

Mimer SQL
11.0

Technical Description

Introduction .. 1

Product Strategy .. 2
Technical Benefits Overview ... 2

EASE-OF-USE ... 8

Database Administration ... 8

Performance.. 10

Database Server Architecture ... 10
Server Architecture Benefits .. 12
The Database Cache .. 12
Cleanup Handling ... 13
Stored Routines .. 14
Triggers ... 15
SQL Optimizer ... 16
Collations .. 17
Sequences .. 18
Secondary Indexes ... 18
Transaction Management .. 19
Distributed Transactions ... 22
Storage Structures ... 23

Security ... 28

Integrity ... 28
Access Security .. 31
Client/Server encryption .. 33
Backup and Recovery .. 33

24 x 7 Operation ... 36

Resilience ... 36
Product Quality ... 36
Replication ... 37

Monitoring .. 38

Openness ... 39

SQL .. 40
JDBC ... 40
JDBC for small footprint environments ... 41
ADO.NET .. 41
ADO.NET for small footprint environments .. 41
ODBC/CLI ... 42
ODBC for small footprint environments .. 42
MimerAPI .. 42
DbVisualizer .. 43
Web-based Database Application and Enterprise Applications .. 43
Client/Server - Heterogeneous environments .. 44
Data Types ... 45
Mimer SQL embedded ... 48
Mimer SQL Real-time edition .. 49
Mimer SQL In-memory edition .. 51
Mimload... 51
Platforms ... 52

© Mimer Information Technology AB 2021 All trademarks acknowledged

1

INTRODUCTION

Mimer SQL is a Relational Database Management System (RDBMS) developed by

Mimer Information Technology AB in Uppsala, Sweden.

Mimer SQL is a high-performance database engine, providing an ideal data manage-

ment solution across the full range of computing environments - from embedded

systems, to workstations, to enterprise 3-tier architecture systems and cloud solutions.

It offers a unique level of scalability, including multi-processor support, and with its

availability on Windows, OpenVMS, macOS, and Linux, it is perfectly suited for open

environments where interoperability is important.

Mimer SQL has support for mobile systems such as Android. In Android, Mimer SQL

runs seamlessly without applications being aware that the underlying database has

been switched. Everything works faster and with a new level of security. It is also

possible to integrate information from different parts of the phone in a secure and easy

manner. Other popular enhancements include Pinyin support and sorting according to

any language in the world.

The Mimer SQL product also runs in memory constrained environments such as

embedded systems, IOT devices, etc. Because of the small footprint and unique

architecture of the Mimer SQL product, unparalleled functionality is supported to

applications in these environments.

Mimer SQL’s run-time characteristics, such as ease-of-use, high performance, stability

and self-tuning, makes it the ideal choice for a wide variety of software products,

including those that require an embedded DBMS and large-scale Internet and intranet

client/server applications. With its simple installation, maintenance-free operations

and no requirement for a database administrator it is a 'black box' without the

maintenance, price, complexity or hardware requirements of other enterprise-class

databases.

Through its 100% conformance to the SQL standards including pre-processors for

Embedded SQL (according to the SQL-2016 standard), an ADO.NET provider written

completely in managed code, a JDBC™ Type 4 driver, and a native implementation

of Microsoft's ODBC (Open Database Connectivity) interface, a Mimer SQL database

can be accessed by a large number of different development tools. Mimer SQL also

offers a native Mimer SQL client for those wishing to benefit fully from Mimer SQL’s

performance and stability. Mimer SQL is well suited for mission-critical multi-tier

solutions, since its conformance to standards makes it compliant with many transaction

processing middleware products. Mimer SQL support application servers based on

both Java and .NET. The support includes distributed transactions that allow changes

to span several Mimer SQL or other transaction-based systems. In the Microsoft

environment the Microsoft distributed transaction coordinator (MSDTC) is used.

Mimer SQL also features unique support by allowing real-time access to relational

data. The real-time access features guaranteed response times while allowing the real-

time data to be accessed through an ordinary Mimer SQL Database server.

2

Product Strategy

The main trend in the computer industry in the last 20 years has been the increased

interoperability between hardware and software components, resulting in heightened

competition between vendors. One example of this is the different UNIX platforms

now available, where because of a standardized external behavior the competitive edge

is now the internal functionality. In the RDBMS arena, what has now become evident

is the separation between pure RDBMS functionality and the development tools,

allowing customers to choose the software environment by selecting different

components.

The Mimer SQL product strategy recognizes this interoperability between the RDBMS

and the different development tools. For this reason, Mimer SQL conforms to the

existing RDBMS standards and offers connections to all the major development and

production environments. As a result, the performance and quality of both the database

engine and the connections are of strategic importance to Mimer Information

Technology.

All the products in the Mimer SQL family use the same code base. In contrast to most

other RDBMS products, Mimer SQL is exactly the same product on all platforms (no

“light” version for PCs or Linux), from a mobile phone running Android, to a small

laptop running Windows, and on to a large Linux or OpenVMS enterprise-class server.

This makes it possible to develop an application with the database stored on your

laptop, and then easily move the database to a larger server, or to an embedded device,

without having to make any modification to the application code or database.

The following eight key features characterize Mimer SQL:

• Ease-of-use

• Performance

• Functionality

• Security

• 24 x 7 Operation

• Openness

• Small footprint

• Device awareness

... which when combined with Mimer Information Technology’s aggressive pricing

provides the customer with a significantly reduced total cost of ownership (TCO). By

conforming to the international database standards Mimer Information Technology are

protecting your development investment, ensuring portability and interoperability.

Technical Benefits Overview

Mimer SQL is a mature and highly advanced Relational Database Management

System, which is in use in mission-critical systems throughout the world. It offers a

3

number of features, many unique to Mimer SQL, which provide significant advantages

in eight key areas:

Ease-of-use

• Automatic self-tuning, means a limited number of tuning parameters, and so

removes the need for highly skilled staff or expert consultants.

• Dynamic re-organization of the database during run-time, thus avoiding any

manual intervention for re-organizing the database.

• Automatic on-the-fly extension of database files, when required, without any

costly manual formatting of new areas. Mimer SQL allows complete control

over file sizes. Both a minimum and/or a maximum size may be specified. In

addition, a so-called goal size may be specified. The system will automatically

shrink the file to the goal size, or as close as possible, when the internal usage

of the space in the databank allows.

• A high degree of isolation between applications. A completely stable and

consistent view of the database is available to the application when executing

transactions. Application code does not have to cater for situations where

inconsistent data is returned by the database server.

• Fully automated complete recovery from system failures.

• Optimistic concurrency control guarantees that no deadlocks can occur.

• Use of standard OS files for all database storage allows OS utilities to be used

and allows advantage to be taken of the latest storage technologies as they

become available.

• Can be packaged with the applications to allow a single installation of both

application and database software.

• Installed and configured in a few minutes.

• Large objects are stored together with other data. No separate storage structures

are needed.

• There are no restrictions on number of large object columns in a table.

• Advanced support for automatically upgrading the schema of a database

between application versions. In a majority of the cases no separate upgrade

program needs to be written.

Performance

• Multi-threaded requester-server architecture based on threads, which makes it

ideally suited to symmetric multiprocessor (SMP) environments as well as

single processor machines.

• Advanced SQL optimizer uses statistics to ensure queries use the most efficient

access routes. Includes use of data pre-fetch by the database server.

• Stored procedures and functions for optimal performance in network environ-

ments.

4

• Compiled SQL-queries and stored routines are cached and shared, minimizing

the number of compilations performed, thereby improving performance where

there is heavy use of dynamic SQL (e.g. JDBC and ODBC).

• Caching of dictionary information for fast compilations and execution.

• Optimized protocols for large object handling. Allows large objects to be

handled with a minimum of overhead.

• Caching techniques are specifically adapted for SMP environments. Provider

a high degree of scalability even with many CPU cores.

• Use of highly efficient sort algorithms.

• Transaction management using Optimistic Concurrency Control, a method

pioneered by Mimer Information Technology, which overcomes many of the

problems of conventional locking techniques such as deadlocks, and locks

being retained by defunct connections, whilst offering superior performance

and scalability.

• Group commit transactions make optimal use of the available I/O-capacity by

clustering several commit requests on a single I/O.

• Self-tuning transaction storage that adapts to the current transaction load and

automatically grows and shrinks to achieve optimal performance.

• Ability to perform Read-Only transactions for optimal performance when

executing transactions that do not update the database; allowing mixed

workload environments such as data warehouse and OLTP applications.

• Highly optimized B*-tree structure used for all tables, giving rapid access for

keyed and sequential retrievals, and exceptionally high space utilization with

no fragmentation of free space.

• Automatic continual re-balancing guarantees perfectly balanced B*-tree

structures without incurring delays for the users, and no possibility of corrupt

tree structures even following a hardware failure.

• Immediate restart allows application programs to access all data immediately

after a system failure. This is regardless of the size of the database. If you do

not have immediate restart activated, the system is still quick to restart unless

you have very large databases. For these systems immediate restart is

recommended.

• ADO.NET, JDBC, Embedded SQL, and ODBC implemented as native drivers

integrated into the product, rather than as add-on layers.

• Optimized for open interfaces (e.g. bulk fetch and other optimizations in all

interfaces).

• Automatic data compression reduces I/O load and saves space.

• When using read-only databanks the transaction handling takes advantage of

the fact that the data is not changed to improve performance.

• Advanced indexing, single and multi-column indexes. Word, pinyin,

coordinate, and location indexes. Support for collations with indexes.

5

Examples of SQL Functionality

• Inner and outer join, including natural, cross, left, right, and full outer join.

• With-clause, including recursive queries with cycle detection.

• Support for Exists, Any, Unique, and similar predicates.

Security

• The use of triggers, constraints, functions and stored procedures allows rules

to be encapsulated in the database and enforces the rules for all applications

using the database.

• Full set of integrity constraints to ensure logical database consistency.

• Advanced security facilities offering fine-grain access control. A role concept

allows access using an application to be differentiated from ad-hoc access.

• System and object privileges controls access to database administration

functions and objects in the database.

• Backup and recovery functionality guarantees that a consistent and up-to-date

database always can be restored after a disk crash.

• Audit trail utility that provides information about performed transactions in the

system.

• Secure protocols are used for logging in to the database. Passwords are never

passed over network connection. Even if actual communication is recorded it

cannot be reused at a later point as each login uses a unique communication id

used by the authentication mechanisms.

• The communication between client and database server can be encrypted. All

data passed between client and server is then protected from eavesdropping.

Any tampering with the data is also detected. Each database session uses a

different encryption key resulting in new data sequences, even if the same data

happens to be passed.

• The blocks in the database use a checksum to ensure the low-level consistency

of the data structures in the database.

24 x 7 Operations

• Maintenance-free operations mean no downtime.

• Database structures always optimally organized and therefore never any

requirement to carry out database reorganizations. In other products this has to

be done manually using utilities such as Vacuum or run in the background

causing disruption for data access.

• Shadowing facility that allows automatic failover in case of disk hardware

failure.

• Extremely stable behavior in run-time environments, which removes the need

to stop the database for manual intervention.

• Online backup, which allows a completely consistent backup to be taken

without disturbing ongoing activities. The backup copies have no special

6

formatting, allowing them to be used by simply copying them into place. Also,

very easy to look offline at the backup with query system or use for test.

• Immediate access to data after an uncontrolled system shutdown.

Openness

• Maximum conformance to SQL standards. Mimer SQL conforms to all

features of SQL 2016 Core level. In addition, 145 features beyond core SQL

are also supported.

