements 20

COMMIT 20
ROLLBACK 20
SET SESSION 20
SET TRANSACTION 20
START 20

TRANSACTION databank option 92, 9
TRANSACTION option 202, 254

TRANSACTIONS 159
transactions 221, 18

aborting 396
build-up 18
CHANGES setting 531
COMMIT 226
committing 241
conflict 241
consistency 227
control options 202, 254
control statements 225
cursors 232
default settings 413
designing 222

loops 222
diagnostics size 228
disk crash 225
ending 226
error handling 233
interrupted 225
ISOLATION LEVEL 227
isolation levels 418
locking 223
logging 224

LOG 224
NULL 224
TRANS 224

ODBC 19
optimistic concurrency control 221
optimizing 227
READ ONLY 227
read only 418
READ WRITE 227
read write 418
read-set 18
ROLLBACK 226
rollback 396
START setting 420
starting 424, 225

explicit 226
implicit 226

write-set 18
TRANSDB 13, 8

backups of 70
initial creation 34

treads
background 47

tree structure
traversing 56

trigger 294
creating 294, 105
dropping 329

triggers 19, 279, 287, 107
action 284
comments 286
creating 280
dropping 286

XXII Index

event 284
recursion 285
revoking 286
time 281

AFTER 281
altered rows 285

BEFORE 281
INSTEAD OF 281

TRIM 130, 37
TRUNCATE 131
truncating string values 77
truth tables 82, 165
TYPE 347
TYPE fields 348
type precedence 553, 246
types 320

U
UCASE(), escaped function 29
unary operators 142
undefined values 59
Unicode delimited identifier 38
UNICODE_CHAR 131
UNICODE_CODE 132
unicode-character-string-literal 65
uninstall 110
UNION 184, 63
UNIQUE constraint 288, 10, 100
UNIQUE index 264
UNIQUE predicate 161
UNLOAD 93, 101

AS 102
examples 103
FROM 103
LOG 102
syntax 101
USING 103

UNNAMED 348
updatable result sets 399
updatable views 303, 90
UPDATE 426, 58, 88, 121, 21

privileges 219
UPDATE CURRENT 429, 58
UPDATE privilege 359
UPDATE STATISTICS 432
update-rule 290
UPPER 132, 37
USAGE 120, 21

privileges 218
usage modes 195

embedded 195
interactive 195
JDBC 195
ODBC 195
procedural 195

user databanks 13, 8

specifying location 13
USER ident 217, 6
user ident 14
USER idents 262
user idents 16
USER(), escaped function 29
user-defined type 287
UTC_TIMESTAMP 95
uuid 58, 305

V
value specification 75
value specifications

standard compliance 76
value-expression 142
VALUES clause 184
VARBINARY 50
variables 160

declaring 315, 250
host 39
value assignment 404

version, server 158
Vietnamese 36
view

dropping 329
view integrity 25
Views

restriction 23
views 16, 301, 302, 6

CHECK OPTION 302
check options 11, 107
column names 302
creating 301, 302, 107
creating on 108
dropping 329
inserting rows 368
join 8
restriction 7
updatable 90

views - use in database security 23

W
warnings 330
WEEK 133
WHENEVER 434, 70

in transactions 233
WHERE 178
WHERE condition 27
WHILE 435, 258
WHILE statement 258
white-space 5, 314, 318
wildcard characters 29
wildcards 157
WITH clause 179
WITH HOLD 196, 309

Mimer SQL Version 11.0 XXIII
Documentation Set

with-clause 173, 179
WITHOUT CHECK 207, 227, 228, 265
with-query 179
WORD_SEARCH 265
WORK 224
WORK databank option 9
WORK option 202, 254
write-set 91

X
X/Open SQL 1995 9
X/Open-95 9
XA 235, 92

Y
YEAR 56, 133
YEAR-MONTH 54

XXIV Index

	Documentation Set
	Contents
	SQL Reference Manual
	Contents
	Introduction
	About this Manual
	Related Mimer SQL Publications
	Suggestions for Further Reading
	Acronyms, Terms and Trademarks

	Reading SQL Syntax Diagrams
	Key to Syntax Diagrams
	KEYWORDS
	Parameters
	Syntax Diagram Example

	Reading Standard Compliance Tables

	Introduction to SQL Standards
	History of Standards
	SQL-2016
	The Unicode Standard and ISO/IEC 10646
	EOR - European Ordering Rules

	Mimer SQL Database Objects
	System and Private Objects
	The Data Dictionary
	Databanks
	System Databanks
	User Databanks
	Specifying the Location of User Databanks

	Idents
	USER Idents
	PROGRAM Idents
	GROUP Idents

	Schemas
	Tables
	Base Tables and Views

	Primary Keys and Indexes
	Stored Procedures
	Routines – Functions and Procedures
	Modules

	Synonyms
	Shadows
	Triggers
	User-Defined Types and Methods
	Sequences
	Precompiled Statements
	Mimer SQL Character Sets
	Collations
	Data Integrity
	Primary Keys and Unique Keys
	Foreign Keys – Referential Integrity
	Domains
	Check Constraints
	Check Options in View Definitions

	Privileges
	System Privileges
	Object Privileges
	Access Privileges
	About Privileges

	Collations and Linguistic Sorting
	Multilevel Comparisons
	Alternate Weighting
	Tailorings
	Sorting Examples
	Collating Details
	Indic
	Japanese
	Korean
	Vietnamese

	SQL Syntax Elements
	Separators
	Special Characters
	Identifiers
	SQL Identifiers
	Naming Objects
	Qualified Object Names
	Outer References
	Parameter Markers and Host Identifiers
	Target Variables
	Reserved Words
	Standard Compliance

	Data Types in SQL Statements
	Character Strings
	National Character Strings
	Binary
	Numerical
	Datetime
	Interval
	Boolean
	Spatial Data Types
	Universally Unique Identifier (UUID)
	ROW Data Type
	The Null Value
	Data Type Compatibility
	Datetime and Interval Arithmetic
	Host Variable Data Type Conversion
	Standard Compliance

	Literals
	String Literals
	Numerical Integer Literals
	Numerical Decimal Literals
	Numerical Floating Point Literals
	DATE, TIME and TIMESTAMP Literals
	Interval Literals
	Binary Literals
	Boolean literals
	Spatial literals
	Standard Compliance