• Support for SQL/PSM, standardized stored procedures.

• Compatible with all major web and client/server application development tools

through the ADO.NET, JDBC, and ODBC interfaces.

• Support for Python standard database interface PEP 249. For details, see

https://pypi.org/project/mimerpy/ and https://www.python.org/dev/peps/pep-

0249/.

• Compliant with many middleware products for transaction processing, like

Oracle Tuxedo and Microsoft COM+. On Microsoft platforms the MS DTC

protocol is used to communicate with the transaction coordinator.

• Available on a wide range of platforms including Linux, Windows, macOS and

OpenVMS. Examples of embedded platforms include VxWorks, QNX, and

Greenhill Integrity.

Small footprint

• The Mimer SQL product is significantly smaller than competing products. This

is due to the stringent design and engineering work done with the product.

• Mimer SQL can be used in memory constrained environments. Both the stack

and heap usage are carefully controlled.

• The product automatically scales to the current environment. This means that

it can support large, as well as small memories efficiently.

• The system automatically applies compression (more often) in environments

with less memory.

• The database files can return space to the operating system for reuse automati-

cally.

• The database cache can automatically grow and shrink within predefined limits

determined by the user.1

Device awareness

• Databank files can be placed on removable devices, such as a memory card

(flash), USB disk, or a CD. The system automatically detects when devices are

added or removed.

1 Not available in all environments.

https://pypi.org/project/mimerpy/
https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/

7

• When a device is not present the system acts as if the table is empty. From an

application programming point of view this is very simple to handle and much

error handling is avoided.

• When memory load is low the system can expand the database cache. When

memory is scarce, the system release memory that may then be used by other

applications.

• In applications where power consumption is important the fast startup of the

Mimer SQL server can be used to allow a complete startup/shutdown of the

CPU, Operating system, Mimer SQL server, and application for each set of

requests.

• The small number of read and write operations of the Mimer SQL server make

it ideal for flash memory cards where there is a limit to the number of times a

block may be written.

• In-memory databases are supported. For small footprint environments this

means the system can run on an embedded controller without disk or flash

connected. The database server starts with a predefined schema in this case.

8

EASE-OF-USE

Database Administration

Mimer SQL eliminates many of the routine tasks associated with other database

engines. Database administration with Mimer SQL is characterized by being greatly

simplified and by wherever possible using Operating System facilities. Indeed, in most

cases normal operational control takes care of the database automatically thereby

minimizing the amount of specialist knowledge required.

The number of tuning parameters in Mimer SQL is, intentionally, very limited. The

two most important tuning parameters in Mimer SQL are the size of the Database

Cache and the number of Request threads. This database cache is automatically

configured depending on the amount of memory available on the machine when the

database definition is set up. The number of request threads can easily be determined

after only a few days run-time experience.

The simplicity by which the Mimer SQL system can be tuned removes the need for

highly skilled RDBMS experts to supervise the operations, significantly reducing the

maintenance costs for Mimer SQL-based systems. In fact, many Mimer SQL systems

run in environments where there is no supervision at all.

Many RDBMS require that the contents of the database have to be reloaded regularly

to maintain performance, which will mean that the database is unavailable to the users

and may require a high level of expertise to actually perform. A Mimer SQL table is

stored in a highly optimized balanced tree structure called a B*-tree. These trees

expand and contract dynamically as required, and the algorithms used during this

process ensure that data is always stored in an optimal manner.

The use of B*-trees means that there is never any need to reorganize a Mimer SQL

database, or any benefit to be gained by so doing, since the B*-tree structures are

always kept perfectly balanced. This feature is especially important as the database

size grows. Consider, for example, the implications of a re-load of several Gigabytes

of data in a production environment.

By implementing the relational model with separate B*-tree structures for each table

and secondary index, Mimer SQL also ensures that even when application

enhancements mean that the database schema needs to be altered, this can be achieved

by only altering those tables affected. Also, the use of the relational model and the

implementation of views mean that existing application code need not be affected by

underlying changes to the database schema as long as the data required by the

application is still available. Mimer SQL supports a powerful concept called instead-

of triggers. This allows any view of arbitrary complexity to become updatable. Instead

of directly updating the tables referenced by the view a trigger is activated which

performs the appropriate updates of the underlying tables.

Mimer SQL’s use of a careful replacement protocol during the dynamic table

reorganizations and of the similar protocol used when updating tables with secondary

indexes ensures that these structures are always kept free of inconsistencies even in

9

the event of a system failure. The use of these protocols means that there is no need

for any repair utilities to correct such inconsistencies.

In Mimer SQL, tables are created in databanks. A databank is a standard direct access

file and contains an arbitrary number of tables. The use of bitmaps to control free space

means that there is minimal initialization required when a databank is expanded.

Mimer SQL databanks therefore expand dynamically when required as long as the

Operating System allows this, which usually means as long as free disk space is

available. The Mimer SQL limit for a single file is ~3 exabyte, so it is the file system

limits that govern how much can be stored in a file.

The opposite is also true. Mimer SQL can release space to the file system, either if a

goal size has been set on a databank or an Alter Databank statement directing the

system to release space is executed.

The fact that Mimer SQL databanks are standard OS files allows them to be moved

using standard OS commands. Moving databank files may be necessary to make the

best use of available disk space, or to balance disk loads. In addition to the online

backup facilities, the databank files may be backed up using standard OS utilities.

The use of standard OS files also allows Operating System facilities such as disk

striping, solid state disk devices, RAID systems, and networked drives to be used

where these are available without requiring any special facilities to be used within

Mimer SQL.

The Concurrency Control techniques utilized by Mimer SQL for transaction handling

also eliminate the requirement for any DBA intervention to resolve deadlocks or other

lock related problems such as those caused when a client fails.

For an embedded system or a database on a mobile phone the system must not require

any maintenance whatsoever. The fact that the Mimer SQL system has been designed

and implemented with this in mind from the ground up makes it the ideal database

system for these environments.

10

PERFORMANCE

Database Server Architecture

The Mimer SQL DBMS is based on client/server architecture. The database server

executes in one single, multi-threaded process with multiple Request and

Background threads. On some platforms Communication threads are used. The

Mimer SQL architecture is truly multi-threaded, with requests being dynamically

allocated to the different Request threads. As threads scale very well over multiple

CPUs, Mimer SQL is particularly well suited for symmetric multiprocessor (SMP)

environments. By the use of threads within the database server, optimal efficiency is

achieved when context-switching in the database server.

The use of a separate database server process guarantees that a program error in an

application process cannot corrupt the shared data areas that control the database

server. It also ensures that the application can only view data that has been formerly

passed to the client side, which is extremely important from a data security point of

view.

Mimer SQL Database Server Architecture

The Communication threads handle incoming requests to the database server. On

some platforms a single communication thread is sufficient to handle all the

connections in a scalable manner, while on others more than one may be required. On

some platforms there are operating system primitives that allow the request threads to

handle incoming requests directly, thereby eliminating the communication threads

11

layer altogether. Whatever the mechanism, all communication with the database server

is multi-threaded, allowing large numbers of simultaneous user requests.

Both local and remote applications are handled directly by the Database Server. This

means that in Client/Server environments, where Mimer SQL executes in a

distributed environment with the client and server on different machines, all remote

clients connect directly to the Database Server. When a client connects to the server

no additional processes or threads are needed. This allows the system to respond very

quickly to new connection requests.

The Request threads perform the SQL operations requested by the applications.

When the Database Server is requested to perform an SQL operation it allocates one

of its Request threads to perform the task. When the SQL operation is complete the

result is returned back to the application, and the Request thread that has performed

the operation returns to a waiting state until it receives another server request. Since

the SQL operations are evaluated entirely within the Database Server, inter-process

communication is reduced to a minimum. Also note that the request threads may serve

any incoming request, there is no tie between request thread and a specific application.

In case of many long request to the database server, the system automatically

reschedules the operations to allow more requests to be served concurrently.

When an SQL query or a stored routine is executed by a Request thread, the compiled

version of the query or the routine is stored within the Database Server. In this way the

same, compiled version of the query or routine can be used again by other applications.

This leads to improved performance, since an SQL query or a stored routine only need

to be compiled once by the Database Server.

The Background threads perform database services including all database updates,

online backup, logging, and database shadowing. These services are performed

asynchronously in the background to the application processes, which means that the

application process does not have to wait for the physical completion of a transaction

or a shadow update, but can continue as soon as the transaction has been prepared and

secured to disk.

On most platforms I/O-operations are performed in parallel directly by the request and

background threads using asynchronous I/O. Thereby any need for separate I/O-

threads are avoided. In many circumstances the I/O may actually complete before the

result of the I/O is required by the system. Most I/O are both initiated and waited for

by the background threads.

The system uses many different techniques to achieve a high throughput rate. For

example, if the SQL optimizer determines that a sequence of pages will be accessed to

perform the query in question, it will instruct the underlying access manager to

prefetch pages. The rate at which this is done depends on how many pages are needed

and in what manner they are accessed. For queries that are guaranteed to access many

pages a higher prefetch rate is used than queries that only need a few pages at a time.

12

Server Architecture Benefits

The threads-based implementation of the Mimer SQL Database Server performs

particularly well in Symmetrical Multi-Processing (SMP, multi-core CPUs, or

hyperthreading) environments, since threads are very efficiently scheduled to the

different CPUs by the Operating System. As a result of this, this architecture allows

the different processes to run concurrently on different processors, and so parallel

execution is achieved.

The Mimer SQL server accesses the database cache and other shared memory in a

manner that is beneficial with regards to memory caches. This means that memory

write operations are often local to a single cache line. This allows for a high degree of

scalability when the number of processor cores grow.

Due to its simple and well-designed architecture, Mimer SQL offers a highly

performant option for production environments. The performance benefits of Mimer

SQL provide better response times and an increased utilization of computer resources.

In embedded environments this results in lower usage of CPU and thus improves

battery times.

A very limited number of tuning parameters avoid the need for costly specialist

knowledge.

The Database Cache

The Database Cache of Mimer SQL (sometimes also called the Bufferpool) ensures

that large parts of the database can be kept in main memory, reducing the number of

disk I/O operations needed. The size of the Database Cache can easily be changed,

making it possible to effectively utilize available main memory. The system

automatically takes the available memory into account when a database definition is

set up.

In many environments the database cache can automatically expand and contract.

Instead of specifying a fixed number of pages the user specifies a range where the

Mimer SQL server starts with the minimum and allowed to grow to the maximum. The

exact mechanism that controls shrinking and growing the cache is machine dependent.

The Database Cache is partitioned, which means that each partition can be viewed as

an independent memory area. Since there are in effect a number of Database Caches,

tasks executing simultaneously on separate CPUs have a reduced risk of conflicting

when accessing a partition and so inter-processor cache coherency traffic is reduced.

The size of the database cache is limited by the allowed size of the process. On a 32-

bit system this may be limited by the size of the paging files or process specific quotas.

In addition, only 4 gigabytes (and sometimes 2 GB) may be handled by a 32-bit

address.

13

On a 64-bit hardware the database cache can currently support up to 327 terabytes of

data. So, in practice, the size has to do with how much main memory should be used

by the server rather than any limit in the system.

Cleanup Handling

To handle cleanup when users abort their applications without disconnecting from

Mimer SQL, the Database Server is configured to interact with the Operating System

on the server machine. When a user application is interrupted without a proper

disconnect, the Operating System will send a signal to the Database Server. When the

Database Server receives this signal, it performs a cleanup for that application. The

Mimer SQL Server performs the following at a cleanup:

• First it cancels any database requests from the application that are currently

being executed.

• Then it closes all tables that the application held open.

• Finally, all uncommitted transactions for that application are rolled back.

If a remote client is switched off without disconnecting from the Database Server,

Mimer SQL makes use of the KEEPALIVE functionality in TCP/IP to be notified that

a cleanup operation is required. In such cases it depends on the value of the

KEEPALIVE time interval parameter on the server machine, as to how soon Mimer

SQL will be notified to perform the cleanup. Note that since Mimer SQL uses

optimistic concurrency control, no locks are held during this time.

In competing products, the problems caused by database locks are considerable.

Connections between a client and server are lost for a large number of reasons, not just

because the client machine is turned off. In a locking system, other users requiring the

lock held by the abnormally terminating client will be blocked until the situation is

resolved; in some cases, this can require manual intervention by a DBA. Mimer SQL

does not suffer from the problems caused by locks.

14

Stored Routines

The concept of stored procedures and stored functions (collectively referred to as

stored routines) is very useful in an RDBMS. SQL routines are stored in the database

just like other schema objects (tables, domains, etc.). Stored routines allow application

logic to be moved from the applications to the RDBMS. Execution plans for routines

are cached on the server and avoid the overhead of transmitting and preparing

frequently used SQL code. These features imply a number of important benefits when

developing database applications:

• Thin clients are achieved as a result of moving program logic from the

applications to the database server.

• Business rules can be stored in one place and do not have to be duplicated in

all the applications.

• Performance is improved, since less communication between a client (e.g. an

application program) and the server is needed to perform the operations in the

stored routine. This is particularly important in client/server environments,

including the Internet.

• Giving the users execution rights to a set of stored routines instead of giving

them access rights to the database objects directly eliminates the risk of

accidental damage to data through interactive tools.

• Creating a set of stored procedures by which all database access is performed

can standardize DBMS access.

• The application can become less dependent on the schema structure. Typically,

a stored procedure is used to store information that applies to many tables. A

change in the underlying table structure only needs to be reflected in the stored

procedure.

Support for stored routines within Mimer SQL is based on the ISO standard for SQL's

Persistent Stored Modules. This language is a natural extension of SQL. This means

that the data types available are the same as in SQL in general, and that variables have

SQL null value handling built in. When comparing variables, collations may, of

course, be used. For example, case insensitive comparisons can be made. This allows

for seamless integration within the database server for this type of functionality.

An overview of the features supported include:

• Stored routines written entirely in SQL.

• Data manipulation statements.

• Domains and user defined types

• Procedural programming statements - RETURN, CASE, IF/THEN/ELSE,

LOOP, LEAVE, WHILE, REPEAT, ITERATE, and compound statements.

• SQL variables and assignment statements for assigning values to SQL

variables and to parameters of stored procedures.

• EXECUTE privilege determines which users can invoke given routines.

• CALL statement for invoking stored procedures.

15

• Functions may be invoked from within scalar expressions e.g. in SELECT and

WHERE clauses in queries.

• FOR-loop for easy retrieval of data into the routine.

• Explicit parameter modes (IN, OUT, or IN OUT) for stored procedure

parameters. An SQL function can only have input parameters but does return

a value.

• ATOMIC execution units where all statements succeed or fail as one unit.

• Support for recursive invocation of procedures and functions.

• Advanced exception-handling facilities.

A special type of procedure, so called result procedures are used to handle result sets.

Result procedures make it possible to declare a cursor for a procedure. Such a cursor

can be used just like a cursor for a SELECT statement, i.e. it is opened, rows are

fetched, and finally the cursor is closed. The result procedure returns one row every

time the FETCH statement invokes it, until there are no more rows to return. The rows

can be returned from the result procedure either explicitly by a RETURN statement,

or implicitly by using a direct SELECT statement.

Mimer SQL supports a pseudo data type called ROW. The ROW data type can be used

in a compound statement and is defined by explicitly specifying a number of field-

name/data-type pairs or by specifying a number of table columns from which the

unqualified names and data types are inherited.

 Triggers

In addition to stored routines, Mimer SQL supports triggers. Triggers can be

considered to be a special form of a stored procedure; they are not called directly by a

user, instead they execute automatically when a data modification statement is used

against a table. Triggers can be defined to execute either before or after rows are

inserted into a table; when rows are deleted from a table; and when columns are

updated in the rows of a table. Statement triggers are called with all rows modified by

a single SQL modification statement. Row triggers are called once for each row

modified. Statement triggers incorporate virtual tables that reflect the row image

before and after the operation, as appropriate. Row triggers gets the changes to the

current row through its parameters.

Tables can have multiple triggers and Mimer SQL supports multiple triggers for each

modification event on a table. Triggers can be called recursively. This happens if a

trigger in turn modifies the database, thus invoking the same or other triggers.

Triggers are an extension to the concepts behind constraints, except that they can

provide a greater flexibility because the trigger body allows a greater level of control.

Their primary use is to enforce complex business rules or requirements. Triggers can

be used to extend the integrity checking logic of constraints, defaults and rules;

constraints and defaults should be used instead if they can encapsulate all the needed

functionality. Unlike check constraints, triggers can reference columns in other tables.

A trigger can reject the attempted modification that caused the trigger to execute.

Mimer SQL also supports an INSTEAD OF qualifier to the INSERT, DELETE and

UPDATE triggers, which provides a mechanism to make any view updateable. In this

case, it is expected that the trigger will modify one or more tables to simulate the data

16

modification statement on the view. When a complex view is created the creator

receives SELECT access only. When an INSTEAD OF trigger is created on the view

the corresponding privilege is granted, with grant option, to the creator of the view

(e.g. an INSTEAD OF INSERT trigger gives the creator INSERT privilege on the

view).

SQL Optimizer

The SQL optimizer utilizes table statistics to determine the method to be used to

execute an SQL statement. This includes determining the order to access tables in and

which indexes to use, eliminating the need for the programmer to perform the

optimization. This is especially important for complex SQL queries, and queries using

views. The optimization is performed at run time, meaning that changes in large

dynamic databases are automatically catered for. The result of the optimization process

can be viewed by using the Explain functionality. Explain is present both in

DbVisualizer and bsql.

Many advanced SQL constructs are supported. For example:

• Scalar subqueries

• Views on views

• Union in views

• With hold

• Correlated subqueries

• and much more…

The use of primary keys is strongly recommended as they are highly efficient and the

preferred access path for the optimizer.

The optimizer can handle both user written SQL as well as generated SQL efficiently.

Typically, generated SQL contains constructions not present in hand-written SQL.

This means that the optimizer rewrites the query into a generic format before doing the

actual cost-based optimization. This has the effect that views are handled particularly

well, as conditions outside the view are combined with the view definition whenever

possible.

Many other operations are done such as:

• Or-optimization. This means that several indexes may be employed to solve

the query quickly, eg. C1 = 2 or C2 = 5 may use index on C1 and another index

on C2 to compute the result.

• Select item elimination.

• Join transformations such as converting outer join to inner join to allow more

access paths to be used.

• Select in from list elimination.

• Constant evaluation of conditions.

• And much more…

17

Collations

The sorting capabilities of the Mimer SQL system are extremely advanced. So-called

linguistic sorting is implemented in a very dynamic and efficient manner. This is both

from a performance and footprint point of view.

The character repertoire is currently based on the Unicode 12.1 standard (see

https://www.unicode.org/). This means that over 100 000 characters are supported.

Sorting and searching non-English text can cause a number of problems, a frequent

one being how to handle accented letters, for example á, à and â.

The rules for sorting vary because the various natural languages sort words differently.

There are occasions where the accented form of a letter is treated as a distinct letter for

the purpose of comparison. For example, in Swedish, Å is a separate letter that is sorted

after Z. In some languages, it is common to sort uppercase before lowercase, in other

languages this is reversed; sometimes it is just a matter of personal preference.

A collation, also known as a collating sequence, is a database object containing a set

of rules that determines how character strings are compared, searched and alpha-

betically sorted. The rules in the collation determine whether one character string is

less than, equal to or greater than another. A collation also determines how case-

sensitivity and accents are handled.

Mimer SQL has more than 140 collations built in and more collations published on the

Mimer SQL developer site (https://developer.mimer.com/). The user can add their own

collations in addition to ones that are predefined. This can be done with any existing

collation as the base.

Collations can be used in a number of places:

• In a column definition in a CREATE or ALTER TABLE statement. The

collation will henceforth be used as default in all column references.

• In a comparison expression. I.e. when comparing two string values it is

possible to specify what type of collation to use.

• In an ORDER BY clause. This allows the application to specify the sort order

of the rows returned for a query.

• In a secondary index definition. The index will then be ordered according to

the specified collation. It is even possible to have several indexes on the same

column that use different collations.

This means that the advanced collation logic is readily available for applications with

no technical or performance complications whatsoever.

A special collation called CURRENT_COLLATION can be used to make applications

independent on a specific collation. Instead, when the current collation is set, all places

that refer to this collation are changed. This includes rebuilding secondary indexes

using the current collation.

https://www.unicode.org/
https://developer.mimer.com/

18

A special sort order exists to sort product codes, or similar, correctly. In this case the

system sorts for example: A1, A2, A10, B1, B11 into the correct order. This is called

numeric sorting.

Sequences

A SEQUENCE is a construction that returns unique (2-, 4-, or 8-byte) integer values

regardless of concurrent access to the database system; this eliminates application

contention when obtaining a unique numeric key value, a common requirement in

transaction processing applications. It is also possible to retrieve the previous value

returned to the application. A sequence can be used as a default value for a column or

domain.

Sequences can be unique meaning that each value is only returned once. When the

sequence is exhausted an error is given. If the sequence is not unique it restarts once it

is exhausted.

The next value of a sequence is obtained by specifying NEXT_VALUE OF sequence-

name. The current value, for the current user, is obtained through CURRENT_VALUE

OF sequence-name.

Secondary Indexes

Within Mimer SQL a secondary index is implemented by creating an internal table

invisible to the user. The same algorithms and structures are used for storing a

secondary index as are used for an ordinary table. Concatenating the columns defined

as the secondary index with the primary key of the base table forms the primary key

of the index table. If a column is part of both the index columns and the primary key

columns it is only stored once. The secondary index tables are fully maintained

internally within Mimer SQL. The algorithm used for this guarantees that the indexes

can never be out of step with their base table.

The SQL optimizer will automatically use secondary indexes whenever there is a

performance benefit. If the secondary index contains all the information required by

the query, the optimizer will not perform a lookup in the base table.

Secondary indexes can be defined with different collations as described in the previous

section.

Several types of special secondary indexes also exist:

• Word index. In a word index each word is extracted from the original column.

This allows index use of the builtin functions BEGINS_WORD and

MATCH_WORD.

• Pinyin index. In a pinyin index the pinyin text for the corresponding Chinese

characters are stored. This allows index use for the builtin functions

BEGINS_PINYIN and MATCH_PINYIN.

19

• Coordinate and location indexes. These allow indexed access to the builtin

Coordinate and Location data types to be used. Functions such as

INSIDE_RECTANGLE etc. are supported.

Index tables can be accessed directly in a select statement by selecting from the index

name. However, they cannot be updated. This is only possible by changing the base

table.

Word indexes are particularly useful when a user starts typing in a search box. It is

possible to get all valid completions to the text that actually exist in the database by

doings a distinct begins-query towards the index. These completions can be displayed

in a drop-down box.