	Operators and Values
	Operators
	Set Operators
	Arithmetical Operators
	String Operators
	Bit Operators
	Comparison Operators
	Logical Operators
	Operator Precedence
	Standard Compliance

	Value Specifications
	Standard Compliance

	Default Values
	Standard Compliance

	Assignments
	String Assignments
	Numerical Assignments
	Datetime Assignment Rules
	Interval Assignment Rules
	Binary Assignment Rules
	Boolean Assignment Rules
	Standard Compliance

	Comparisons
	Character String Comparisons
	Numerical Comparisons
	Datetime and Interval Comparisons
	Binary Comparisons
	Boolean Comparisons
	Null Comparisons
	Truth Tables
	Standard Compliance

	Result Data Types
	Standard Compliance

	Functions
	Scalar Functions
	ABS
	ACOS
	ASCII_CHAR
	ASCII_CODE
	ASIN
	ATAN
	ATAN2
	BEGINS
	BUILTIN.BEGINS_WORD
	BUILTIN.MATCH_WORD
	BUILTIN.UTC_TIMESTAMP
	CHARACTER_LENGTH
	CEILING
	COS
	COSH
	COT
	CURRENT_DATE
	CURRENT_PROGRAM
	CURRENT_USER
	CURRENT VALUE
	DAY
	DAYOFMONTH
	DAYOFWEEK
	DAYOFYEAR
	DEGREES
	EXP
	EXTRACT
	FLOOR
	HOUR
	INDEX_CHAR
	IRAND
	LEFT
	LN
	LOCALTIME
	LOCALTIMESTAMP
	LOCATE
	LOG10
	LOWER
	MINUTE
	MOD
	MONTH
	NEXT VALUE
	OCTET_LENGTH
	OVERLAY
	PASTE
	POSITION
	POWER
	QUARTER
	RADIANS
	REGEXP_MATCH
	REPEAT
	REPLACE
	RIGHT
	ROUND
	SECOND
	SESSION_USER
	SIGN
	SIN
	SINH
	SOUNDEX
	SQRT
	SUBSTRING
	TAIL
	TAN
	TANH
	TRIM
	TRUNCATE
	UNICODE_CHAR
	UNICODE_CODE
	UPPER
	USER
	WEEK
	YEAR
	Standard Compliance

	Set Functions
	Syntax for Set Functions
	AVG
	COUNT
	MAX
	MIN
	SUM
	Examples
	Operational Mode
	Null Values
	Restrictions
	Results of Set Functions
	Evaluating Set Functions
	Standard Compliance

	Expressions and Predicates
	Expressions
	Syntax
	Unary Operators
	Binary Operators
	Operands
	Evaluating Arithmetical Expressions
	Evaluating String Expressions
	Select Specification

	CASE Expression
	CASE Expression First Form
	CASE Expression Second Form
	Short Forms for CASE

	CAST Specification
	Rules
	Example

	User-Defined Function
	Method Invocation
	Standard Compliance

	Predicates
	Predicate Syntax
	The Basic Predicate
	The Quantified Predicate
	The IN Predicate
	The BETWEEN Predicate
	The LIKE Predicate
	The NULL Predicate
	The EXISTS Predicate
	The OVERLAPS Predicate
	The UNIQUE Predicate
	The DISTINCT Predicate
	Standard Compliance

	Search Conditions and Joins
	Search Conditions
	Rules
	Examples
	Standard Compliance

	Joined Tables
	INNER JOINs
	JOIN ON
	JOIN USING
	NATURAL JOIN

	OUTER JOINs
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL OUTER JOIN

	CROSS JOIN
	Standard Compliance

	The SELECT Expression
	The SELECT Clause
	SELECT *
	SELECT table.*
	SELECT expression
	SELECT … AS Column-label
	The Keywords ALL and DISTINCT

	The FROM Clause and Table-reference
	General Syntax
	Intermediate Result Sets
	Correlation Names

	The WHERE Clause
	The GROUP BY Clause
	The COLLATE Clause

	The HAVING Clause
	The WITH Clause
	Recursive Queries

	The VALUES Clause
	The UNION Operator
	The EXCEPT Operator
	The INTERSECT Operator
	The ORDER BY Clause
	The RESULT OFFSET Clause
	The FETCH FIRST Clause
	Restrictions
	Notes
	Standard Compliance

	SQL Statements
	Access Control Statements
	Connection Statements
	Data Definition Statements
	Declarative Statements
	Embedded SQL Statements
	Embedded SQL Control Statements
	Procedural SQL Statements
	System Administration Statements
	Usage Modes
	ALLOCATE CURSOR
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALLOCATE DESCRIPTOR
	Usage
	Description
	Notes
	Example
	Standard Compliance

	ALTER DATABANK
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	ALTER DATABANK RESTORE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER DATABASE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER FUNCTION
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER IDENT
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	ALTER METHOD
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER PROCEDURE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER ROUTINE
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	ALTER SEQUENCE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER SHADOW
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER STATEMENT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ALTER TABLE
	Usage
	Description
	Language Elements
	Restrictions
	Examples
	Notes
	Standard Compliance

	ALTER TYPE
	Usage
	Description
	Restrictions
	Standard Compliance

	CALL
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	CASE
	Usage
	Description
	Notes
	Examples
	Standard Compliance

	CLOSE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	COMMENT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	COMMIT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	COMPOUND STATEMENT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CONNECT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE BACKUP
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE COLLATION
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	CREATE DATABANK
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE DOMAIN
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Examples
	Standard Compliance

	CREATE FUNCTION
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	CREATE IDENT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE INDEX
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	CREATE METHOD
	Usage
	Description
	Restrictions
	Standard Compliance

	CREATE MODULE
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE PROCEDURE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE SCHEMA
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE SEQUENCE
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	CREATE SHADOW
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE STATEMENT
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Examples
	Standard Compliance

	CREATE SYNONYM
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE TABLE
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	CREATE TRIGGER
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	CREATE TYPE
	Usage
	Description
	Access Options
	Restrictions
	Notes
	Standard Compliance