Transaction Management

Mimer SQL uses a method for transaction management called Optimistic Concurrency

Control (OCC). Mimer SQL’s pioneering work makes it the first RDBMS to use this

method for transaction management. This method is today used within many

distributed transaction handling systems, even for locking based databases, due to its

superior conflict handling.

Though optimistic methods were originally developed for transaction management the

concept is equally applicable for more general problems of sharing resources and data.

The methods have been incorporated into several Operating Systems, and many of the

newer hardware architectures provide instructions to support and simplify the

implementation of these methods.

Optimistic Concurrency Control does not involve any locking of rows as such, and

therefore cannot involve any deadlocks. Instead, it works by dividing the transaction

into phases.

• Build-up commences the start of the transaction. When a transaction is started

a consistent view of the database is frozen based on the state after the last

committed transaction. This means that the application will see this consistent

view of the database during the entire transaction. This is accomplished by the

use of an internal Transaction Cache, which contains information about all

ongoing transactions in the system. The application “sees” the database

through the Transaction Cache. During the Build-up phase the system may also

build up a Read Set documenting the accesses to the database, and a Write Set

of changes to be made, but does not apply any of these changes to the database.

The Build-up phase ends with the calling of the COMMIT statement by the

application.

• The Commit involves using the Read Set and the Transaction Cache to detect

access conflicts with other transactions. If transaction serialization is

repeatable read a conflict occurs when another transaction alters data in a way

that would alter the contents of the Read Set for the transaction that is checked.

Other transactions that were committed during the checked transaction’s Build-

up phase or during this check phase can cause a conflict. If a transaction

conflict is detected, the checked transaction is aborted. No rollback is

20

necessary, as no changes have been made to the database. An error code is

returned to the application, which can then take appropriate action. Often this

will be to retry the transaction without the application user being aware of the

conflict.

• If no conflicts are detected the operations in the Write Set for the transaction

are moved to another structure, called the Commit Set that is to be secured on

disk. All operations for one transaction are stored on the same page in the

Commit Set (if the transaction is not very large). Before the operations in the

Commit Set are secured on permanent storage, the system checks if there are

any other committed transactions that can be stored on the same page in the

Commit Set. After this, all transactions stored on the Commit Set page are

written to disk (to the transaction databank TRANSDB) in one single I/O

operation. This behavior is called a Group Commit, which means that several

transactions are secured simultaneously. When the Commit Set has been

secured on disk (in one I/O operation), the application is informed of the

success of the COMMIT statement and can resume its operations.

• During the Apply phase the changes are applied to the database, i.e. the

databanks, the log, and the shadows are updated. The Background threads in

the Database Server carry out this phase. Even though the changes are applied

in the background, the transaction changes are visible to all applications

through the Transaction Cache. Once this phase is finished the transaction is

fully complete. If there is any kind of hardware failure that means that Mimer

SQL is unable to complete this phase, it is automatically restarted as soon as

the cause of the failure is corrected.

The above is true if the application is using serialization repeatable read. If the

application chooses serialization level read committed however, some performance

improvements are employed by the system. In this case no read set needs to be

recorded. Instead, when the application reaches the commit phase, the system checks

that no write operations in the current transaction overlaps any changes made by other

transactions since the buildup phase started.

Most other DBMSs offer pessimistic concurrency control. This type of concurrency

control protects a user's reads and updates by acquiring locks on rows (or possibly

database pages or even entire tables, depending on the implementation), this leads to

applications becoming 'contention bound' with performance limited by other

transactions. These locks may force other users to wait if they try to access the locked

items. The user that 'owns' the locks will usually complete their work, committing the

transaction and thereby freeing the locks so that the waiting users can compete to

attempt to acquire the locks. Optimistic Concurrency Control (OCC) offers a number

of distinct advantages including:

• Complicated locking overhead is completely eliminated. Scalability is affected

in locking systems as many simultaneous users cause locking graph traversal

costs to escalate.

• Deadlocks cannot occur, so the performance overheads of deadlock detection

are avoided as well as the need for possible system administrator intervention

to resolve them.

21

• Programming is simplified as transaction aborts only occur at the Commit

statement whereas deadlocks can occur at any point during a transaction

including the commit statement. Also, it is not necessary for the programmer

to take any action to avoid the potentially catastrophic effects of deadlocks,

such as carrying out database accesses in a particular order. This is particularly

important as potential deadlock situations are rarely detected in testing, and are

only discovered when systems go live.

• When performing a join operation in SQL the optimizer chooses which table

to access first. In an optimistic based system this has no effect on the system,

as the order data is accessed is irrelevant to the transaction handling. In a

locking system however, this may cause deadlocks to occur. Note also that the

optimizer may change the order tables are accessed when the amount of data

grows. This may give the effect that deadlocks are introduced in a system that

previously ran smoothly. In some circumstances, deadlocks in locking systems

may take many seconds to detect due to timeouts in the lock handling.

• Data cannot be left inaccessible to other users as a result of a user taking a

break or being excessively slow in responding to prompts. Locking systems

leave locks set in these circumstances denying other users access to the data.

• Data cannot be left inaccessible as a result of client processes failing or losing

their connections to the server.

• Delays caused by locking systems being overly cautious are avoided. This can

arise as a result of larger than necessary lock granularity, but there are also

several other circumstances when locking causes unnecessary delays even

when using fine granularity locking.

• Removes the problems associated with the use of ad-hoc tools.

• It can also be noted that applications are written in the same manner for locking

and optimistic systems. Both types of transaction handling prefer the use of

short transactions. A programmer does not need to write code differently when

switching between these two implementation types.

Through the Group Commit concept, which is applied in Mimer SQL, the number of

I/Os needed to secure committed transactions to the disk is reduced to a minimum. The

actual updates to the database are performed in the background, allowing the

originating application to continue. It also allows the system to gather changes from

several transactions on the same page to be written at the same time, thus giving fewer

I/O operations overall.

The ROLLBACK statement is supported but, because nothing is written to the actual

database during the transaction Build-up phase, this involves only a re-initialization of

structures used by the transaction control system and involves no other users or I/O. In

a locking system the actual data in the database must be restored to its original values,

making the rollback a more costly operation.

Another significant transaction feature in Mimer SQL is the concept of Read-Only

transactions, which can be used for transactions that only perform read operations to

the database. When performing a Read-Only transaction, the application will always

see a consistent view of the database. Since consistency is guaranteed during a Read-

Only transaction no transaction check is needed and internal structures used to perform

22

transaction checks (i.e. the Read Set) are not needed, and for this reason no Read Set

is established for a Read-Only transaction (regardless of isolation level). This has

significant positive effects on performance for these transactions. This means that a

Read-Only transaction always succeeds, unaffected of changes performed by other

transactions. Also, a Read-Only transaction never disturbs any other transactions going

on in the system. For example, a complicated long-running query can execute in

parallel with OLTP transactions.

It is also possible to set the data in a databank read-only. The transaction system takes

advantage of the fact that the data will not change. I.e. no records are written to the

read set for this part of the data accessed by an application. So, if data in a table, or a

set of tables, is for example only updated once a month it may be beneficial to mark

the data read/only between these infrequent changes. This also protects against

inadvertent changes of the data in these databanks.

Mimer SQL also supports a mode called delayed transactions. In this case when a

transaction is committed the transaction is not immediately written to disk. Instead, a

timer is set. When the timer expires the transaction is secured on disk. While waiting

for the timer other transactions may group commit with the waiting transaction. Should

the page holding the transaction become full it will be written before the timer expires.

Note that delayed transactions may not pass each other. The system always guarantees

the order of transactions.

Delayed transactions are particularly useful for simple transactions. Consider an

application doing inserts into a table and each insert is auto committed. Without

delayed commits each insert will be written to disk as the transaction is committed.

With delayed commit however, the application can group commit the inserts and will

thus achieve a considerably better performance. When the application is done the last

transaction is flushed as the timeout expires, which is typically after one millisecond.

If the machine crashes when the application is running, the database will come back

up with a consistent database where all transactions, up to the last millisecond, are all

included.

Distributed Transactions

The Mimer SQL product supports the standardized XA protocol for distributed

transaction handling. This protocol allows several database handlers, even of different

brands, to cooperate with a distributed transaction coordinator. The coordinator is the

entity that interacts with the application when transactions are started and committed

or rolled back. When a transaction is committed the coordinator interacts with all the

participants of the transaction. If all the participants are able to “prepare to commit”

the transaction is committed. If any of the underlying transactions fail all transactions

are rolled back. All these events, including recovery after a system failure, are covered

by the XA protocol.

The functionality gained is that it is possible to perform transactions over more than

one Mimer SQL database or database from another vendor that also supports the XA

protocol.

23

Examples of products with this type of support are:

• Oracle Tuxedo

• Oracle WebLogic

• Microsoft Distributed Transaction Coordinator

• And others…

In modern application servers the application server handles the fact that an object

participates in a transaction. There is typically not any application specific logic to

achieve this.

Storage Structures

Fundamental to any database system is how the data is stored. In Mimer SQL

information is stored in Databanks. A databank is a standard Operating System direct

access file and contains an arbitrary number of tables. A Mimer SQL database may

contain an arbitrary number of databanks at the discretion of the system administrator.

The use of standard OS files allows the databanks to be expanded or contracted

dynamically when required; it also allows the use of Operating System facilities such

as disk striping and RAID systems.

Mimer SQL performs data transfers between disk and the Bufferpool on a page basis

(the page size used depends on the record size of the table, but will be 4, 32, or 128

Kbytes). Each databank has a bitmap to indicate which pages are used and which are

available. The bitmap can be regarded as a directory of space utilization. If a table

requires a new page, this page is marked as in use in the bitmap. If a page is ‘released’

(e.g. when deleting data), it is then marked as free.

The use of bitmaps allows the internal structure of the databank to change, without any

requirement for a table to be allocated a fixed size in the databank.

When creating a new databank, Mimer SQL automatically creates the bitmap and the

root page. The root page is effectively a master directory of all the tables in the

databank. If the initial root page is not large enough to contain the entire table

directory, then additional root pages are automatically created and linked to the initial

page. In the same way, as the databank grows, additional bitmap pages are created. All

other pages in a databank are either free or used to store index or data pages.

24

BITMAP PAGE
(SPACE

CONTROL)

ROOT PAGE
(DIRECTORY)

FREE PAGES INDEX PAGES

DATA PAGES

Marked as unused
Marked as used

Marked as used

 Internal Structure of a Databank

A Mimer SQL table is stored in a highly optimized balanced tree structure called a B*-

tree. This method offers fast access to all data for both indexed and sequential searches.

The tree is suitable for both finding exact keys, but also ranges of keys. By using only

one access method for all types of data the Mimer SQL DBMS has been highly

optimized for this method, always providing an optimal performance.

The B*-tree consists of an index section and a data section. The rows of the table are

stored in the data section (i.e. the ‘leaf nodes’ of the tree). The index section (the ‘non-

leaf nodes’) is essentially a map to enable rapid physical location of the required page

on the next level.

The top-level index for a table is identified via the root page of the databank containing

the table. The root page is the directory of the tables in the databank and contains page

number references to the B*-tree structure.

Rows in a Mimer SQL table are identified by the values of their primary keys, which

comprises of one or more columns in the table. It is these values which are used in the

index pages in the B*-tree.

25

INDEX
PAGES

ROOT
PAGE

DATA
PAGES

FREE SPACE

PAGE POINTER

d d d d

A B C D

M P

J

D H J

d d d d

E F G H

d d

I J

d d d

K L M

d d d

N O P

d d

Q R S

d

 Table Structure (B*-tree)

Inside all pages including the data section, data is kept sorted according to the key

values. This makes it possible to use a fast binary search algorithm to find a row, or to

find the page where a row should be inserted. By holding the data section pages in

sorted order, the rows are automatically clustered by the key.

When inserting new rows, the tree grows, and when deleting rows, the tree gets

smaller. Sometimes this will mean that a page will become full and have to be split, or

will be empty enough for the data in it to be able to be merged with adjacent pages and

the page to be released. The splitting or merging is known as reorganization.

The algorithm used for reorganization is a pre-emptive top-down scheme using a

‘careful replacement’ technique. If an insertion procedure encounters a full node in

searching for the insertion position, this node is split and the node at the previous level

is updated to reflect the split. The higher node cannot itself be full (otherwise it would

have been split when the insertion procedure first encountered it), so the splitting effect

does not propagate upwards through the tree. When the insertion search reaches the

leaf node, the row can be inserted there and the operation is completed. A similar

algorithm is used for deletions.

The ‘careful replacement’ protocol ensures that the permanent storage holds a

consistent version of the B*-tree structure at all stages during the reorganization. The

split versions of the node are written to new pages taken from the free pages. When

these writes to disk are complete, the node at the higher level is updated to reflect the

change and written to disk. After this is completed, the old version of the node that

required splitting is marked as free. Even if there is a machine failure during the

execution of the reorganization, the careful replacement protocol ensures that the disk

version of the tree will never be inconsistent.

26

Mimer SQL performs reorganizations automatically. This totally eliminates the need

to perform manual reorganizations whilst still ensuring that the tree is always kept

perfectly balanced giving continuous optimal performance. The reorganizations are

always small involving only the branch of the tree that is being traversed so there is no

noticeable effect on response time for the user. In addition, these reorganizations are

typically performed by the background threads, which means that applications never

have to wait for them.

To further improve space utilization, Mimer SQL uses variable format records and

may also compress data before it is stored in the B*-tree structure. This also improves

performance, since disk I/O is an expensive operation, and when the data pages are

compressed, more records can be stored in one page. In this way, more records are

read from (or written to) disk in one I/O operation, which has positive effects on

performance. The compression is done on entire records. This means that all types of

data are compressed. So, for example, both fixed length character columns and

variable length columns are compressed.

The B*-tree structure can handle very large quantities of data in relatively shallow

trees. It also does not suffer from any fragmentation of free space within either data or

index pages.

As the tree is always perfectly balanced, the number of index levels to traverse is

always the same for all the rows in a table. There are never any overflow chains, which

are a common problem in competing products and can lead to a large number of I/Os

to access a specific row. This means that no separate utility to clean up the b*-trees is

needed as is common in other products.

To further improve performance, the system may pick different block sizes depending

on the length of the key and of the non-key parts of the row. It is, for example, possible

to use 4K pages for index pages and 32K pages for the data pages.

Large objects are stored together with “ordinary” B*-tree in a databank. Large objects

are stored consecutively in a databank if possible. It is also possible to store large

objects in chunks of 128, 64, or 4 kilobytes depending on the size of the large object

in question. In the row there is a logical reference to the large object so that it can be

located efficiently. In effect this means that clients explicitly request access to a large

object when the application wants it. Other column types are sent in one chunk to the

client whenever a row is requested. This mode of operation allows the row to be

fetched and displayed quickly and associated large objects to be brought afterwards.

This is very similar to what a web browser does when displaying a page, where the

text is shown first and pictures are filled afterwards, one at a time. It also means that

the Mimer SQL client software never caches the large object. It is read from the

database server communication channel directly into the application buffer. If the large

objects are sufficiently small, they are also passed together with the rest of the row

data as this gives fewer round trips to the server.

Large objects are stored in whole blocks. If there is a small number of bytes left these

are stored in an overflow table. This has the effect of both being very space and

performance efficient.

27

If possible, the blocks are allocated contiguously as this advantageous when disks are

used as storage medium.

28

SECURITY

Integrity

The Mimer SQL Server allows you to enforce constraints in the database, either for

database integrity purposes or business-related rules. Through the use of declarative

integrity constraints, database procedures, and database triggers, Mimer SQL provides

a high degree of security and business rule enforcement.

Constraints define rules that enforce data integrity. Constraints are relatively simple to

maintain but aren't suitable in situations where you need to enforce complex logic.

With stored procedures, functions and database triggers you can enforce complex

business rules at the server level, improving application performance, scalability and

security, and reduce development costs. Database triggers are executed automatically

when data manipulation statements are actioned, and can be used to enforce complex

integrity rules in the server.

Data integrity is vital in a database; if the quality of the data is questionable, any

information derived from that data must be suspect. The relational model defines four

types of integrity that can be used to ensure that your data is consistent and correct:

• Domain integrity

• Entity integrity

• Referential integrity

• User integrity

Domain integrity is to do with the values that may be contained within a specific

column. All columns have an implicit domain derived from their data type but Mimer

SQL also supports the CREATE DOMAIN statement. A domain can be defined with

a number of CHECK clauses and a DEFAULT value.

A domain definition can be used instead of a data type in a column definition. This has

the advantage that the same definition of data type, check clauses and default value

can be used in many column definitions and therefore those columns are guaranteed

to have the same attributes.

If a DEFAULT value is not specified for a column definition (either explicitly or

implicitly through the use of a DOMAIN) then NULL is used.

A column definition can specify NOT NULL. This indicates that the table column

must contain a value for each row. By implication a column definition that does not

specify NOT NULL do not have to contain an actual value. NULL is a condition

(rather than a value) that represents at least one of three states of the data values: not

applicable, applicable but not available, or applicability unknown. While this is not

formally a domain constraint it is an important concept that is referred to in the other

constraints.

29

Entity integrity ensures that each row in a table is uniquely identified. The concept is

basic to database design. The primary key of a table is one or more columns that are

used to uniquely identify each row of the table.

The primary key enforces entity integrity. A table can only have one primary key. The

primary key constraint does not allow duplicate values and does not allow NULL.

Referential integrity is concerned with the maintenance of relationships between

tables. A referential constraint defines a foreign key relationship between the

referencing table and another table in the database (the 'referenced table'). The foreign

key is defined in the referencing table as a relationship to either the primary key, or

one of the unique keys in the referenced table.

For example, you cannot insert a foreign key value into the referencing table that does

not exist in the referenced table. This rule of referential integrity ensures that a non-

NULL value of a foreign key must be within the domain of the related primary or

unique key.

Rules can be defined in references that specify the action to be taken on the affected

rows of the referencing table when a DELETE operation is performed on the

referenced table. These rules can define one of the following triggered actions:

CASCADE, the affected rows are also deleted; SET NULL, the appropriate foreign

key columns are set to NULL; SET DEFAULT, the appropriate foreign key columns

are set to their default value; and NO ACTION, which raises an error because the

referential constraint would be violated. Finally RESTRICT, validates each operation

in turn rather than at the end of the statement. An error is raised if the constraint is not

valid.

Foreign key constraints can be declared as IMMEDIATE or DEFERRED. Immediate

constraints are checked as data is modified by the application. With deferred constraint

check the system validates that the foreign key constraints are valid at commit. I.e. it

is possible to have inconsistencies during the transaction as long as these are resolved

at the end of the transaction.

User integrity covers all other forms of integrity constraints that are not covered by

the other three. In Mimer SQL table integrity refers to the facility of defining CHECK

clauses in table definitions whereby the contents of a column is verified against a list

of acceptable values. Alternatively, it can check the relationship between values in

more than one column in a row. In addition, UNIQUE constraints (alternate keys) can

be defined on a table. Like the primary key, a unique key is composed of one or more

table columns and a key value uniquely identifies a row in the table (i.e. there are no

duplicates). A UNIQUE key differs from a PRIMARY KEY in that it is possible to

allow null values in the columns. If a null is specified in one or more columns of the

UNIQUE key no referential checking is performed until these values are known.

Duplicate values are allowed if a null value is present. To take this one step further

there are also unique indexes. A unique index may not be part of a foreign key. In a

unique index null is considered a “value”, so multiple rows with the same set of values

where one is null is not allowed.

30

View integrity means that if a view is created WITH CHECK OPTION this indicates

that any data inserted into the view will be checked for conformity with the view-

defining conditions.

User integrity also covers user-defined business rules, regulations, policies and proce-

dures. Stored routines and triggers are usually used to enforce business integrity.

Stored routines (procedures, functions and methods) can be used so that users, who

require access to certain tables or views from an application, can gain access without

having any explicit access rights to the actual objects. Instead, the users can be granted

the right to execute a stored routine (with or without GRANT option) that accesses

those objects. The user creating a stored routine must, of course, have sufficient access

rights to all objects involved in the routine. Using stored routines in this way allows

you to create an environment where the users are forced to only perform database

operations through a series of well-debugged routines.

A trigger is a special type of stored procedure that is called automatically whenever a

specific operation is performed on a table. Triggers are most useful when the features

supported by constraints cannot meet the functional needs of the application. Of

course, when changes need to be propagated to other tables, triggers are an

indispensable mechanism. In Mimer SQL there are both statement triggers and row

triggers. Statement triggers have access to all rows changed by a statement, for

example all the rows updated by an update clause. Row triggers are called for each

row modified, one at a time. The row trigger does not know what other rows are

modified.

The View mechanism is a very powerful concept. It is the result set from a predefined

SELECT statement, a so-called derived table. A view may simply be a restriction of a

single table, or may involve the joining of two or more tables (a so called ‘join view’).

A view can be used anywhere a table may be used. Views are a powerful tool for

restricting user access to defined parts of the database, and complement the system of

access privileges in maintaining database security. By defining restriction views (i.e.

views based on one table but including only specified rows and/or columns in the

table), access privileges may be granted to subsets of table contents without affecting

the physical database structure. Join views can be used to create the ‘Universal

Relations’ which are used by many applications, from a normalized database.

Views with an implicit one-to-one relationship with an underlying table are directly

updateable, provided the appropriate access privileges are held. A view may contain

any valid select statement such as INTERSECT, GROUP BY, or other SQL constructs.

These views are not possible to perform insert, update, and delete on unless an

INSTEAD OF trigger has been provided for the operation. When a, for example,

INSERT is done on the view with an INSTEAD OF INSERT trigger, the trigger is

provided with all the insert values and can perform the actions needed to modify the

database. The exact semantics is decided by the author of the INSTEAD OF trigger.

This provides full view updating.

31

Access Security

Through the advanced security facilities of Mimer SQL, the database can be protected

from any unauthorized access. Database privileges authorize users to perform certain

SQL operations, such as insert, update, or delete, on selected database objects. The

extremely flexible security system provided by Mimer SQL enables data to be

protected down to a single element (row/column); allowing you to precisely enforce

database security policies, ensuring users have only the privileges they need.

Mimer SQL differs from other database systems as the database administrator does not

have access to all tables in the system. The administrator can still perform backups

etc., but are not allowed to select data unless explicitly given access by the table

creator.

A unique feature of Mimer SQL is the “role concept”, where the access rights for a

user can be increased under password protection. The role concept allows Mimer

SQL’s security system to distinguish between users who are accessing the database

from the controlled environment of an application, and users who are using ad-hoc

tools. Mimer SQL provides the role concept through the PROGRAM ident.

By utilizing Mimer SQL’s advanced facilities for access control and security much

coding in applications is avoided and all applications utilize a consistent set of controls.