	CREATE VIEW
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	DEALLOCATE DESCRIPTOR
	Usage
	Description
	Notes
	Example
	Standard Compliance

	DEALLOCATE PREPARE
	Usage
	Description
	Notes
	Example
	Standard Compliance

	DECLARE CONDITION
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	DECLARE CURSOR
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Examples
	Standard Compliance

	DECLARE HANDLER
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	DECLARE SECTION
	Usage
	Description
	Notes
	Example
	Standard Compliance

	DECLARE VARIABLE
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	DELETE
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	DELETE CURRENT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	DELETE STATISTICS
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	DESCRIBE
	Usage
	Description
	Restrictions
	Examples
	Standard Compliance

	DISCONNECT
	Usage
	Description
	Example
	Standard Compliance

	DROP
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ENTER
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	EXECUTE
	Usage
	Description
	Restrictions
	Example
	Standard Compliance

	EXECUTE IMMEDIATE
	Usage
	Description
	Restrictions
	Example
	Standard Compliance

	EXECUTE STATEMENT
	Usage
	Description
	Restrictions
	Examples
	Standard Compliance

	EXPLAIN
	Usage
	Description
	Notes
	Example
	Standard Compliance

	FETCH
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Examples
	Standard Compliance
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	GET DESCRIPTOR
	Usage
	Description
	Notes
	Examples
	Standard Compliance

	GET DIAGNOSTICS
	Usage
	Description
	Language Elements
	Notes
	Example
	Standard Compliance

	GRANT ACCESS PRIVILEGE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	GRANT OBJECT PRIVILEGE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	GRANT SYSTEM PRIVILEGE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	IF
	Usage
	Description
	Language Elements
	Notes
	Example
	Standard Compliance

	INSERT
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	ITERATE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	LEAVE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	LEAVE (PROGRAM ident)
	Usage
	Description
	Restrictions
	Example
	Standard Compliance

	LOOP
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	OPEN
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	PREPARE
	Usage
	Description
	Notes
	Example
	Standard Compliance

	REPEAT
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	RESIGNAL
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	RETURN
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	REVOKE ACCESS PRIVILEGE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	REVOKE OBJECT PRIVILEGE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	REVOKE SYSTEM PRIVILEGE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	ROLLBACK
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	SELECT
	Usage
	Description
	Examples
	Standard Compliance

	SELECT INTO
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Examples
	Standard Compliance

	SET
	Usage
	Description
	Restrictions
	Notes
	Examples
	Standard Compliance

	SET CONNECTION
	Usage
	Description
	Example
	Standard Compliance

	SET DATABANK
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	SET DATABASE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	SET DESCRIPTOR
	Usage
	Description
	Notes
	Example
	Standard Compliance

	SET SESSION
	Usage
	Description
	Restrictions
	Examples
	Standard Compliance

	SET SHADOW
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	SET TRANSACTION
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	SIGNAL
	Usage
	Description
	Notes
	Example
	Standard Compliance

	START
	Usage
	Description
	Restrictions
	Example
	Standard Compliance

	UPDATE
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	UPDATE CURRENT
	Usage
	Description
	Language Elements
	Restrictions
	Notes
	Example
	Standard Compliance

	UPDATE STATISTICS
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	WHENEVER
	Usage
	Description
	Notes
	Example
	Standard Compliance

	WHILE
	Usage
	Description
	Restrictions
	Notes
	Example
	Standard Compliance

	Data Dictionary Views
	INFORMATION_SCHEMA.ASSERTIONS
	INFORMATION_SCHEMA.ATTRIBUTES
	INFORMATION_SCHEMA.CHARACTER_SETS
	INFORMATION_SCHEMA.CHECK_CONSTRAINTS
	INFORMATION_SCHEMA.COLLATIONS
	INFORMATION_SCHEMA.COLUMN_DOMAIN_USA GE
	INFORMATION_SCHEMA.COLUMN_PRIVILEGES
	INFORMATION_SCHEMA.COLUMN_UDT_USAGE
	INFORMATION_SCHEMA.COLUMNS
	INFORMATION_SCHEMA.CONSTRAINT_COLUMN_ USAGE
	INFORMATION_SCHEMA.CONSTRAINT_TABLE_U SAGE
	INFORMATION_SCHEMA.DIRECT_SUPERTABLES
	INFORMATION_SCHEMA.DIRECT_SUPERTYPES
	INFORMATION_SCHEMA.DOMAIN_CONSTRAINTS
	INFORMATION_SCHEMA.DOMAINS
	INFORMATION_SCHEMA.EXT_ACCESS_PATHS
	INFORMATION_SCHEMA.EXT_COLLATION_DEFINI TIONS
	INFORMATION_SCHEMA.EXT_COLUMN_OFFSET_ INFORMATION
	INFORMATION_SCHEMA.EXT_COLUMN_REMARK S
	INFORMATION_SCHEMA.EXT_DATABANKS
	INFORMATION_SCHEMA.EXT_IDENTS
	INFORMATION_SCHEMA.EXT_INDEX_COLUMN_U SAGE
	INFORMATION_SCHEMA.EXT_INDEXES
	INFORMATION_SCHEMA.EXT_OBJECT_IDENT_US AGE
	INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_ USED
	INFORMATION_SCHEMA.EXT_OBJECT_OBJECT_ USING
	INFORMATION_SCHEMA.EXT_OBJECT_PRIVILEG ES
	INFORMATION_SCHEMA.EXT_ONEROW
	INFORMATION_SCHEMA.EXT_ROUTINE_MODULE _DEFINITION
	INFORMATION_SCHEMA.EXT_ROUTINE_MODULE _USAGE
	INFORMATION_SCHEMA.EXT_SCHEMAS
	INFORMATION_SCHEMA.EXT_SEQUENCES
	INFORMATION_SCHEMA.EXT_SHADOWS
	INFORMATION_SCHEMA.EXT_SOURCE_DEFINITI ON
	INFORMATION_SCHEMA.EXT_STATEMENTS
	INFORMATION_SCHEMA.EXT_STATEMENT_DEFIN ITION
	INFORMATION_SCHEMA.EXT_STATISTICS
	INFORMATION_SCHEMA.EXT_SYNONYMS
	INFORMATION_SCHEMA.EXT_SYSTEM_PRIVILEG ES
	INFORMATION_SCHEMA.EXT_TABLE_DATABANK _USAGE
	INFORMATION_SCHEMA.KEY_COLUMN_USAGE
	INFORMATION_SCHEMA.METHOD_SPECIFICATIO N_PARAMETERS
	INFORMATION_SCHEMA.METHOD_SPECIFICATIO NS
	INFORMATION_SCHEMA.MODULES
	INFORMATION_SCHEMA.PARAMETERS
	INFORMATION_SCHEMA.REFERENTIAL_CONSTR AINTS
	INFORMATION_SCHEMA.ROUTINE_COLUMN_USA GE
	INFORMATION_SCHEMA.ROUTINE_PRIVILEGES
	INFORMATION_SCHEMA.ROUTINE_TABLE_USAG E
	INFORMATION_SCHEMA.ROUTINES
	INFORMATION_SCHEMA.SCHEMATA
	INFORMATION_SCHEMA.SEQUENCES
	INFORMATION_SCHEMA.SQL_FEATURES
	INFORMATION_SCHEMA.SQL_LANGUAGES
	INFORMATION_SCHEMA.SQL_SIZING
	INFORMATION_SCHEMA.TABLE_CONSTRAINTS
	INFORMATION_SCHEMA.TABLE_PRIVILEGES
	INFORMATION_SCHEMA.TABLES
	INFORMATION_SCHEMA.TRANSLATIONS
	INFORMATION_SCHEMA.TRIGGERED_UPDATE_C OLUMNS
	INFORMATION_SCHEMA.TRIGGER_COLUMN_USA GE
	INFORMATION_SCHEMA.TRIGGER_TABLE_USAG E
	INFORMATION_SCHEMA.TRIGGERS
	INFORMATION_SCHEMA.UDT_PRIVILEGES
	INFORMATION_SCHEMA.USAGE_PRIVILEGES
	INFORMATION_SCHEMA.USER_DEFINED_TYPES
	INFORMATION_SCHEMA.VIEW_COLUMN_USAGE
	INFORMATION_SCHEMA.VIEW_TABLE_USAGE
	INFORMATION_SCHEMA.VIEWS
	Standard Compliance