Within Mimer SQL an Ident is an authorized user of the system. It can also be a

collective identity of a group of users sharing common privileges. Three types of idents

are supported:

• USER idents - authorized to log on to Mimer SQL. User idents are generally

associated with specific individuals authorized to use the system. USER idents

may log into the system using a password. It is also possible to associate one

or more operating system users to an ident, in which case those operating users

can connect to that USER directly without supplying a password. Only the

creator of a user can setup operating system login for that user. It is possible to

disallow password login, thus forcing operating system login for a specific

ident.

• PROGRAM idents - may not log directly onto Mimer SQL, but instead an ident

who has already logged on may adopt the role of a Program ident by using the

ENTER statement. Typically, a user is given EXECUTE privilege on a

Program Ident and the ENTER statement is performed by the application code.

Once a Program ident is entered, the privileges held by the Program ident

apply. Program idents are generally associated with specific functions like

running an application, rather than with physical individuals. This allows end

users to carry out updates to the data in the controlled environment of an

application, without being able to do the same using an interactive tool. The

use of Program Idents can significantly reduce the burden of security

management.

• GROUP idents - are collective identities for groups of idents. Any privileges

granted to or revoked from a Group ident automatically apply to all members

of the Group. Group idents provide a facility for organizing the privilege

32

structure in the database system. A user may be member of several groups and

in particular all users are member of the PUBLIC group. When a user is a

member of several groups, he/she receives the combined privileges of the

groups.

Each ident is given privileges within the system defining the operations that ident is

allowed to perform. An ident receiving a privilege ‘WITH GRANT OPTION’ may

pass the privilege on to another ident.

System privileges give the right to create global objects within the database:

• BACKUP - gives the right to perform databank backup and restore operations

• DATABANK - gives the right to create databanks

• IDENT - gives the right to create idents

• SCHEMA - give the right to create schema

• SHADOW - gives the right to create and manage databank shadows

• STATISTICS - gives the right to execute the UPDATE STATISTICS

statement even on objects owned by other idents

Object privileges give rights over certain specified objects in the system. Mimer SQL

supports the following object privileges:

• TABLE - gives the right to create tables in a given databank

• EXECUTE - gives the right to execute a specified stored routine, or to enter a

given program ident

• MEMBER - grants membership in a specified group ident

• USAGE - gives the right to use a given domain, collation, or a specified

sequence

Object privileges are initially granted only to the creator of the object.

Access privileges give rights of access to the contents of a specified table or view.

There are five access privileges:

• SELECT - gives the right to read the table or view contents

• INSERT - gives the right to add new rows to the table or view

• DELETE - gives the right to remove rows from the table or view

• UPDATE - gives the right to update existing rows in the table or view

• REFERENCES - gives the right to use the primary or unique key of the table

as a foreign key from another table

Access privileges are initially granted only to the creator of the table or view. The

privilege may be passed on to other idents with or without grant option.

When an instead-of trigger is created on a view the corresponding privilege is given to

the user. Only the creator of a view may create an instead-of trigger.

33

Client/Server encryption

When communicating between database client and database server it is possible to

encrypt the contents of the messages. This makes it possible to securely pass sensitive

data over the network. It also ensures that messages are not manipulated by someone

else as the messages are transferred over the network.

The encryption uses AES-GCM (Advanced Encryption Standard - Galois/Counter

Mode). This is an authenticated encryption algorithm designed to provide both data

authenticity (integrity) and confidentiality. This means that the data is protected from

eavesdroppers, and that any tampering with the data is detected.

Each session will have its unique session key. The keys are not reused, so two

encrypted sessions with the same content appear completely different.

It is very simple to enable encryption by setting a database server parameter called

“NetworkEncryption”. Three modes are supported:

• None. No network encryption is used. This is primarily used over non-public

networks where the network infrastructure is protected.

• AES-GCM, optional. In this mode all clients are accepted. Newer clients with

support for encryption use encryption, while older clients will communicate

without encryption.

• AES-GCM, required. In this mode all network connections are encrypted.

Clients that do not support encryption are rejected at login with error code -

18531.

When logging into the database the system uses an algorithm called Secure Remote

Protocol. With this protocol the actual password is never passed over the network

(even when no encrypted). In addition, the actual information passed differs for each

login. This protects against malicious users trying to gain access the system by

eavesdropping and replaying the session.

Backup and Recovery

Mimer SQL’s backup and recovery procedures are designed to guarantee that a

consistent and up-to-date database can be recreated following all types of system

failure.

Mimer SQL handles database consistency on two levels: physical and logical.

Physical consistency means that the tables are readable by the Mimer SQL database

server. The Mimer SQL system guarantees physical consistency as long as the

databank file is not physically damaged. If a databank file was not closed properly last

time it was accessed, an internal consistency check is performed when the databank is

opened the next time. If physical errors are detected the databank can be restored from

a backup copy. The consistency check is performed in the background to allow quick

34

access to the system. If an application accesses data that has not been checked yet the

system performs a small local check of the pages accessed to ensure stable operation

even in the event of a damaged database.

Logical consistency means that the tables contain correct data and no transactions are

incomplete. Mimer SQL’s transaction handling ensures logical consistency. Details of

all database accesses are saved in the TRANSDB databank during build-up and no

changes are made to the database. The Commit statement initiates the application of

the changes that are carried out as if they were a single ‘atomic’ change. If a transaction

is successfully committed then all operations in the transaction are applied. If the

transaction is aborted due to a conflict, or a user request, none of the operations in the

transaction are applied.

The databanks may be temporary logically inconsistent if Mimer SQL is stopped

(either deliberately or by a system failure) before all operations in a successfully

committed transaction have been performed. When the system is restarted all

uncompleted transactions are read from TRANSDB and are automatically applied to

get the system into a consistent state again.

During the Commit Phase of a transaction the changes to a databank are written to the

transaction log (the databank LOGDB). Mimer SQL’s logging system allows a backup

copy of a databank to be rolled forward to recreate an up-to-date version of the

databank following a file being physically damaged or other hardware faults making

it inaccessible or corrupt.

The Mimer SQL system allows an online backup (i.e. a 'full backup') of a databank to

be taken, whilst maintaining full access to all the data. The backup is a complete copy

of the databank file and may be used as the basis for a databank recovery operation.

As a complement to backup copies, it is possible to archive the transaction log changes,

forming the equivalent of an incremental backup of all logged databanks. This allows

several backup copies of a databank of varying ages to be kept, along with a sequence

of incremental LOGDB backup files. By using the appropriate sequence of LOGDB

backups and the current LOGDB, it is possible to roll forward any of the backup copies

of the databank to an up-to-date state.

When an online backup is made a completely consistent snapshot of the system is

taken. The backup files are ordinary Operating System files, the normal OS facilities

for backing up files can be used for them. Also, incremental backups can be combined

with host system backup copies. This means that the backup process can be

incorporated into the normal site procedures for backup. It also allows the most

efficient utilities to be used for this purpose.

The LOGDB file can also be used as an audit trail. The audit trail is accessed by the

readlog command in the Batch SQL utility, where the following information about

performed transactions in the system can be retrieved:

• The user who performed the transaction

• Type of transaction

• Date and time the transaction was carried out

35

• Row images before and after the transaction

36

24 X 7 OPERATION

The Mimer SQL RDBMS is characterized by extremely high availability, with no

requirement for manual database reorganizations or other maintenance operations that

would cause downtime for the database applications.

Mimer SQL therefore ensures that the database remains operational 24 hours a day, 7

days a week without any disturbances to the production environment. Mimer SQL

provides an online backup facility so that the database can be backed up while it is

running and without interrupting transaction processing, even during heavy OLTP

usage. In the event of a hardware failure (e.g. disk crash), a shadowed database will

continue to be available, without any interruption to the application. Mimer SQL is the

database that never stops.

Resilience

Database Shadowing means that the database works with two, or more, copies of the

database information at the same time. One copy - the master - is the ‘normal’ file from

which data is retrieved. The other copy or copies are shadows. Alterations made to the

master data are also made to the shadows, so that a shadow is always an up-to-date

copy of the master. The alteration is applied separately to each shadow so that any

physical corruptions of the master are not transferred to the shadow.

In Mimer SQL, shadowing is controlled at the databank level. Any databank where

transaction control is in force can be shadowed to as many copies as required.

Important data can be protected against a disk crash without having to rely on frequent

conventional backups.

Should there be a disk failure on the disk where master databanks reside, operations

automatically continue towards the shadows. As there is no time-consuming process

of restoring the database from backup files held on tape or other media the application

can be kept running without any disturbance. The database manager can choose a

suitable moment to transform the shadows to master databanks, and create new

shadows.

During normal operation the shadowing has no direct impact on response times. The

Background threads perform changes made to the master databank and shadows,

without impacting the users.

Product Quality

Mimer SQL is an extremely robust product, which is a necessity for 24 x 7 operation.

Mimer SQL is also a very mature product, which has been used for more than 30 years

in heavy run-time environments all over the world. Mimer Information Technology

has also concentrated on ensuring that the design of the Mimer SQL system is kept as

simple as possible whilst still offering optimal performance.

37

The quality of the Mimer SQL product is assured by the use of a documented and

established development process that has been used for many years at Mimer

Information Technology. Each Mimer version is subject to rigorous Quality Assurance

checks before it is formally released.

Replication

Mimer SQL supports replication of data from a source database to a target database.

Changes in one system are continuously propagated to the replicated system.

Replication is selected on a table basis. To ensure consistency, the tables involved in

replication must have a primary key.

If several operations on the same or several replicated tables are performed in a

transaction, these are applied together in a transaction on the target system. Thus,

transaction semantics are preserved on the target system.

The current implementation is a master-slave replication system. Conflicting changes

in the target system are not applied. These operations are instead written to a log.

The current replication feature uses functionality in the Mimer SQL Experience.

38

MONITORING

There are a number of different ways to monitor a Mimer SQL database server. There

exists a number of different tools to view information about logged in users, cache

usage, and much more. Here follows a brief summary:

Tool Description

Miminfo This is a command line utility that is used to show information

such as User information, Performance information, SQL POOL

information, and Connection info.

The tool can work both towards a live system as well as a dump

taken from a server.

SQLMonitor This utility shows how much resources are used by individual

SQL statements executed on the server. It exists both as a

command line utility and as a Windows application.

Performance

Monitor

This is the built-in performance monitor on Windows. It can plot

lots of information from either Mimer SQL database servers

running on Windows as well as servers running on other

platforms.

The program can show both database server statistics as well as

operating system. The correlation between the two is, of course,

only of interest if you are actually using Windows for your

database server.

It is possible to both log to file and run interactively. It is possible

to set alerts when certain conditions are met.

The information displayed can also be retrieved by a custom,

user-written, application using the ADO.NET interfaces.

Mimperf This is a utility that shows various system information displayed

at, by default, 10 second intervals. The utility can also write

comma separated CSV files in a special format called T4. This

format allows information from the Mimer SQL server to be

correlated to Operating system information on the VMS platform.

39

OPENNESS

Mimer Information Technology is committed to conforming to the relational database

standards defined by organizations such as ANSI, ISO and The Open Group. Mimer

Information Technology’s policy means that Mimer SQL has a unique openness

towards independent development and middleware tools. In turn this ensures

application portability and interoperability, protecting your development investment.

Mimer SQL provides a high-performance native ODBC 3.5 driver and a 100% Pure

Java JDBC type 4 driver and a 100% pure ADO.NET Data Provider. Through these

interfaces a large number of web-based and Windows-based development tools can be

used together with Mimer SQL (e.g. Microsoft Visual Studio, Eclipse, Embarcadero

JBuilder and many more). Mimer SQL is also compliant with many CORBA- and

Object Transaction Monitor-based middleware products.