	Reserved Words
	Reserved Keywords in the SQL Standard

	Character Sets
	Character Data
	National Character Data – Unicode

	Limits
	Deprecated Features
	Indicator Variables
	Operators
	Statements
	ALTER IDENT Change Password
	CREATE IDENT AS OS_USER
	GET DIAGNOSTICS EXCEPTION INFO
	JOIN Without SELECT
	CONNECT
	ORDER BY Ordinal Position
	SELECT NULL
	SET TRANSACTION CHANGES
	CREATE IDENT
	ENTER

	Program Idents
	MIMER_SW
	MIMER_BR
	MIMER_SC

	Functions
	BIT_LENGTH
	Arithmetic Functions

	Datetime Scalar Functions
	CURRENT_TIME
	CURRENT_TIMESTAMP

	Data Dictionary Views
	Host Variable Types

	Return Status and Conditions
	SQLSTATE Return Codes
	SQLCODE Return Codes

	SQL-2016 Compliance
	SQL-2016 Core Features
	Features Outside Core Supported by Mimer SQL

	Languages
	Type Precedence Lists
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Programmer’s Manual
	Contents
	Introduction
	About this Manual
	Database APIs
	Prerequisites
	Related Mimer SQL Publications
	Suggestions for Further Reading
	Definitions, Terms and Trademarks

	Mimer SQL and the ODBC API
	The Mimer ODBC Driver
	Required Files
	Unicode and ANSI Interfaces
	External Character Set Support

	Mimer Specific Descriptor Fields
	Operating Systems
	Declarations
	Initializing the ODBC Environment
	Making a Connection
	Disconnecting

	Error Handling
	Retrieving Warning and Error Messages

	Transaction Processing
	Transaction Management Mode
	Completing Transactions
	Example Transaction
	Setting the Transaction Isolation Level

	Executing a Command
	Repeating – Prepared Execution
	Prepared Statement Example
	Stored Procedure Example
	Parameters in Procedure Calls

	Result Set Processing
	Using SQLBindCOL
	Using SQLGetData
	Combining Result Set Processing Methods

	Updating Data
	Native SQL Escape Clauses
	Escaped functions

	Mimer SQL and the JDBC API
	The Mimer JDBC Driver

	Embedded SQL
	The Scope of Embedded Mimer SQL
	General Principles for Embedding SQL Statements
	Host Languages
	Identifying SQL Statements
	Included Code
	Comments
	Recommendations

	Processing ESQL
	Preprocessing – the ESQL Command
	Invoking the ESQL Preprocessor
	What Does the Preprocessor Do?
	Processing ESQL – the Compiler
	The SQL Compiler

	Essential Program Structure
	Summary of Functions for Manipulating Data

	Linking Applications
	Connecting to a Database
	The CONNECT Statement
	Changing Connection
	Disconnecting
	PROGRAM Idents – ENTER and LEAVE

	Communicating with the Application Program
	Using Host Variables
	External Character Set Support
	The SQLSTATE Variable
	The Diagnostics Area
	The SQL Descriptor Area

	Accessing Data
	Retrieving Data Using Cursors
	Retrieving Single Rows
	Retrieving Data from Multiple Tables
	Entering Data into Tables

	Dynamic SQL
	Principles of Dynamic SQL
	General Summary of Dynamic SQL Processing
	SQL Descriptor Area
	Preparing Statements
	Extended Dynamic Cursors
	Describing Prepared Statements
	Handling Prepared Statements
	Example Framework for Dynamic SQL Programs

	Handling Errors and Exceptions
	Syntax Errors
	Semantic Errors
	Run-time Errors

	Module SQL
	The Scope of Mimer Module SQL
	General Principles for SQL Modules
	Host languages
	Writing an SQL module

	Processing MSQL
	Pre-processing - the MSQL command
	Invoking the MSQL Preprocessor
	What Does the Preprocessor Do?
	Processing MSQL
	Connecting to a Database

	Communicating with the Application Program
	Indicator variables
	Accessing data

	Dynamic SQL
	Handling errors and exceptions
	Syntax Errors
	Semantic Errors
	Run-time Errors

	Host Language Dependent Aspects
	C header files
	C data types
	COBOL data types
	Fortran data types
	Pascal data types

	Mimer SQL C API
	Character String Formats
	Session Management
	Statement Management
	Data Input Routines
	Data Output Routines
	Detecting Data Types at Run-time

	Mimer SQL C API Reference
	MimerAddBatch
	MimerBeginSession
	MimerBeginSession8
	MimerBeginSessionC
	MimerBeginStatement
	MimerBeginStatement8
	MimerBeginStatementC
	MimerBeginTransaction
	MimerCloseCursor
	MimerColumnCount
	MimerColumnName
	MimerColumnName8
	MimerColumnNameC
	MimerColumnType
	MimerCurrentRow
	MimerEndSession
	MimerEndStatement
	MimerEndTransaction
	MimerExecute
	MimerExecuteStatement
	MimerExecuteStatement8
	MimerExecuteStatementC
	MimerFetch
	MimerFetchScroll
	MimerFetchSkip
	MimerGetBinary
	MimerGetBlobData
	MimerGetBoolean
	MimerGetDouble
	MimerGetFloat
	MimerGetInt32
	MimerGetInt64
	MimerGetLob
	MimerGetNclobData
	MimerGetNclobData8
	MimerGetNclobDataC
	MimerGetStatistics
	MimerGetString
	MimerGetString8
	MimerGetStringC
	MimerGetUUID
	MimerIsNull
	MimerNext
	MimerOpenCursor
	MimerParameterCount
	MimerParameterMode
	MimerParameterName
	MimerParameterName8
	MimerParameterNameC
	MimerParameterType
	MimerRowSize
	MimerSetArraySize
	MimerSetBinary
	MimerSetBlobData
	MimerSetBoolean
	MimerSetDouble
	MimerSetFloat
	MimerSetInt32
	MimerSetInt64
	MimerSetLob
	MimerSetNclobData
	MimerSetNclobData8
	MimerSetNclobDataC
	MimerSetNull
	MimerSetString
	MimerSetString8
	MimerSetStringC
	MimerSetStringLen
	MimerSetStringLen8
	MimerSetStringLenC
	MimerSetUUID

	Idents and Privileges
	Mimer SQL Idents
	USER
	PROGRAM
	GROUP

	Database Privileges
	System Privileges
	Object Privileges
	Access Privileges
	About Privileges

	Transaction Handling and Database Security
	Transaction Principles
	Optimistic Concurrency Control
	Concurrency Control Guidelines
	Locking

	Transactions and Logging
	Options

	Protecting Against Data Loss
	System Interruptions
	Hardware Failure

	Transaction Control Statements
	Starting Transactions
	Ending Transactions
	Optimizing Transactions
	Consistency Within Transactions
	Exception Diagnostics Within Transactions
	Setting Default Transaction Options
	Statements in Transactions
	Cursors in Transactions
	Error Handling in Transactions

	Distributed Transactions
	Terms and Abbreviations
	How Does it Work?
	Handling failures
	Mimer SQL Support For Microsoft DTC on Windows
	Mimer SQL Support for Java Enterprise Edition

	Mimer SQL Stored Procedures
	About Routines
	Functions
	Procedures

	Syntactic Components of a Routine Definition
	Routine Parameters
	Routine Language Indicator
	Routine Deterministic Clause
	Routine Access Clause
	Scope in Routines – the Compound SQL Statement
	Declaring Variables
	The ROW Data Type
	Using the ROW Data Type
	Row Value Expression

	Modules
	SQL Constructs in Routines
	Assignment Using SET
	Conditional Execution Using IF
	Conditional Execution – the CASE Statement
	Iteration
	Invoking Procedures and Functions
	Comments in Routines
	Restrictions

	Manipulating Data
	Write Operations
	Using Cursors
	SELECT INTO
	Transactions

	Result Set Procedures
	Managing Exception Conditions
	About SQLSTATES
	Condition Names
	SIGNAL Statements
	Exception Handlers and Actions
	RESIGNAL Statements
	Declaring Condition Names
	Declaring Exception Handlers
	Types of Exception Handlers
	Examples of Exception Handlers
	Using the GET DIAGNOSTICS Statement

	Access Rights
	Using DROP and REVOKE
	The Mimer SQL PSM Debugger
	Requirements
	Starting the PSM Debugger
	Logging In
	Choosing a Routine
	Specifying the Input Parameters
	Viewing the Source Code for a Routine
	Watching Variables and Input Parameters
	Setting Breakpoints
	Executing a Routine

	Triggers
	Creating a Trigger
	Trigger Time
	Trigger Event
	Trigger Action
	Altered Table Rows
	Recursion

	Comments on Triggers
	Using DROP and REVOKE

	User-Defined Types And Methods
	Distinct Types
	Methods
	Creating Methods
	Invoking Methods
	Dropping Methods

	Spatial Data
	Geographical Data
	BUILTIN.GIS_LATITUDE
	BUILTIN.GIS_LONGITUDE
	BUILTIN.GIS_LOCATION

	Coordinate System Data
	BUILTIN.GIS_COORDINATE

	Universally Unique Identifier - UUID
	Host Language Dependent Aspects
	ESQL in C/C++ Programs
	SQL Statement Format
	Host Variables in C/C++
	Preprocessor Output Format
	Scope Rules

	ESQL in COBOL Programs
	SQL Statement Format
	Restrictions
	Host Variables in COBOL
	Preprocessor Output Format
	Scope Rules

	ESQL in Fortran Programs
	SQL Statement Format
	Margins
	Host Variables
	Preprocessor Output Format
	Scope Rules

	Return Codes
	SQLSTATE Return Codes
	List of SQLSTATE Values

	Native Mimer SQL Return Codes
	Warnings and Messages
	ODBC Errors and Warnings
	Data-dependent Errors
	Limits Exceeded
	SQL Statement Errors
	Program-dependent Errors
	Databank and Table Errors
	Miscellaneous Errors
	Internal Errors
	Communication Errors
	JDBC Errors
	Mimload Errors
	Mimer SQL C API Return Codes
	MimerPy Errors