The JDBC, ADO.NET, and ODBC interfaces are tightly integrated into the database

engine, providing excellent performance.

By using Mimer SQL's standardized Embedded SQL interfaces for C, COBOL and

FORTRAN, it is possible to develop portable 3GL applications. An alternative to

Embedded SQL is to use Module SQL. With Module SQL the SQL statements are

stored outside the source file in separate Module SQL file. The SQL statements are

invoked by calling function names defined in the Module SQL file. Also supported are

the SQL standards for constructing SQL statements during program execution

(Dynamic SQL), allowing ad-hoc querying of the database from applications.

Programming Language(s) Mimer SQL Client

Java JDBC

C#, VB.NET, and other

.NET languages

ADO.NET or ADO.NET for compact framework

C, C++ ODBC, Embedded SQL, Module SQL, Mimer

API or Micro API

Cobol, Fortran Embedded SQL, Module SQL

Pascal Module SQL

Python MimerPy

MimerPy is a database adapter for the programming language Python, commonly used

for research in Artificial Intelligence and Machine Learning. MimerPy implements the

PEP 249 specification (see https://www.python.org/dev/peps/pep-0249/) and allows a

Python programmer access to the powerful tools and advantages of the Mimer SQL

database management system.

MimerPy is installed in the same way as all Python extensions by running the

command ”pip3 install mimerpy” from the operating system command line.

Mimer SQL is also available from many other scripting languages such as Perl, PHP,

and so on. Typically, these languages have a bridge to ODBC that is used.

https://www.python.org/dev/peps/pep-0249/

40

The programming interfaces to Mimer SQL are multithreaded. A thread can make a

synchronous call, and other threads can be processed while the first thread is blocked

waiting for the response to its call. This type of support is essential when programming

GUI-based applications. Mimer SQL clients are thread safe. Typically, the clients run

in parallel only when the threads use different connections.

SQL

Mimer Information Technology’s policy is to develop Mimer SQL, as far as possible,

in accordance with the established standards. The latest standard is called ISO/IEC

9075:2016 and is referred to as SQL-2016.

Mimer SQL support all features of Core SQL 2016 and 145 additional features in the

standard.

For each SQL statement documented in the Mimer SQL reference manual, standard

compliance for the statement in question is documented. This gives customers a clear

picture what SQL to use to follow the SQL 2016 standard.

Mimer SQL also provides support on the web for testing standard compliance for

individual SQL statements.

JDBC

JDBC is the de-facto standard for accessing relational database systems from the Java

programming language. Mimer JDBC adapts to new versions of JDBC as they become

available.

The Mimer SQL JDBC Driver is a Type 4 - Native Protocol All-Java Driver. The Type

4 architecture uses a message protocol that is specific to Mimer SQL; as this means

that there is no need for any intervening processes or translation, this architecture is

extremely efficient.

A type 4 driver is written completely in Java so that it can run on any client that

supports the Java Virtual Machine (JVM). This makes the Mimer SQL JDBC Driver

ideally suitable for both Internet and intranet applications and for use in application

servers. An applet using the JDBC driver will run on any client browser.

The driver is small (approximately 190KB in JAR format) in size, so that it can be

simply incorporated into an applet that can be downloaded over the Internet. No other

Mimer software is required to be installed on the Java client, eliminating any need for

configuration management on the client side.

For advanced interoperability with application servers Mimer SQL JDBC driver has

three so-called standard extensions. They are: JNDI standard extension, Connection

pooling, and distributed transactions. JNDI provides translation of names in an

application server. Connection pooling allows many connect/disconnect operations to

be processed efficiently. Finally, distributed transactions allow transactions to span

several databases.

41

JDBC for small footprint environments

JDBC comes in two flavors for small footprint environments. The first driver runs

under the Java 2 Platform Micro Edition called Connected Device Configuration

(CDC). This environment is common on handheld devices supporting Java.

The second driver is for mobile phones running in a more constrained Java 2 Platform

Micro Edition environment called Connected Limited Device Configuration (CLDC).

In both environments it is possible to use a Mimer JDBC client to access both database

on the device and databases on other machines via a network, for example using GPRS

or Bluetooth.

Mimer Information Technology was the first database vendor to give JDBC support in

the CLDC environment.

ADO.NET

Mimer Information Technology has developed a fully managed ADO.NET provider

for the .NET Framework. The interface exposes all the rich functionality of the

underlying database server.

The fact that it is written in 100% managed code allows it to run under .NET Core that

runs on both Windows and Linux.

The provider has been integrated with Visual Studio. The documentation is completely

integrated and supports Intellisense. It is also possible to drop Mimer SQL specific

ADO.NET object onto a Windows Form. When this occurs, a wizard is activated that

guides the programmer through a sequence of steps to allow the ADO.NET object to

interact with the database server. In the end, code is automatically generated, saving

the programmer the work to do this explicitly.

In addition, there are many other wizards. More information about these can be found

in the documentation for the Mimer SQL ADO.NET provider. The documentation is

integrated into the Visual Studio environment. There is support for index lookup,

search, and dynamic help.

ADO.NET for small footprint environments

The small footprint environment is called .NET Compact Framework. The

corresponding Mimer SQL ADO.NET provider for this environment is called Mimer

Compact Data Provider.

Like its bigger cousin for the .NET Framework, it is written as 100% managed code,

making it extremely easy to package and deploy along with applications. Only one

assembly is used together with the application with no other dependencies. The

provider runs on many flavors of Pocket PC, Windows Mobile, Smartphone, and other

compatible environments.

42

ODBC/CLI

Mimer SQL ODBC is a very efficient implementation of Microsoft's Open Database

Connectivity interface. The Mimer SQL ODBC driver complies with the Microsoft

ODBC 3.8 specification. The driver supports applications written for earlier versions

of ODBC in the manner defined in the ODBC specification.

Mimer SQL ODBC enables GUI-based applications and tools to be connected to the

Mimer SQL Database Server. In the Mimer SQL architecture the ODBC interface is

placed at the same level as Mimer SQL's standard SQL-interface, eliminating any

overhead due to data conversion and additional layers. ODBC-specific features, such

as block transfer of data that are not included in the traditional SQL interfaces are

supported and fully implemented by Mimer SQL ODBC. These additional features are

particularly advantageous in a network environment as it eliminates network

communication between client and server.

Depending on the environment the Mimer SQL ODBC driver may be used with an

ODBC Driver Manager or not. On platforms where the driver manager is not available

the application is linked directly to the Mimer ODBC driver rather than being loaded

at runtime by the driver manager. In these situations, Mimer ODBC acts like the

standard Call Level Interface (CLI). In these environments the mimcli.h file is used

instead of the ordinary ODBC include files.

ODBC for small footprint environments

Mimer SQL ODBC has been adapted to small footprint environments. Eliminating

functionality that can be achieved in several different ways has done this. Also, only

the wide character (Unicode) interfaces are supported as is common in operating

system routines on Windows CE.

A special header file (called minodbc.h) is used which reflects the scaled down

functionality.

This means that you can use ODBC in environments such as Windows Mobile where

this interface may not always be available.

MimerAPI

Like most database products Mimer SQL has its own native database application

programming interface (API). The MimerAPI is used with programming languages C

and C++.

MimerAPI has important features for writing applications with optimum performance.

The API has support for both bulk fetch and bulk insert/update/delete/call. This allows

the application to minimize the communication with the database server. This can

significantly improve performance.

MimerAPI supports all features and data types in the Mimer SQL database server. It

is the preferred way of accessing Mimer SQL.

43

DbVisualizer

Bundled with the Mimer distributions is a tool called DbVisualizer from Dbvis

Software. The tool shows a graphical representation of all objects in a Mimer SQL

database. It provides a desktop environment for statement execution.

Of special interest are the menus associated with each object that invokes dialogs to

perform SQL operations. The dialogs can display the SQL used to perform the selected

action. A great tool to learn SQL and for statements that are used more seldom.

The tool has a graphical representation for the execution path of an SQL statement.

This is called an explain plan. The explain plan allows you to evaluate the way SQL

queries are written. It also helps in evaluating suitable indexes etc.

Web-based Database Application and Enterprise Applications

Mimer SQL’s stability in run-time environments and the built-in support for JDBC,

ADO.NET and ODBC makes it ideal for building dynamic web-based database

applications and Enterprise Applications. Data can be accessed from a Mimer SQL

database and included in web applications using standard techniques such as J2EE,

PHP, Perl, and ASP.NET. The same techniques can be used in rich client applications

using Web Services or the native client/server protocol in .NET and J2EE.

To accomplish the above some form of middleware application server or web server

scripting plugin like PHP and Perl can be used. The most common application servers

include J2EE servers like JBoss, Bea Weblogic, IBM Websphere, and Oracle OC4J

and non J2EE servers like Microsoft .NET, Coldfusion, Zope, and many others.

The use of J2EE or .NET makes it easy to build transactional applications with support

for distributed transactions and other advanced features. Often some kind of Object

Relational mapping framework (OR) like EJB CMP, Hibernate, or NHibernate is used.

This way the developer can focus on the application logic and leave the database

operations to the framework.

Standard interfaces like ODBC, JDBC, and ADO.NET are used to connect Mimer

SQL to the application servers.

Mimer SQL is used with a variety of these including:

• Apache Tomcat

• Oracle Weblogic

• ASP.NET

• JBoss

• PHP

• Perl

• OracleTuxedo

• Coldfusion

44

To build Web and Enterprise applications standard development tools like Visual

Studio, DbSchema, Eclipse, and many others can be used.

Client/Server - Heterogeneous environments

Access to remote databases in client/server environments is totally transparent within

Mimer SQL. An application, developed against a local database, can be directed to

access a remote database without changing one single line of code. In the application,

databases are referred to by a logical name. These are mapped onto actual databases

(either local or remote) by the Mimer SQL system, using mappings set up by the

database administrator.

By introducing a logical database concept, the physical location of the database is

hidden from the user. When an application connects to a database by its logical name,

the database location and communication protocol to be used are determined by the

Mimer SQL system.

Mimer SQL supports heterogeneous environments, where Linux, Open/VMS,

Windows, macOS, QNX, VxWorks, Greenhill Integrity etc. can be freely mixed on a

network. Mimer SQL's use of a standardized format for data storage eliminates any

need for conversion in the data transfers between servers and clients, making the

communications very fast and efficient.

One single application can also access several different databases (local or remote)

simultaneously.

When running in Client/Server mode Mimer SQL uses TCP/IP, Named Pipes or

similar protocols.

45

Data Types

Explicit data type references are made in SQL statements for the creation of user

defined domains and base tables and in the alteration of table definitions. The

permissible data types and their allowable ranges within Mimer SQL are:

Data type Description Range

CHARACTER(n) Character string, fixed length n. 1 < n < 15000

CHARACTER VARYING(n) or

VARCHAR(n)

Variable length character string,

maximum length n.

1 < n < 15000

CHARACTER LARGE

OBJECT(n[K|M|G]) or

CLOB(n[K|M|G])

Variable length character string

measured in characters.

1 < n <

9,223,372,036,854,775,807

NATIONAL CHARACTER(n) or

NCHAR(n)

National character string, fixed

length n.
1 < n < 5000

NATIONAL CHARACTER

VARYING(n) or NVARCHAR(n)

Variable length, national

character string, maximum length

n.

1 < n < 5000

NATIONAL CHARACTER LARGE

OBJECT(n[K|M|G]) or

NCLOB(n[K|M|G])

Variable length national character

string measured in characters.