	Deprecated Features
	INCLUDE SQLCA
	SQLDA
	VARCHAR(size) C language struct
	SET TRANSACTION
	DBERM4

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	User’s Manual
	Contents
	Introduction
	About this Manual
	Prerequisites
	Related Mimer SQL Publications
	Suggestions for Further Reading
	Acronyms, Terms and Trademarks

	Basic Concepts of Mimer SQL
	Tables
	Base Tables and Views

	Primary Keys and Indexes
	WORD_SEARCH Index Algorithm

	Data Integrity
	Domains
	Unique Constraints and Primary Keys
	Foreign Keys – Referential Integrity
	Check Conditions
	Check Options in View Definitions

	Sequences
	Synonyms
	Databanks
	System Databanks
	User Databanks

	Shadows
	Mimer SQL Character Sets
	Collations and Linguistic Sorting
	Stored Procedures
	Routines – Functions and Procedures
	Modules
	Triggers

	Idents
	USER Idents
	PROGRAM Idents
	GROUP Idents

	Schemas
	Access Rights and Privileges
	System Privileges
	Object Privileges
	Access Privileges
	About Privileges

	The Data Dictionary
	Mimer SQL Statements
	Data Definition Statements
	Access Control Statements
	Data Manipulation Statements
	Connection Statements
	Transaction Control Statements
	Database Administration Statements

	Retrieving Data
	Simple Retrieval
	Examples of Simple Retrieval

	Result Order
	Quick Select

	Table Names
	Setting Column Labels
	Eliminating Duplicate Values
	Selecting Specific Rows
	Comparison Conditions and WHERE
	Pattern Conditions
	More about Searching for Character Strings
	Set Conditions

	Retrieving Computed Values
	Evaluating Boolean Expressions
	Labels and Computed Values
	Constant Values
	Padding Concatenated Strings

	Using Scalar Functions
	Examples of Scalar Functions

	Using the CASE Expression
	Case Expression Examples

	Using the CAST Specification
	Datetime Arithmetic and Functions
	About Intervals
	Extracting Values
	DAYOFWEEK

	Using Set Functions
	About Set Functions
	Example of Set Functions
	More Set Functions Examples

	Grouped Set Functions – the GROUP BY Clause
	Restrictions When Using GROUP BY
	Null Values

	Selecting Groups – the HAVING Clause
	Ordering the Result Table
	Ordering by More than One Column
	Ordering by Set Function
	Ordering by a Computed Value

	Retrieving Data From More Than One Table
	The Join Condition
	Simple Joins
	Outer Joins
	Nested Selects
	Correlation Names
	Retrieving Data Using EXISTS and NOT EXISTS
	Retrieval with ALL, ANY, SOME
	Union, Except and Intersect Queries

	Handling Null Values
	Searching for null
	Null values in ALL, ANY, IN and EXISTS Queries

	Conceptual Description of the Selection Process
	Query Used
	Selection Process

	Collations
	Character Sets and Collations
	Using Collations
	Character Strings
	CREATE/ALTER TABLE
	CREATE DOMAIN and CREATE TYPE
	CREATE INDEX
	Collation Precedence
	Altering Collations on Columns
	Dropping a Collation
	Finding Out the Default Collation For a Column

	Using Collations – Examples
	Comparison Operators
	ORDER BY
	GROUP BY
	Scalar String Functions
	Concatenation Operator
	IN and BETWEEN
	UNION, EXCEPT and INTERSECT
	DISTINCT

	Working With Data
	Access Privileges
	Inserting Data
	Inserting Explicit Values
	Inserting Results of Expressions
	Inserting with a Subquery
	Inserting Sequence Values
	Inserting Null Values

	Updating Tables
	Deleting Rows from Tables
	Calling Procedures
	Examples of Calling Procedures

	Updatable Views

	Managing Transactions
	Transaction Principles
	Transaction Phases

	Logging Transactions
	Logging Options

	Handling Transactions
	SQL Statement Restrictions in Transactions
	Optimizing Transactions
	Consistency Within a Transaction
	Default Transaction Options

	Creating a Database
	Creating Idents and Schemas
	Ident Names
	Passwords
	Schemas
	Creating Idents and Schemas, Examples

	Creating Databanks
	Create Databank Statement

	Creating Tables
	Create Table Statement
	Column Definitions
	The Primary Key Constraint
	Unique Constraints
	Foreign Keys – Referential Constraints
	Check Constraints

	Creating Sequences
	Examples of Sequences

	Creating Domains
	Create Domain Statement
	Domains with a Default Value
	Domains with a Check Clause

	Creating Functions, Procedures, Triggers and Modules
	Creating Views
	Creating a View
	Check Option

	Creating Secondary Indexes
	Examples of Secondary Index
	Sorting Indexes

	Creating Synonyms
	Synonym Examples

	Commenting Objects
	Comment Example

	Altering Databanks, Tables and Idents
	Altering a Databank
	Altering Tables
	Altering Idents
	Objects Which May Not Be Altered

	Dropping Objects from the Database
	Dropping Databanks and Tables
	Dropping Sequences
	Dropping Domains
	Dropping Idents
	Dropping Functions, Modules, Procedures and Triggers

	Defining Privileges
	Granting and Revoking Privileges
	Ident Structure
	SYSADM Privileges
	About System Utilities
	Recommendations for Ident Structure

	Granting Privileges
	Granting System Privileges
	Examples
	Granting Object Privileges
	Granting Access Privileges

	Revoking Privileges
	Revoking System Privileges
	Revoking Object Privileges
	Revoking Access Privileges
	Recursive Effects of Revoking Privileges

	Mimer BSQL
	Other SQL Tools
	Running BSQL
	Running BSQL From a Script
	Running BSQL

	BSQL Commands
	CLOSE
	DESCRIBE
	EXIT
	GET DIAGNOSTICS
	LIST
	LOG
	READ INPUT
	READLOG
	SET ECHO
	SET EXECUTE
	SET EXPLAIN
	SET HEADER
	SET LINECOUNT
	SET LINESPACE
	SET LINEWIDTH
	SET LOG
	SET MAX_BINARY_LENGTH
	SET MAX_CHARACTER_LENGTH
	SET MESSAGE
	SET OUTPUT
	SET PAGELENGTH
	SET PAGEWIDTH
	SET SILENCE
	SET STATISTICS
	SHOW SETTINGS
	TRANSACTIONS
	WHENEVER

	Variables in BSQL
	Writing Host Variables in SQL
	Scope of Host Variables
	Using Host Variables

	BSQL and Multiple Connections
	Changing Connections
	Disconnecting

	Transaction Handling in Mimer BSQL
	LOBs in BSQL
	Errors in BSQL
	Semantic Errors
	Syntax Errors

	Error Messages

	Mimer SQL Explain
	Join
	Temporary Tables
	Subqueries
	Union

	The Example Environment
	The EXLOAD program
	Syntax
	Command-line Arguments
	Exit Codes

	The MIMER_STORE Schema
	Databanks
	Domains
	Sequences
	Tables
	PSM Routines

	Procedures
	Views
	Triggers
	Idents
	The MIMER_STORE_MUSIC Schema
	Tables
	Views
	PSM Routines
	Triggers
	Idents

	The MIMER_STORE_BOOK Schema
	Tables
	PSM Routines
	Views
	Triggers
	Idents

	The MIMER_STORE Schema Revisited
	PSM Routines

	The MIMER_STORE_WEB Schema
	Tables
	PSM Routines
	Triggers
	Idents

	Synonyms

	Deprecated Features
	BSQL Commands
	LOAD
	UNLOAD

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	System Management Handbook
	Contents
	Introduction
	About this Manual
	Prerequisites
	Related Mimer SQL Publications
	Acronyms, Terms and Trademarks

	System Management Responsibilities
	SYSADM
	SQL Statement Execution

	The Database Environment
	The Data Dictionary
	Idents
	USER Idents
	PROGRAM Idents
	GROUP Idents
	Idents – Access and Authority

	Schemas
	Databanks
	Mimer SQL System Databanks
	User Databanks

	Databank Options
	Creating Idents and a Databank – an Example

	Locating Databank Files
	Organizing Databank Files
	Protecting Data Against Loss
	Balanced I/O
	Reserved Directories
	Other Performance Issues

	Altering Databank Locations
	Accessing Databank Files
	Databank File Deletion
	Multifile Databanks
	Multifile scenarios

	Transaction Control
	Optimistic Concurrency Control
	Transaction Phases

	Database Security
	The Role of Idents in Database Security
	Guidelines for Structuring Idents
	System, Object and Access Privileges
	Cascade Effects Between Privileges
	Restriction Views

	Data Integrity
	Domains
	Entity Integrity
	Referential Integrity
	Table Integrity
	View Integrity

	Creating a Mimer SQL Database
	3.1 Registering the Database
	3.1.1 Database name recommendations

	3.2 The Local Database
	3.3 Accessing a Database Remotely
	3.3.1 Client/Server Interface

	3.4 Mimer SQL License Key
	3.5 MIMLICENSE - Managing the license key
	3.5.1 Syntax
	3.5.2 Command-line Arguments

	3.6 SDBGEN - Generating the System Databanks
	3.6.1 Setting the Initial Size
	3.6.2 Setting Password for System Administrator
	3.6.3 Syntax
	3.6.4 Command-line Arguments

	3.7 Establishing the Ident and Data Structure
	3.8 Managing Database Connections
	3.8.1 Selecting a Database
	3.8.2 Troubleshooting Remote Database Connect Failures

	3.9 Executing SQL Statements

	Managing a Database Server
	Mimer SQL Database Servers
	System Performance
	Database Server Memory Areas
	Code
	Data and Thread Stacks
	Bufferpool
	Communication Buffers
	SQLPOOL

	Threads
	Number of Request Threads
	Number of Background Threads

	Network Encryption
	Database Server System Requirements
	Physical Memory
	Virtual Memory
	Global Pages

	MIMCONTROL - Controlling the Database Server
	Syntax
	Command-line Arguments
	Examples
	Exit Codes

	MIMINFO - System Information
	Syntax
	Command-line Arguments
	The Users List
	The Performance Report
	Bufferpool Report
	SQLPOOL Report
	Version Report

	Database Server Log
	Several Installations on One Machine

	Backing-up and Restoring Data
	Background Information
	Database Consistency
	LOGDB and TRANSDB Importance
	Updates Recorded in LOGDB
	TRANSDB Considerations
	SQLDB Considerations

	Databank Backups
	System vs. Online Backups
	SQL Statements for Backing-up Databanks
	Online Backup Commands
	Online/Offline Commands
	Restore Command

	Backing-up Databanks
	Online Backups Using the SQL Statements
	System Backups Using the Host File System

	Restoring a Databank
	Restoring SYSDB
	Re-creating TRANSDB, LOGDB and SQLDB

	Audit trail with READLOG

	Databank Check Functionality
	DBC - Databank Check
	Syntax
	Command-line Arguments
	Exit Codes
	Authorization

	Result File Contents
	DBC B*-tree Table Information
	DBC Sequential Table Information
	DBC LOGDB Backup Information
	Error Messages

	Internal Databank Check

	DBOPEN - Databank Open
	DBOPEN - Databank Open functionality
	Syntax
	Command-line Arguments
	Exit Codes

	Functions
	Authorization
	Output Example

	Loading and Unloading Data and Definitions
	MIMLOAD - Data Load and Unload
	Syntax
	Command-line Arguments
	Exit Codes
	Examples
	Using STDIN/STDOUT/STDERR

	LOAD - Loading Data
	Syntax
	Usage
	Description
	Examples

	UNLOAD - Unloading Data
	Syntax
	Usage
	Description
	Data Escape Mode
	Examples
	Data Description Headers and Files
	Data Description Header Examples
	Escape Character Sequences
	File Format Specifications

	Replication
	Requirements
	Restrictions
	MIMREPADM - Replication Administration
	Syntax
	Command-line Arguments
	Replication Setup
	Replication Administration
	CREATE SUBSCRIPTION
	ALTER SUBSCRIPTION
	DROP SUBSCRIPTION
	DESCRIBE SUBSCRIPTION
	LIST SUBSCRIPTIONS
	CONNECT SOURCE USER
	CONNECT TARGET USER
	DISCONNECT SOURCE
	DISCONNECT TARGET
	ENTER SOURCE
	ENTER TARGET
	LEAVE SOURCE
	LEAVE TARGET
	SHOW SETTINGS
	EXIT