1 < n <

3,074,457,345,618,258,602

BINARY(n) Fixed length binary string,

maximum length n.

1 < n < 15000

BINARY VARYING(n) or

VARBINARY(n)

Variable length binary string,

maximum length n.

1 < n < 15000

BINARY LARGE

OBJECT(n[K|M|G]) or

BLOB(n[K|M|G])

Variable length binary string

measured in octets.

1 < n <

9,223,372,036,854,775,807

INTEGER(p) Integer numerical, precision p. 1 < p < 45

SMALLINT Integer numerical, precision 5. -32768 through 32767

INTEGER Integer numerical, precision 10. -2,147,483,648 through

2,147,483,647

BIGINT Integer numerical, precision 19. -9,223,372,036,854,775,808

through

9,223,372,036,854,775,807

DECIMAL(p,s) Exact numerical, precision p,

scale s.

1 < p < 45

0 < s < p

NUMERIC(p,s) Exact numerical, precision p,

scale s.

1 < p < 45

0 < s < p

46

Data type Description Range

FLOAT(p) Approximate numerical,

mantissa precision p.

1 < p < 45

Zero or absolute value

10-999 to 10+999

REAL Floating point value with 24-bit

binary mantissa.

Zero or absolute value from

1.40129846-45 to 3.40282347+38

Corresponds to single precision

float. The IEEE floating point

standard supports the special values

-Inf (negative infinity), +Inf

(positive infinity), NaN (Not a

Number) and -0.0 (Negative zero).

None of these values are permitted

in a Mimer REAL column. The

value -0.0 will be converted to 0.0.

DOUBLE PRECISION, FLOAT Floating point value with 53-bit

binary mantissa.

Zero or absolute value from

4.9406564584124654-324 to

1.7976931348623157+308

Corresponds to double precision

float. The IEEE floating point

standard supports the special values

-Inf (negative infinity), +Inf

(positive infinity), NaN (Not a

Number) and -0.0 (Negative zero).

None of these values are permitted

in a DOUBLE PRECISION

column. The value -0.0 will be

converted to 0.0.

DATE

TIME

TIMESTAMP

Composed of a number of integer

fields, represents an absolute point

in time, depending on sub-type.

Described below.

INTERVAL Composed of a number of integer

fields, represents a period of time,

depending on the type of interval.

Described below.

BOOLEAN Used to represent truth-values. True and False

BUILTIN.GIS_LONGITUDE A geographic coordinate that

specifies East-West position on the

earth.

A value between -180.000 and

+180.000.

BUILTIN.GIS_LATITUDE A geographic coordinate that

specifies North-South position on

the Earth.

A value between -90.000 and

+90.000.

BUILTIN.GIS_LOCATION A combination of longitude and

latitude to specify a location on the

earth

Limited by restriction on

GIS_LONGITUDE and

GIS_LATITUDE.

BUILTIN.GIS_COORDINATE A combination of an X and a Y

value in a coordinate system.

Each part, X and Y, is an Integer

value.

BUILTIN.UUID A 16-byte universally unique value. Stored as a BINARY(16).

47

In SQL, a temporal value is either a datetime (i.e. a date, a clock time, or a timestamp)

or an interval (i.e. a period of time). They consist of a contiguous subset of one or more

of the fields: YEAR, MONTH, DAY, HOUR, MINUTE and SECOND. Temporal

values follow the usual rules of the Gregorian calendar and the 24-hour clock.

Intervals are either year-month intervals (periods of time involving years and/or

months) or day-time intervals (periods of time involving days and/or hours and/or

minutes and/or seconds and/or fractions of a second).

Mimer SQL supports the OVERLAPS predicate that compares either a pair of

datetimes, or a datetime and an interval, to determine whether the two chronological

periods overlap in time.

All numeric data and intervals may be signed. The 45-digit numeric precision also

extends to arithmetic, making Mimer SQL ideally suited for applications where high

numerical precision and accuracy are required.

Mimer SQL also support distinct types. Distinct types are formed from a predefined

data type. Distinct types are strongly typed, which means that it is only possible to

compare values of the same type. When comparing a predefined data type and a

distinct user-defined type a type cast must be used.

A SEQUENCE is a construct that returns integer values regardless of concurrent

access to the database system; this eliminates application contention when obtaining a

unique numeric key value, a common requirement in transaction processing

applications. It is also possible to retrieve the previous value returned to the

application. One use for a SEQUENCE is as the default value for a column or domain.

A sequence can be either a SMALLINT, INTEGER, or BIGINT (16-, 32-, and 64-bits

integer respectively).

Columns that contain an undefined value are assigned a NULL value. Depending on

the context, this is represented in SQL statements either by the keyword NULL or by

a host variable associated with an indicator variable.

Mimer SQL supports the CAST function, which explicitly converts between data

types.

48

Mimer SQL embedded

Mimer SQL can be customized for a particular environment. It is possible to customize

both functionality and footprint. Using this capability, a number of editions has been

created of Mimer SQL. Please note that the editions use the same source code, so that

the database engine is the same in all cases.

All editions of Mimer SQL support a rich set of functionalities such as:

• Stored procedures

• Triggers, including instead-of triggers

• Referential integrity

• Primary keys

• Check constraints

• Unique constraints

• Views

• All data types

Mimer SQL Mobile is a database server for high-end mobile phones and PDAs. It

features a multi-threaded database server.

Its smaller cousin the Mimer SQL Micro server is a single threaded server. This means

that the server handles the database request from one application at a time.

The smallest edition of Mimer SQL is the Mimer SQL Nano server. It can run with as

little as 30k RAM.

The following table summarizes the main differences between the different editions of

Mimer SQL.

 Mimer SQL

Nano

Mimer SQL

Micro

Mimer SQL

Mobile

Mimer SQL

Enterprise

Record length 450 3000 3000/16000 32000

Block sizes 4k 4k and 32k 4k, 32k, and

optionally

128k

4k, 32k, 128k

Thread-model Single Single Multi Multi

Sequences Optional Yes Yes Yes

Collations Optional Yes Yes

Floating point

functions
 Yes

Dynamic SQL Yes

As can be seen the main difference is the width of a record in a table. The reason for

restricting the record length is to conserve memory. Depending on the block sizes used

different length records are supported. Note, however, that the record length does not

49

include large object columns (BLOB, CLOB, NCLOB). These are supported in all

editions of Mimer SQL (a large object column occupies 21 bytes in the record).

Collations use very little RAM, but do use some read-only memory to support the

different languages.

By eliminating floating-point functions, the server can run in environments that does

not support floating-point arithmetic.

Mimer SQL Real-time edition

Mimer SQL Embedded, Real-Time Edition, is a scalable and zero maintenance

database management system for embedded systems on standard platforms as well as

on tailor-made appliances and mobile devices. By combining predictable hard real-

time database access with the non-real-time world, it enables integrated data

management solutions impossible to implement with other DBMS products on the

market.

Safe data sharing at run-time

Mimer SQL Embedded, Real-Time Edition, allows both real-time tasks and non-real-

time data processing to independently access real-time data without risking

unpredictable transaction aborts or blocking. All access to real-time data from the non-

real-time world is made through standard SQL.

Deterministic hard real-time database access

Mimer SQL Real-Time Edition, uses efficient in-memory database pointers to

guarantee fast and deterministic hard real-time database access. Examples of suitable

uses include data management of real-time sensor/actuator data, event logging,

diagnostics, producer/consumer, and data streaming applications.

Small footprint

The enterprise version of Mimer SQL has a footprint of only a few MBytes. The

footprint of a tailor-made version of Mimer SQL Real-Time Edition, can be reduced

to 500 KB or even less, still with support for full SQL and concurrent database access.

I.e. the real-time functionality can be combined with any of the editions described in

the previous section, such as Mimer SQL Experience, Mimer SQL Mobile, Mimer

SQL Micro, and Mimer SQL Nano.

Shorter time-to-market

By combining real-time and non-real-time data in one single Mimer SQL database,

there is no need for application specific data transfer and duplication solutions. This,

together with the full support for the ISO/ANSI SQL standard, will reduce the

development time for database applications significantly.

50

Real-time functionality

Currently the following data types are supported from the real-time interfaces:

• Integer (16, 32, and 64 bit)

• Character string

• Float (single and double precision)

• Timestamp

The real-time data can be saved persistently by flushing the data to disk. These flush

operations do not interfere with the real-time access. The data that is saved is in a

consistent state, i.e. the data saved is between two real-time updates of the data.

The following table shows the real-time operations supported:

Operation Description

Single value database pointers Read/Write individual database values.

One database pointer per value.

Multicolumn database pointers Atomic Read/Write of multiple column values

of a database record.

One database pointer per record.

Multirow database pointers Read/Write of database value in multiple

database records of a table.

Writes are performed in sequential order.

Reads are performed in sequential, backwards

or arbitrary order.

Can be combined with multicolumn

functionality.

One database pointer per table.

Database pointer flushing Flushing of any database pointer to persistent

storage.

Will not block real-time operations.

51

Mimer SQL In-memory edition

Mimer SQL In-memory is a database where all data is stored in main memory. When

an In-memory server is started its initial state is given by the databank files belonging

to the database. This can be an empty database or a database with tables, view, users

etc.

All operations done toward the server is kept in the database cache. This allows the In-

memory version to operate extremely fast as no data is written to disk.

It is still possible to use transactions as usual. In fact, almost all operations that are

applicable (>99%) of a Mimer SQL server is supported in the In-memory server. An

application that runs towards an ordinary Mimer SQL experience server can run,

unchanged, against an in-memory server.

Any objects created are only present in the database cache. For example, the create

databank statement that ordinarily creates a file in the file system, only works toward

memory. The same goes for tables and any other objects created.

Saving the state of the server

When an in-memory server is stopped the data in the data is not saved. It is reset to the

state it had before last startup.

It is, however, possible to save the state of the server by taking an online backup of the

database. This backup can be used in the same or another in-memory server or in an

ordinary Mimer SQL server.

The In-memory server is ideal for testing purposes and/or loading of lots of data. The

load program runs quickly and then an online backup is taken. The size limit of an In-

memory database is the maximum size of the database cache. This is currently 327

terabytes.

Mimload

Mimer SQL provides a flexible method for loading information to and from databases

using the LOAD and UNLOAD commands and the MIMLOAD program.

The MIMLOAD program is used directly from the operating system command line

prompt. Using the STDERR, STDOUT and STDIN options in the LOAD/UNLOAD

syntax, command line file redirection for input, output and logging is enabled. Both

database definitions and data are handled.

The LOAD command copies definitions and/or data from one or more files. The

UNLOAD command generates data and/or definitions and places the result in a file.

52

Platforms

Mimer SQL is available for a wide range of hardware and Operating Systems.

Hardware platform and OS decisions should be based on the requirements of the

application; Mimer SQL allows the developer to create the solution that the business

requires.

• HP Integrity/OpenVMS

• Linux (Red Hat, SuSE, Ubuntu and many more)

• Microsoft Windows

• macOS

• Windriver VxWorks

• ENEA OSE

• Embedded Linux

• QNX

• Greenhill Integrity

Please check the Mimer SQL developer site for an up-to-date list!

https://www.mimer.com

https://developer.mimer.com

Mimer Information Technology AB

Kungsgatan 64

SE-753 41 UPPSALA

Sweden

Tel: +46 (0)18-780 92 00

Email: info@mimer.se

Version 11.0 Dated 18 May 2021

https://www.mimer.com/
http://developer.mimer.com/