	REPSERVER - Replicating the Data
	Syntax
	Command-line Arguments
	Start the Replication
	Stop the Replication
	Error handling

	MIMSYNC - Synchronizing Tables
	Syntax

	Mimer SQL Shadowing
	About Databank Shadowing
	Shadowing Requirements
	SYSDB and Shadowing
	SQLDB and Shadowing
	Creating Shadows
	Altering Shadows
	Backups
	Dropping Shadows

	Levels of Data Protection
	All Databanks on One Disk and No Logging
	Logging, with LOGDB and TRANSDB on a Separate Disk from the Data
	Shadowing, with Shadows on a Separate Disk
	Shadowing and Logging

	Creating and Managing Shadows
	Privileges

	SQL Shadowing Commands – an Example Session
	Creating a Shadow
	Setting a Shadow Offline
	Backing-up from Shadows
	Setting a Shadow Online
	Restoring a User Databank
	Restoring Both a User Databank and Its Shadow
	Restoring System Databanks
	Dropping a Shadow

	Shadowing System Databanks
	Transforming a SYSDB Shadow to a Master
	TRANSDB and Shadowing
	LOGDB and Shadowing
	SQLDB and Shadowing
	If a Shadow for SYSDB, TRANSDB or LOGDB Is Not Accessible

	Data Protection Strategy
	Configuring Your System
	Performance Aspects of Shadowing
	Troubleshooting

	Database Statistics
	Authorization
	The SQL Statistics Statements
	Statistics for the Entire Database
	Statistics for Specified Idents
	Statistics for Specified Tables
	Secondary Index Consistency

	When to Use the SQL Statistics Statements

	SQL Monitoring on the Database Server
	SQLMONITOR - SQL Monitoring
	Syntax
	Command-line Arguments
	Columns
	Examples

	Authorization

	DbAnalyzer - index analysis
	Command syntax
	Command-line Arguments (Unix):
	Notes

	Executing in Single- user Mode
	File Protection in Single- and Multi-user Mode
	Specifying Single-user Mode Access
	Accessing in Single-user Mode
	The SINGLEDEFS Parameter File

	The SQLHOSTS File on VMS and Linux
	The SQLHOSTS File
	The Default SQLHOSTS File
	Default Section
	LOCAL Section
	REMOTE Section

	The MULTIDEFS File on VMS and Linux
	The MULTIDEFS Parameter File
	MULTIDEFS Parameters

	Data Dictionary Tables
	SYSTEM.API_FUNCTION
	SYSTEM.AST_CODES
	SYSTEM.AST_SOURCES
	SYSTEM.ATTRIBUTES
	SYSTEM.CHAR_SETS
	SYSTEM.CHECK_CONSTRAINTS
	SYSTEM.COLLATE_DEFS
	SYSTEM.COLLATIONS
	SYSTEM.COLUMNS
	SYSTEM.COLUMN_OBJECT_USE
	SYSTEM.COLUMN_PRIVILEGES
	SYSTEM.COMMENTS
	SYSTEM.DATABANKS
	SYSTEM.DIRECT_SUPERTYPES
	SYSTEM.DOMAINS
	SYSTEM.DOMAIN_CONSTRAINTS
	SYSTEM.EXEC_STATEMENTS
	SYSTEM.FIPS_FEATURES
	SYSTEM.FIPS_SIZING
	SYSTEM.HEURISTICS
	SYSTEM.KEY_COLUMN_USAGE
	SYSTEM.LEVEL2_RESTRICT
	SYSTEM.LEVEL2_VIEWCOL
	SYSTEM.LEVEL2_VIEWRES
	SYSTEM.LIBRARIES
	SYSTEM.LOGINS
	SYSTEM.MANYROWS
	SYSTEM.MESSAGE
	SYSTEM.METHOD_SPECIFICATION_PARAMETER S
	SYSTEM.METHOD_SPECIFICATIONS
	SYSTEM.MODULES
	SYSTEM.NANO_DATABANKS
	SYSTEM.NANO_DESCRIPTORS
	SYSTEM.NANO_OBJECTS
	SYSTEM.NANO_ROUTINE_USE
	SYSTEM.NANO_USERS
	SYSTEM.OBJECT_COLUMN_USE
	SYSTEM.OBJECT_OBJECT_USE
	SYSTEM.OBJECT_PROGRAMS
	SYSTEM.OBJECTS
	SYSTEM.ONEROW
	SYSTEM.PARAMETERS
	SYSTEM.REFER_CONSTRAINTS
	SYSTEM.ROUTINES
	SYSTEM.SCHEMATA
	SYSTEM.SEQUENCE_VALUE_TABLE
	SYSTEM.SEQUENCES
	SYSTEM.SERVER_INFO
	SYSTEM.SEVERITY
	SYSTEM.SOURCE_DEFINITION
	SYSTEM.SPECIFIC_NAMES
	SYSTEM.SQL_CONFORMANCE
	SYSTEM.SQL_LANGUAGES
	SYSTEM.STATEMENT_DESCRIPTORS
	SYSTEM.STATEMENT_ROUTINE_USE
	SYSTEM.SYNONYMS
	SYSTEM.TABLES
	SYSTEM.TABLE_CONSTRAINTS
	SYSTEM.TABLE_PRIVILEGES
	SYSTEM.TABLE_TYPES
	SYSTEM.TRANSLATIONS
	SYSTEM.TRIGGERED_COLUMNS
	SYSTEM.TRIGGERS
	SYSTEM.TYPE_INFO
	SYSTEM.USAGE_PRIVILEGES
	SYSTEM.USER_DEF_TYPES
	SYSTEM.USERS
	SYSTEM.VIEWS

	System Limits
	Deprecated Features
	Export/Import
	Load/Unload
	Readlog from UTIL
	Backup/Restore from UTIL
	Statistics from UTIL
	Shadowing Management from UTIL

	Index
	A
	B
	C
	D
	E
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

